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1 Epilogue to HW1

1.1 General Notes

• No need to write an equation with (t) all the time if it holds for all t.
Simply write a function equation instead of a number equation. That is,

x = Ry

where x and R are two functions (they depend on t, but that’s not a
helpful piece of information for that equation) instead of

x (t) = R (t) y

1.2 Question 1

1.2.1 Galilean Invariance of Force Law

Since there has been some confusion about just what it means for the force law
to be Galilean invariant, let us clarify that in the most precise way.

Let

[

t
x

]

∈ R4 be any event as measured in some inertial coordinate system

S. In that coordinate system, assume that the equations of motion of a system
of N particles are of the following form: For any i ∈ { 1, . . . , N },

miγ̈i = Fi (γ1, . . . , γN ) (1)

where mi is the mass of the ith particle, γi : R → R3 is the trajectory of the ith

particle as measured in S and Fi :
(

R3
)N → R3 is the force on the ith particle

(which depends on the positions of all N particles).
Now we perform a Galilean coordinate transformation

[

t
x

]

#→
[

t′

x′

]

into a coordinate system which we label by S′. The equations of motion for
the trajectories γ′

i measured in S′ can now be obtained by plugging into (1)
the expression of γi in terms of γ′

i (the reverse transformation). If the resulting
equations (for γ′

i) are of the form

miγ̈′
i = Fi (γ

′
1, . . . , γ

′
N )
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then we say the force law (1) is Galilean invariant.
Let us be explicit with an example, for the sake of concreteness.
We assume N = 2,

F1 (γ1, γ2) = −G
m1m2

∥γ1 − γ2∥3
(γ1 − γ2)

and

F2 (γ1, γ2) = −G
m1m2

∥γ1 − γ2∥3
(γ2 − γ1)

Let R ∈ O (3) be given and define our transformation as

[

t
x

]

#→
[

t′

x′

]

=

[

t
Rx

]

Then

γ′
i (t) = Rγi (t)

so that

m1γ̈′
1 (t) = m1Rγ̈1 (t)

= −RG
m1m2

∥γ1 (t)− γ2 (t)∥3
(γ1 (t)− γ2 (t))

= −G
m1m2

∥γ1 (t)− γ2 (t)∥3
(Rγ1 (t)−Rγ2 (t))

(R preserves norms by definition)

= −G
m1m2

∥Rγ1 (t)−Rγ2 (t)∥3
(Rγ1 (t)−Rγ2 (t))

(γ′
i ≡ Rγi)

= −G
m1m2

∥γ′
1 (t)− γ′

2 (t)∥
3 (γ′

1 (t)− γ′
2 (t))

≡ F1 (γ
′
1 (t) , γ

′
2 (t))

and similarly for the second mass. Thus, we have found

miγ̈i = Fi

(

{ γj }j
)

before the transformation, and

miγ̈′
i = Fi

(
{

γ′
j

}

j

)

after the transformation. This is an invariant force law.

1.3 Question 2

1.3.1 Part one

• R is given as R : R → O (3), not anything else! In particular, nothing is
given as a map R3 → R3.
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1.3.2 Part Two

• Apparently it’s too hard to calculate powers of the matrix

Ω =

⎡

⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎦

just by matrix multiplication (although one of you did this). Instead,
easier to think of

Ω ≡ ω × ·

and use properties of cross product!

• It is also a good example of when brute-forcing the solution by diago-
nalization is not a good idea. Not a single student who attempted this
actually succceeded.

• Induction: make sure that n = 1 is proven as well.

1.4 Question 3

• Clarify the distinction between vector and pseudo vector. Pseudo-vector
is a cross product of two vectors, and under reflection it is invariant.

• Explain what it means for the angular velocity to be additive, and exactly
how.

2 Prologue to HW2

2.1 Question 1–Decay of Binary Star

The problem wants us to find a certain criteria that the motion of two bodies
(after the second one had exploded) is bounded. For that, we need to understand
what “bounded motion” means for the two bodies.

1 Claim. A two-body system which is unbounded has non-negative energy.

Proof. If we denote the displacement (at any given moment) between the two
bodies as

r := x1 − x2

Then for the system to be unbounded means that we cannot bound ∥r∥ as
time grows to infinity. That is, for any R > 0 there exists some tR > 0
such that ∥r (tR)∥ > R (but we allow that limt→∞∥r (t)∥ does not converge
necessarily “converge” to ∞).

So let us assume that this is indeed the case for ∥r∥.
We know that the energy of the system is given by

E = T + V
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where T ≡ 1
2

(

m1∥ẋ1∥2 +m2∥ẋ2∥2
)

is the kinetic energy of the system and

V = −G
m1m2

∥r∥

is its potential energy. We see that T ≥ 0 and V ≤ 0 (for all values of
parameters). We also see that

lim
∥r∥→∞

V = 0

and in addition, via

T = E − V

and

∂∥r∥E =
dt

d∥r∥
∂tE
︸︷︷︸

zero by conservation of energy

= 0

We have

lim
∥r∥→∞

T = lim
∥r∥→∞

E

= E

so that as ∥r∥ → ∞, V → 0 and T → E. Because T ≥ 0 for all parameters
and [0, ∞) is closed from the left, that necessarily means that E ≥ 0.

2 Corollary. A two-body system which has negative energy is bounded.

3 Claim. For a two-body system the kinetic energy of the motion with respect
to the center of mass is given by

Ts =
1

2
m∥ṙ∥2

with

m :=
m1m2

M

being the reduced mass and M := m1 +m2 the total mass.

Proof. The center of mass is given by

X ≡
1

M
(m1x1 +m2x2)

Note that

xi −X =
Mxi −m1x1 −m2x2

M

=
mi′

M
(xi − xi′ )
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for all i ∈ { 1, 2 } where i′ is the index in the singleton { 1, 2 } \ { i }.
Hence we find

TS ≡
1

2

2
∑

i=1

mi

∥
∥
∥ẋi − Ẋ

∥
∥
∥

2

=
1

2
m∥ṙ∥2

4 Fact. If a body explodes in an inversion symmetric way (and in particular,
spherical symmetric explosion is inversion symmetric), then in its instantaneous
rest frame right before the explosion, its velocity before and after the explosion
is zero. In equations, we have

lim
ε→0+

ẋ2 (texplosion − ε) = 0 (2)

lim
ε→0+

ẋ′
2 (texplosion + ε) = 0 (3)

where texplosion ∈ R is the time of the explosion, x2 : R → R3 is the trajectory of
the second body measured in the frame in which it is at rest exactly at texplosion
(which is why we have (2)) and x′

2 : R → R3 is the trajectory of the remainder of
the second body after the explosion, in the same frame. The inversion symmetry
assumption is exactly (3). Note that x2’s domain is really (−∞, texplosion) and
not any time after, as it stops existing after the explosion, and x′

2’s domain is
really (texplosion, ∞) as it did not exist before the explosion.

5 Fact. The first body’s velocity before the explosion and instantaneously af-
ter the explosion is equal, as, according to the hypothesis of the problem, the
explosion does not affect it. In equations:

lim
ε→0+

ẋ1 (texplosion − ε) = lim
ε→0+

ẋ1 (texplosion + ε) (4)

6 Fact. For the two body problem, one can set up the initial data in such a way
that the two bodies move diametrically on two concerntric circles, of possibly
different radii. The center of the two circles is the center of mass of the two
bodies X. This is what we are told to assume is the situation in the given
problem. As a result, we have

∥x1 − x2∥ = ∥x1∥+ ∥x2∥ (5)

7 Claim. For a two body system moving in a circular fashion (such as the system
in our problem),

TS = −
1

2
V (6)

where TS is the kinetic energy of the two bodies with respect to the center of
mass.

5



Proof. Recall that for circular motion, ∥ẋi∥ and ∥xi∥ do not depend on time,
for all i ∈ { 1, 2 }. We start by computing the kinetic energy of the ith body:

Ti ≡
1

2
mi∥ẋi∥2
(

∥ẍi∥ =
∥ẋi∥2

∥xi∥
for circular motion

)

=
1

2
mi∥ẍi∥∥xi∥

(mi∥ẍi∥ = ∥Fi∥ by Newton’s second law)

=
1

2
∥xi∥G

m1m2

∥r∥2

Thus using (5) we get:

Ts ≡ T1 + T2

=
1

2
G
m1m2

∥r∥2
(∥x1∥+ ∥x2∥)
︸ ︷︷ ︸

∥r∥

=
1

2
G
m1m2

∥r∥

≡ −
1

2
V

as desired.

8 Remark. Note that while (6) holds before the explosion (because we were told
to assume there is circular motion), no such relation necessarily holds after the
explosion.

We may now finally solve the problem by showing that E′ < 0 (note that
energy after the explosion is also conserved, so it doesn’t matter at which time
we evaluate it. We choose to evaluate E′ at texplosion + ε for some ε > 0):

E′ ≡ E′ (texplosion + ε)

(E′ is conserved for all ε > 0)

= lim
ε→0+

E′ (texplosion + ε)

= lim
ε→0+

T
′

S (texplosion + ε) + V ′ (texplosion + ε)

= lim
ε→0+

1

2
m′
∥
∥
∥ẋ1 (texplosion + ε)− ẋ′

2 (texplosion + ε)
∥
∥
∥

2
−G

m1m
′
2

∥r′ (texplosion + ε)∥

We now use (4) and (2) and (3), as well as the fact that for any explosion we
must have

lim
ε→0+

x2 (texplosion − ε) = lim
ε→0+

x′
2 (texplosion + ε)

2.2 One Dimensional Oscillations

Note that even though the text of the question doesn’t specify it, it is meant
that V is strictly monotone on both sides of its minimum (in fact if it’s not
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strictly monotone then the period will diverge!).
So let V : R → R be a function with one minimum, say, at some m ∈

R V (m) = 0, and assume that V |[m,∞) is strictly monotone increasing and
V |(−∞,m] is strictly monotone decreasing. Note that a function which is strictly
monotone is necessarily injective. In fact V is also surjective onto [0, ∞) due
to this property. As a result, for a given E ∈ R\ { 0 }, the sets V −1 ({ E }) ∩
(−∞, m] and V −1 ({ E }) ∩ [m, ∞) are actually singletons. We denote x1 (E)
and x2 (E) as the two points inside those singletons respectively (so x2 (E) > m
and x1 (E) < m).

If a particle of mass m ≡ 2 is moving under the influence of the potential V
at some energy E ∈ R\ { 0 }, we denote the time it takes the particle to move
from x1 (E) to x2 (E) and then back to x1 (E) by τ (E).

9 Claim. We have the following expression for τ (E):

τ (E) =

∫ x2(E)

x1(E)

1
√

E − V (y)
dy

Proof. Use the fact that

τ (E) ≡ 2

∫ 1
2
τ(E)

0
dt

Then make a change of variable in the integral

y := γ (t)

where γ : R → R is the trajectory of the particle. If we assume that γ (0) =
x1 (E) and γ

(
1
2τ (E)

)

= x2 (E) we obtain the desired result.

10 Claim. We have

x2 (E)− x1 (E) =
1

2π

∫ E

0

τ (E′)√
E − E′

dE′

Proof. Start of by the observation that

2π (x2 (E)− x1 (E)) = 2

∫ x2(E)

x1(E)
πdy

The use the fact that

π =

∫ E

V (y)

τ (E′)
√

(E′ − V (y)) (E − E′)
dE′

independently of y and of E. This is a simple calculation with the change of
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variables

t :=
2E′ − V (y)− E

E − V (y)

and then

t := sin (ϕ)

Now exchange the order of integration for the two integrals (the inner one
which equals π and the outer one from x1 (E) to x2 (E)). This is allowed by
Fubini’s theorem. Note that then the limits of integration change. The (new)
inner integral should correspond to τ (E′).

11 Claim. If V is even (so that m = 0) then V may be computed from
τ .

Proof. Note that by bijectivity of V |[0,∞) : [0, ∞) → [0, ∞) and V |(−∞, 0] :
(−∞, 0] → [0, ∞) we get that

x1 =
(

V |(−∞, 0]

)−1

and

x2 =
(

V |[0,∞)

)−1

Because V is even, x1 = −x2 so that

x2 − x1 = 2x2

and we need to determine V only on the right, that is, we only need to find
V |[0,∞). Thus if we inverted the map

(

V |[0,∞)

)−1
: [0, ∞) → [0, ∞)

E #→
1

4π

∫ E

0

τ (E′)√
E − E′

dE′

we would be finished.
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