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1 Prologue to HW3

1.1 Question 1

In this question, there is a rocket which expels mass at a certain constant velocity
v0 with respect to its rest frame. The rocket’s initial mass is m0. You are to
ignore air friction and gravity. Your goal is to write down an equation relating
the rocket’s remaining mass m to its velocity v.

To obtain the equation, you will have to solve a differential equation for v
as a function of m.

To get the differential equation, do the following:

1. Write down the momentum of the rocket at a given instance of time (dis-
regarding any of the already expelled mass), in which it had velocity v
and mass m.

2. After a short period of time, the momentum of the rocket is composed of
two terms: the just expelled mass with its velocity, and what remains of
the rocket. If we label the mass that has just been expelled as dm (with
the convention that dm < 0) and the addition to the rocket’s velocity due
to the exhaust by dv (with the convention that dv > 0) then we get for
the momentum

(m+ dm) (v + dv) + (−dm) (v − v0)

3. Now apply momentum conservation.

For the second part of the exercise, we no longer ignore gravity. Thus, there is
a homogeneous gravitational field g, and we again would like to find a relation
between the velocity of the rocket and its mass. This time the velocity will also
contain explicit dependence in time t.

1. Work in an (accelerating) reference frame in which the gravitational field
is zero (you’ve seen in the lecture that this is possible).

2. In that frame, apply now the first part of the question.

3. Now transform back the expression for the velocity you found into the
non-accelerating reference frame.
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1.2 Question 2

• Note that there is a mistake on the exercise sheet, you should rather find
that λ = g

l
.

• The main point about the first part of this exercise is to understand just
what to neglect, and why.

• Note that the earth’s rotation is given by angular veloctiy

ω =
2π

day

=
2π

86400sec

≈ 10−5 1

sec

which is a very small number. Argue then why the centrifugal terms can
be neglected, compared with the other terms.

• Once you neglect the centrifugal terms, there is a further approximation
that is made, namely, that the oscillations along the 1 and 2 axis are
very small compared to the length of the thread: y1

l amd y2

l are very
small numbers. To apply this approximation, recall that the pendulum is
constrained by the relation

∥y∥ = l

so that

y3 = −l

√

1−
(y1

l

)2
−
(y2

l

)2

and since the two terms in the square root are assumed to be very small,
we have

y3 ≈ −l

When we place this in the third component for the equation of motion we
find the value of λ (assuming that the higher corrections to λ will exactly
cancel the other non-constant terms).

• Once we find λ the other two remaining equations (together with ẏ3 ≈ 0)
give the result.

2 Epilogue to HW2

2.1 Question 1

• Note that we need E′ < 0, not merely E′ ≤ 0! E′ = 0 might still be
unbounded.

• ∥x1 − x2∥ = ∥x1∥ + ∥x2∥ for diametric points! (no minus signs between
norms).

• Precise meaning of inversion symmetry.
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2.2 Question 2

• x1 and x2 are functions of energy, not time! They are not trajectories. Do
not mix up the notation x (t) with x1 (E). In particular, ẋ1 (t) or ẋ2 (t)
do not make any sense.

• Why are you allowed to make the change of variables y := γ (t)? (If you
don’t like dividing by differentials)

• Formula (39) in Rudin’s PMA Chapter 6 (Theorem 6.19) is:
∫ b

a

f (y) dy =

∫ B

A

f (ϕ (t))ϕ′ (t) dy

where ϕ : [A, B] → [a, b] is continuous and strictly increasing and sur-
jective, such that ϕ′ is Riemann integrable on [A, B] and f is Riemann
integrable on [a, b].

– We apply this result with (a, b) := (x1 (E) , x2 (E)), f := x &→
1√

E−V (x)
, and (A, B) :=

(

0, 1
2τ (E)

)

. We then choose ϕ := γ, and

ϕ is: continuous (by physical assumption), strictly increasing on this
interval, and surjective (by definition). Also, note f is Riemann inte-
grable on (x1 (E) , x2 (E)) (due to the square root). So we may apply
the theorem in Rudin to obtain the desired change of variables:

∫ x2(E)

x1(E)

1
√

E − V (y)
dy =

∫ 1

2
τ(E)

0

1
√

E − V (ϕ (t))
ϕ′ (t) dt

=

∫ 1

2
τ(E)

0

1
√

E − V (γ (t))
γ̇ (t) dt

=

∫ 1

2
τ(E)

0

1

γ̇ (t)
γ̇ (t) dt

=

∫ 1

2
τ(E)

0
dt

=
1

2
τ (E)

• Explain again how to exchange the order of the limits, and why it is
necessary at all:

∫ E

0

∫ x2(E)

x1(E)
·dydE′ =

∫ x2(E)

x1(E)

∫ E

V (y)
·dE′dy

• We know

V −1 (E) =
1

4π

∫ E

0

τ (E′)√
E − E′

dE′

so that we need to solve the equation

x =
1

4π

∫ V (x)

0

τ (E′)
√

V (x)− E′
dE′

for V (x) (need to have the explicit form of τ in order to do that).
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