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1 The Hamilton-Jacobi Equation

1.1 Generators of Canonical Transformations

Let g : R2f × R → R be a canonical transformation of coordinates: If the old
trajectory in phase space R2f is γ : R → R2f then the new one γ̃ : R → R2f is
related to γ via:

γ (t) = g (γ̃ (t) , t) ∀t ∈ R

And we also have

H (q, p, t) = H̃ (q̃, p̃, t)

which means

H (g (q̃, p̃, t) , t) = H̃ (q̃, p̃, t) ∀ (q̃, p̃, t) ∈ R
2f × R

The question is if we can come up with ways to “generate” g in easy ways,
ensuring that it will automatically be canonical.

One way to make sure of that is to ensure that the two Lagrangians corre-
sponding to H and H̃ are equivalent, that is, equal up to a function’s derivative
with respect to time:

f
∑

i=1

γpi
(t) γ̇qi (t)−H (γqi (t) , γpi

(t) , t)
!
=

f
∑

i=1

γ̃pi
(t) ˙̃γqi (t)−H̃ (γ̃qi (t) , γ̃pi

(t) , t)+Ḟ (t)

(1)
where F is any function of time.

It turns out that it’s most useful to assume that F has the following partic-
ular dependence on time:

F (t) = G1 (γq (t) , γ̃q (t) , t)

or

F (t) = G2 (γq (t) , γ̃p (t) , t)
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or other combinations which mix the positions and momenta of the transformed
and untransformed coordinates. Consider the first case. Then

Ḟ (t) =
f
∑

i=1

(∂qiG1) (γq (t) , γ̃q (t) , t) ˙γqi (t) +

+ (∂q̃iG1) (γq (t) , γ̃q (t) , t) ˙̃γqi (t) +

+ (∂tG1) (γq (t) , γ̃q (t) , t)

and we find (1) becomes

f
∑

i=1

γpi
(t) γ̇qi (t)−H (γqi (t) , γpi

(t) , t)
!
=

f
∑

i=1

γ̃pi
(t) ˙̃γqi (t)− H̃ (γ̃qi (t) , γ̃pi

(t) , t) +

(∂qiG1) (γq (t) , γ̃q (t) , t) ˙γqi (t) +

+ (∂q̃iG1) (γq (t) , γ̃q (t) , t) ˙̃γqi (t) +

+ (∂tG1) (γq (t) , γ̃q (t) , t)

This equation can only hold for all t if we have the following three equations:

γpi
(t) = (∂qiG1) (γq (t) , γ̃q (t) , t)

γ̃pi
(t) = − (∂q̃iG1) (γq (t) , γ̃q (t) , t)

−H (γqi (t) , γpi
(t) , t) = −H̃ (γ̃qi (t) , γ̃pi

(t) , t) + (∂tG1) (γq (t) , γ̃q (t) , t)

We assume we can invert the first (set of f) equations to get γ̃q (t) in terms of
γpi

(t) and γq (t) and t. Once we found γ̃q (t), we place it in the second (set of
f) equations to get γ̃pi

(t) in terms of γpi
(t) and γq (t) and t. This completes

the exercise, since this data is exactly g−1.

1 Example. If we pick

G1 (γq (t) , γ̃q (t) , t) :=
f
∑

i=1

γqi (t) γ̃qi (t)

Then the transformation we get exchanges the positions and momenta:

γpi
(t) = γ̃qi (t)

γ̃pi
(t) = −γqi (t)

So that g : R2f → R2f is given by the matrix

g =

[

0 −1f

1f 0

]

which is incidentally the standard symplectic form (so of course it is a canonical
transformation).
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2 Example. (The 1D Harmonic Oscillator) We begin with the one dimensional
Harmonic oscillator:

H (q, p) =
1

2m

(

p2 +m2ω2q2
)

(2)

G1 (γq (t) , γ̃q (t) , t) :=
1

2
mω (γq (t))

2 cot (γ̃q (t))

We then find

γp (t) = (∂qG1) (γq (t) , γ̃q (t) , t) = mωγq (t) cot (γ̃q (t))

γ̃p (t) = − (∂q̃G1) (γq (t) , γ̃q (t) , t) =
1

2
mω (γq (t))

2 1

sin (γ̃q (t))
2

Solve for γp (t) and γq (t) to find

γq (t) =

√

2

mω
γ̃p (t) sin (γ̃q (t)) (3)

and

γp (t) =
√

2mωγ̃p (t) cos (γ̃q (t)) (4)

We find then the new Hamiltonian is:

H̃ (q̃, p̃) = H (q, p)

= H

(

√

2

mω
p̃ sin (q̃) ,

√

2mωp̃ cos (q̃)

)

=
1

2m

⎧

⎨

⎩

[

√

2mωp̃ cos (q̃)
]2

+m2ω2

[

√

2

mω
p̃ sin (q̃)

]2
⎫

⎬

⎭

= ωp̃

Hence the new canonical equations of motion give

˙̃γp = −
∂H̃

∂q̃
= 0

˙̃γq (t) = −
∂H̃

∂p̃
= ω

so that

γ̃p (t) =
E

ω

and

γ̃q (t) = ωt+ const

Placing these back in (3) and (4) gives us the solution.
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1.2 The Hamilton-Jacobi Equation

(page 430 of Goldstein)
We look for a generating functional S of canonical transformations

(q̃, p̃, t)
g
&→ (q, p)

such that after the transformation g : R2f ×R → R2f , the new Hamiltonian will
be zero:

H (q, p, t) = H̃ (q̃, p̃, t)
!
= 0

The consequence of H̃ = 0 means that the new canonical equations of motion
imply the new trajectories γ̃ : R → R2f are constant:

∂tγq̃i =
(

∂p̃i
H̃
)

(γq̃, γp̃) = 0

∂tγp̃i
= −

(

∂q̃iH̃
)

(γq̃, γp̃) = 0

So that

γq̃i (t) = γq̃i (0) ∀t ∈ R

γp̃i
(t) = γp̃i

(0) ∀t ∈ R

Then if we could figure out what g is, then we will have solved the problem
(that is, obtained the trajectories γq and γp) because we have

γ (t) = g (γ̃ (t) , t)

= g (γ̃ (0) , 0)

so that really all the data we need is encoded inside of g. As we know, the
generating functional generates g, so finding the generating functional S corre-
sponding to g itself encodes all the data we need. The Hamilton-Jacobi equation
is a partial differential equation to find that special S.

Relating to the generator above, we pick S of the form

S (t) = G2 (γq (t) , γ̃p (t) , t)−
f
∑

i=1

γqi (t) γ̃pi
(t)

for some G2, which leads to transformation equations of the form

γpi
(t) =

∂G2

∂qi
(γq (t) , γ̃p (t) , t)

γq̃i (t) =
∂G2

∂p̃i
(γq (t) , γ̃p (t) , t)

−H (γq (t) , γp (t) , t) = (∂tG1) (γq (t) , γ̃p (t) , t)

Hence we find

H

(

γq (t) ,
∂G2

∂qi
(γq (t) , γ̃p (t) , t) , t

)

+ (∂tG2) (γq (t) , γ̃p (t) , t) = 0 (5)
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which is the Hamilton-Jacobi equation, a partial-differential equation in f + 1
variables (γq (t) , γ̃p (t) , t).

If H does not explicitly depend on time, we must have H a constant in time,

the energy E, so that (∂tG2) (γq (t) , γ̃p (t) , t)
!
= −E. Thus we could write G2’s

explicit dependene on time as

∂G2

∂t
= −E

for some constant E, which we call the energy.

3 Example. (The 1D Harmonic Oscillator) We begin again with (2) and we
use this H for the Hamilton-Jacobi equation:

H

(

γq (t) ,
∂G2

∂q
(γq (t) , γ̃p (t) , t) , t

)

= E

↕

1

2m

{

[

∂G2

∂q
(γq (t) , γ̃p (t) , t)

]2

+m2ω2γq (t)
2

}

= E

and the unknown to be found is the function G2. We can actually integrate this
last equation to find, for some function G3,

G2 (γq (t) , γ̃p (t) , t) =

∫ γq(t)
√

2mE −m2ω2q′2dq′ +G3 (γ̃p (t))− Et

Recall that by definition γ̃p (t) = γ̃p (0) so that G3 (γ̃p (t)) = G3 (γ̃p (0)) and
is thus merely a constant. Since G2 enters into our equations only derivatives,
we discard this constant. The explicit dependence on t enters as in our earlier
discussion:

G2 (γq (t) , γ̃p (t) , t) =

∫ γq(t)
√

2mE −m2ω2q′2dq′ − Et

Note that since γ̃p (t) = γ̃p (0), we are actually free to choose this constant as
we please (it will merely lead to a change in the function G2, but it will not
change is functional dependence on γq (t)), and we can just as well choose it to
be E. Thus we find

γq̃ (0) ≡ γq̃ (t)

=
∂G2

∂p̃i
(γq (t) , γ̃p (t) , t)

=
∂G2

∂E
(γq (t) , E, t)

=

∫ γq(t) m
√

2mE −m2ω2q′2
dq′ − t

=

√

m

2E

∫ γq(t) 1
√

1− 1
2Emω2q′2

dq′ − t

5



This can be integrated and gives:

γq̃ (0) =

√

m

2E

√

2E
1

mω2
arcsin

(

√

1

2E
mω2γq (t)

)

− t

=
1

ω
arcsin

(
√

mω2

2E
γq (t)

)

− t

Which implies

γq (t) =

√

2E

mω2
sin (ωt− γq̃ (0))

and we can also find the momentum γp (t) via γpi
(t) = ∂G2

∂qi
(γq (t) , γ̃p (t) , t).

Hence we find the usual solution for the harmonic oscillator.
Thus, the canonical transformation we found moves us to the (constant)

coordinates which are the total energy E and the initial phase γq̃ (0).

2 Poincare Transformations

Recall that we started classical mechanics with the observation that for any two

events (x, y) ∈
(

R4
)2

(where R4 represents time in the zeroth component and
space in the remaining three components) measured in any coordinate system,
the two quantities:

1. |x0 − y0| the time-separation.

2.
√

∑3
i=1 (xi − yi)

2 the spatial-separation.

carry absolute meaning (that is, beyond that which corresponds to a particu-
lar choice of a coordinate system) and that any transformation of coordinate
systems must preserve these two quantities. The set of all such possible trans-
formations g are given by

g

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

x0

x1

x2

x3

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

=

[

λx0 + a
R (x0) xs + b (xs)

]

∀x ∈ R
4

where xs ≡

⎡

⎣

x1

x2

x3

⎤

⎦ ∈ R3 is the spatial component of x, and the transformation

is parametrized by λ ∈ { ±1 }, a ∈ R, R : R → O (3), b : R → R3.
In special relativity, the new concept is that the speed of light must be

constant no matter in which frame we observe the light. It turns out that in
order for that to hold, we must insist that yet another quantity is conserved
when performing coordinate transformations R4 → R4.

4 Definition. We define the Minkowski metric η as a bilinear form R4×R4 → R

given by the following:

η (x, y) := x0y0 −
3
∑

i=1

xiyi
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Note that as a matrix, we may write g = diag(−1, 1, 1, 1) and then

η (x, y) ≡ ⟨x, gy⟩

5 Definition. A Poincaré transformation is an isometry of η, that is, a trans-

formation Λ such that for all (x, y) ∈
(

R4
)2

we have

η (Λ (x− y) , Λ (x− y)) = η (x− y, x− y)

6 Claim. The Poincare group (The group of Poincare transformations) is a
subgroup of the affine group of R4.

Proof. Following Steven Weinberg:
We have that the Jacobian of a Poincare transformation Λ must also be a

Poincare transformation as a linear map (make a Taylor expansion of Λ and
employ the constraint order by order in x):

⟨(DΛ)x, gDΛx⟩ = ⟨x, gx⟩ ∀x ∈ R
4

(This is essentially because the differential spacetime intervial is preserved)
where

(DΛ)i, j ≡ ∂jΛi

In matrix notation the first equation is thus

(DΛ)T g (DΛ) = g
(

(DΛ)T
)

ij
gjk (DΛ)kl = gil

(∂iΛj) gjk (∂lΛk) = gil

Differentiate with respect to the mth coordinate to get

(∂m∂iΛj) gjk (∂lΛk) + (∂iΛj) gjk (∂m∂lΛk) = 0

Now we add to this the same equation with m ↔ i interchanged, and subtract
the same with m ↔ l interchanged to obtain

0 = (∂m∂iΛj) gjk (∂lΛk) + (∂iΛj) gjk (∂m∂lΛk) +

+ (∂i∂mΛj) gjk (∂lΛk) + (∂mΛj) gjk (∂i∂lΛk)−

− (∂l∂iΛj) gjk (∂mΛk) + (∂iΛj) gjk (∂l∂mΛk)

(Use the fact that ∂α∂βΛγ = ∂β∂αΛγ and gjk = gkj)

= 2gjk (∂m∂iΛj) (∂lΛk)
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But g is invertible and so is ∂lΛk, so that

∂m∂iΛj = 0

which is equivalent to Λ being affine.

7 Remark. Since Λ is affine it may be written as a matrix and a vector Λ (x) =
Mx+ v in which case the requirement becomes

MTgM = g

The set of all such matrices M is called the Lorentz group L.

8 Remark. All in all, the Poincare transformations include:

1. Translations (four degrees of freedom).

2. Reflection (three degrees of freedom, the orientation of the plane of reflec-
tion). Note that a rotation in space is obtained via a composition of an
even number of rotations.

3. Boosts (three degrees of freedom, the velocity of the boost).
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