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1 Go with the Flow

Let f € N>1 (the number of degrees of freedom in the system) and define I' :=
R?/ (the phase space manifold) which has a differentiable manifold structure.

1 Remark. In this document (perhaps contrary to before) I' is the phase space
(position and momentum), v : R — T is a typical trajectory (time parametrized)
in phase space. As usual, if a function depends on both R (time) and I" (phase
space), then the symbol 9 alone means time derivative, 9; means derivative with
respect to the ith coordinate in T' (soif¢ € {1, ..., f } then 9; is derivative with
respect to the position part of phase space and 0;4¢ is derivative with respect
to the momentum part of the phase space.

2 Definition. A flow is a group morphism ¢ : R — Aut (T") where R is consid-
ered as the additive group, and I" has the structure of a differentiable manifold
(and it is in to that structure that automorphisms of I" refer to, not to the
structure of a vector space! In this regard the term automorphism is perhaps
confusing).

3 Definition. Given a flow ¢ : R — Aut ('), its orbits, trajectories, or integral
curves is the following set of trajectories

O(p) == {v:R=>T|~v@#) :=(p{))(x) forallt € R for some xz € " }

Since we know that ¢ (0) = 1r (¢ is a group morphism), this means that the
trajectories of ¢ are obtained by varying over all possible starting points.

4 Claim. For all (z,y) € I?, define x ~ y iff I(y, s, t,) € O(p) x R? :
(v(ty) = 2Vz € { @, y }) iff there is an orbit connecting x and y. Then ~ is an
equivalence relation on I'. Hence O () partitions I' into the images of disjoint
orbits.

5 Definition. Given a flow ¢ : R — Aut (T'), the vector field induced by ¢,
v, : I' = T, is defined as the vector field giving the veloctiy vector of an orbit



which passes through the given point (through every point there passes an orbit
by the previous claim).

Given a point z € T', we have an orbit v, € O (p) that passes through x at
time zero given by: v, (t) = (¢ (t)) (z) for all ¢ € R. Indeed,

Y (0) = (¢(0))(2)
(¢ is a group morphism)
= (Ip)(z)
We thus define
ve (z) = (072)(0)

= Rate(p) (@) el)],_,

6 Definition. Given a vector field v : ' — T, a flow ¢, : R — Aut (T") is
(sometimes) defined as follows. Let (t, x) € R x I" be given. Then we seek a
solution v : R — T to the first order differential equation

voy = 0Jy

with the initial condition 7 (0) = 2. By the Picard-Lindel6f theorem, if v is
Lipschitz continuous there exists a unique solution 7 at least locally (that is,
there is some £ > 0 such that the equation is solved by ~ at least on (—¢, ¢)
(instead of R)). If that unique solution may actually be extended from (—¢, ¢)
to R then v is called complete. For complete vector fields we define the induced
flow

7 Claim. Not every vector field is complete.

Proof. Consider v : R — R given by v (z) := 22 + 1. Then the differential
equation to solve to get its integral curves is

oy = ¥ +1

which is solved by v = tan (- — C) for some C' € R. If our initial condition is
v (0) = z then 2 = tan (—C') so that C' = — arctan (z) and we find

~v(t) = tan(t+ arctan(x))

— sin

Of course this solution cannot work globally: tan = - is undefined on
ZZ. O
2

8 Claim. If v is compactly supported then it is complete.



9 Definition. Given a flow ¢ : R — Aut (T"), we define its associated Jacobian
matriz A, : R x T — Matgfyor (R) via the entries (i, j) € {1, ..., 2f }*

(Ao &, 7)), ;= (05 (e (D)) (x) V(t z)eRxT

10 Definition. A flow ¢ : R — Aut (T') is canonical iff its associated Jacobian
matrix A, (¢, z) is symplectic for all (¢, z) € R x I.

11 Claim. Let ¢ : R — Aut (T') be a flow. Then ¢ is canonical iff there is some
map Fy, : I' = R such that for any = € I, the following differential equation for
the unknown path R 5 ¢ — (¢ (¢)) (z) € T is obeyed

(90 (9 (1) () = VF, 0 (¢ (1)) (0))]

with the boundary condition

@ (0)(z) = =

F, is called the generating function of the canonical flow . In particular we
find that H is the generating function of the canonical flow given by all physical
trajectories.

Proof. Let v, be the vector field defined from ¢. Then we have by definition
for any € T the differential equation for the unknown path R 3 t — v, (¢) €
T' (where we have defined ~; (t) := (¢ (¢)) () for brevity):

a’YZ = Vp Oz (1)
Then

((0A4,) (¢, 2)), ,

—~ Y~ N

90; (¢ (1));) (x)

We may exchange the order of differentiation)

9;0 (¢ (1));) (x)

Use the equation above)

= 05 (vp); o (¢ (1)) (x))

(Use the chain rule)

= (0 (vp),) o (2 (1) (2))) 8 (9 (1)) (2)),
l
(Use the definition of A,,)

= S (@ wp),) 0 (0 (1) (@) (A (¢, 2)),

l

If we define a new matrix V,, by components Vj; := 0; (v,,), then we find
04, = (Voom) Ay

Note that ¢ (0) = 1 (group morphism) so that A, (0, z) = Lafxay for any




x € I'. But the identity matrix is symplectic. So we find
(45 (0, 2)" 04, (0.2) = ©

If ¢ is to be canonical, we need to have that A, (¢, z) is symplectic for any
t. That is,

(Ay (8, 2)" QAL (8, 2) = Q
= (4, (0,2)" Q4, (0, z)
so that means we need the matrix-valued function of ¢
t o= (A (1 2)" QA (¢ )
to be constant in time:
o [(Ap (b 0)" 4, (1 2)] = 0 2)
But

9 [(Ag, (t, 2))" QA (t, x)}

[a (A, (¢, x))T} OA, (t, ) + (A, (£, 2))T QOA, (t, z)
(Use 0A, = (Vy 07,) Ay)

= Ay ()" (Voo (1) QA (¢, 2) +

+ (4y (¢, x))T Q(Vi 072 (1) Ap (L, 2)

(Factorize)

= A ()" [(Ve o (1) Q+ 9V 0 (1)] A (8, )

Now recall ¢ (t) is an automorphism for any ¢, so that A, must be invertible
as a matrix, hence (2) implies

(Vo 07z (t))T Q+Q Voo (t) = 0
!
(Voo)'@ = —Q(V, 0 (1)
(@ =-9)
Wpor ()" = Qo1

and hence by hint in the last question in homework 11 (symmetric matrix can
be diagonalized) we find that there must be some F, : I' — R whose gradient
is Qu,:

Qu, = VF,



Plugging in the value of v, from (1) by evaluating at v, we find

MWeovy, = VF,07,

!

Qa"yyzz = VFap © Yz

And then placing back the definition of v, we find the result. O

2 Time Dependence of Generators
Recall that the canonical equations of motion for a trajectory in phase space
v:R — I are given by

i = QT (VH)oy

where H is the Hamiltonian. Then we have for any scalar quantity F': I' — R,
the time derivative of it evaluated on a trajectory which is a solution of the
equations of motion is given by:

d(Foy) = Y [(BiF)on]ov

i=1

(
<VFO Y Y >F
(Above E.o.M.)
= (VFo~, Q" (VH)oy),
{
(

= (VH, QVF>F o
We thus define the Poisson bracket of two scalars (A, B) € (RF)2
{A, B} = (VA QVB):

and find
O(Fovy)={H, F}oy

3 Canonical Transformations

In this section we consider the phase space I' = R?/ as a differentiable manifold
and not so much as a vector space.

12 Definition. A bijection b : I' — I' is called a canonical transformation iff it
leaves the canonical equations of motion for the trajectory v : R — I' invariant:

Qoy = (VH)o
!
Qo btony = VI Hob ofbtoxy
gl gl



This means that

Qv = QI (bo7A)
2f
= Q) (diboH) o7

i=1

= €; (&H)oy

= ei(az—(f[ob*l))obo’y
= e ((ajg)ob_l)ai(b_l)_ obo#¥

—_—
(B™Y);;
We find that
(BTQB) 0y = VHo#y
which implies that
BTOB = Q

that is, that B is symplectic (evaluated anywhere).
Thus we conclude: b : T' — T is a canonical transformation iff the matriz-
valued function whose elements are the functions 0;b; : I' = R is symplectic.

3.1 Generating Canonical Transformations

As in HW11Q3, we have a coordinate canonical transformation which possibly
depends on time b: I' x R — I'. It induces a new trajectory as

v = bo(yx1g)

If b is to be canonical, then the Lagrangians of the two systems must be equiv-
alent, that is, the same up to a total time derivative:

! !
Z%’-i-f O% &) —H ), = D A O% 0 —HGF ), 6)+S (@), 1)

=1

for some scalar field Sp : I' x R — R.
This implies the identity of differential forms

ZMfm@>mw ZMf&n>Hm>mwmwww
Define
f
S = So+ Z%Jrf (t) i (t)



Then

f
dS = dSo+ > dFips (B) 7 (1)

jl
= dSo+ Z [Fig s (O)F: (£) + Figr () dF; ()]
f f
= Zhwﬁm%wfﬂwa%ww+ﬁwmwmu§}mﬂamu>

I
M=

i (6)dyi (6) + 5 (8) A (0] + [H (5 (1), ) — H (1), D) dt

3

Il
i

Assume we could express S as a function of { 7; }if:l and { Y45 }lf:l. Then the
above equation implies

a’)’iS = Yit+f
8’%# S o=
&S = H—H

We use the second equation to find {~; } in terms of { 7; }?i , and t, and place
this in the first and third equations to find { ; }zl in terms of { ¥; }1221 and ¢.
This is why S is called a generator of canonical transformations.

Different choices of S lead to (necessarily) various canonical transformations,
which is why this is useful.
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