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1 Go with the Flow

Let f ∈ N≥1 (the number of degrees of freedom in the system) and define Γ :=
R2f (the phase space manifold) which has a differentiable manifold structure.

1 Remark. In this document (perhaps contrary to before) Γ is the phase space
(position and momentum), γ : R → Γ is a typical trajectory (time parametrized)
in phase space. As usual, if a function depends on both R (time) and Γ (phase
space), then the symbol ∂ alone means time derivative, ∂i means derivative with
respect to the ith coordinate in Γ (so if i ∈ { 1, . . . , f } then ∂i is derivative with
respect to the position part of phase space and ∂i+f is derivative with respect
to the momentum part of the phase space.

2 Definition. A flow is a group morphism ϕ : R → Aut (Γ) where R is consid-
ered as the additive group, and Γ has the structure of a differentiable manifold
(and it is in to that structure that automorphisms of Γ refer to, not to the
structure of a vector space! In this regard the term automorphism is perhaps
confusing).

3 Definition. Given a flow ϕ : R → Aut (Γ), its orbits, trajectories, or integral
curves is the following set of trajectories

O (ϕ) := { γ : R → Γ | γ (t) := (ϕ (t)) (x) for all t ∈ R for some x ∈ Γ }

Since we know that ϕ (0) = 1Γ (ϕ is a group morphism), this means that the
trajectories of ϕ are obtained by varying over all possible starting points.

4 Claim. For all (x, y) ∈ Γ2, define x ∼ y iff ∃ (γ, tx, ty) ∈ O (ϕ) × R2 :
(γ (tz) = z∀z ∈ { x, y }) iff there is an orbit connecting x and y. Then ∼ is an
equivalence relation on Γ. Hence O (ϕ) partitions Γ into the images of disjoint
orbits.

5 Definition. Given a flow ϕ : R → Aut (Γ), the vector field induced by ϕ,
vϕ : Γ → Γ, is defined as the vector field giving the veloctiy vector of an orbit
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which passes through the given point (through every point there passes an orbit
by the previous claim).

Given a point x ∈ Γ, we have an orbit γx ∈ O (ϕ) that passes through x at
time zero given by: γx (t) ≡ (ϕ (t)) (x) for all t ∈ R. Indeed,

γx (0) = (ϕ (0)) (x)

(ϕ is a group morphism)

≡ (1Γ) (x)

= x

We thus define

vϕ (x) := (∂γx) (0)

≡ (R ∋ t )→ (ϕ (t)) (x) ∈ Γ)′
∣
∣
t=0

6 Definition. Given a vector field v : Γ → Γ, a flow ϕv : R → Aut (Γ) is
(sometimes) defined as follows. Let (t, x) ∈ R × Γ be given. Then we seek a
solution γ : R → Γ to the first order differential equation

v ◦ γ = ∂γ

with the initial condition γ (0) = x. By the Picard–Lindelöf theorem, if v is
Lipschitz continuous there exists a unique solution γ at least locally (that is,
there is some ε > 0 such that the equation is solved by γ at least on (−ε, ε)
(instead of R)). If that unique solution may actually be extended from (−ε, ε)
to R then v is called complete. For complete vector fields we define the induced
flow

(ϕv (t)) (x) := γ (t)

7 Claim. Not every vector field is complete.

Proof. Consider v : R → R given by v (x) := x2 + 1. Then the differential
equation to solve to get its integral curves is

∂γ = γ2 + 1

which is solved by γ = tan (·− C) for some C ∈ R. If our initial condition is
γ (0) = x then x = tan (−C) so that C = − arctan (x) and we find

γ (t) = tan (t+ arctan (x))

Of course this solution cannot work globally: tan ≡ sin
cos is undefined on

π
2Z.

8 Claim. If v is compactly supported then it is complete.
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9 Definition. Given a flow ϕ : R → Aut (Γ), we define its associated Jacobian

matrix Aϕ : R× Γ → Mat2f×2f (R) via the entries (i, j) ∈ { 1, . . . , 2f }2

(Aϕ (t, x))i, j := (∂j (ϕ (t))i) (x) ∀ (t, x) ∈ R× Γ

10 Definition. A flow ϕ : R → Aut (Γ) is canonical iff its associated Jacobian
matrix Aϕ (t, x) is symplectic for all (t, x) ∈ R× Γ.

11 Claim. Let ϕ : R → Aut (Γ) be a flow. Then ϕ is canonical iff there is some
map Fϕ : Γ → R such that for any x ∈ Γ, the following differential equation for
the unknown path R ∋ t )→ (ϕ (t)) (x) ∈ Γ is obeyed

Ω∂ (ϕ (t)) (x) = ∇Fϕ ◦ (ϕ (t)) (x)

with the boundary condition

(ϕ (0)) (x) = x

Fϕ is called the generating function of the canonical flow ϕ. In particular we
find that H is the generating function of the canonical flow given by all physical
trajectories.

Proof. Let vϕ be the vector field defined from ϕ. Then we have by definition
for any x ∈ Γ the differential equation for the unknown path R ∋ t )→ γx (t) ∈
Γ (where we have defined γx (t) := (ϕ (t)) (x) for brevity):

∂γx = vϕ ◦ γx (1)

Then

((∂Aϕ) (t, x))i, j ≡ (∂∂j (ϕ (t))i) (x)

(We may exchange the order of differentiation)

= (∂j∂ (ϕ (t))i) (x)

(Use the equation above)

= ∂j (vϕ)i ◦ ((ϕ (t)) (x))

(Use the chain rule)

=
∑

l

((

∂l (vϕ)i
)

◦ ((ϕ (t)) (x))
)

∂j ((ϕ (t)) (x))l

(Use the definition of Aϕv )

=
∑

l

((

∂l (vϕ)i
)

◦ ((ϕ (t)) (x))
)

(Aϕ (t, x))l, j

If we define a new matrix Vϕ by components Vil := ∂l (vϕ)i then we find

∂Aϕ = (Vϕ ◦ γx)Aϕ

Note that ϕ (0) = 1Γ (group morphism) so that Aϕ (0, x) = 12f×2f for any
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x ∈ Γ. But the identity matrix is symplectic. So we find

(Aϕ (0, x))T ΩAϕ (0, x) = Ω

If ϕ is to be canonical, we need to have that Aϕ (t, x) is symplectic for any
t. That is,

(Aϕ (t, x))T ΩAϕ (t, x)
!
= Ω

= (Aϕ (0, x))T ΩAϕ (0, x)

so that means we need the matrix-valued function of t

t )→ (Aϕ (t, x))T ΩAϕ (t, x)

to be constant in time:

∂
[

(Aϕ (t, x))T ΩAϕ (t, x)
]

!
= 0 (2)

But

∂
[

(Aϕ (t, x))T ΩAϕ (t, x)
]

=
[

∂ (Aϕ (t, x))T
]

ΩAϕ (t, x) + (Aϕ (t, x))T Ω∂Aϕ (t, x)

(Use ∂Aϕ = (Vϕ ◦ γx)Aϕ)

= Aϕ (t, x)T (Vϕ ◦ γx (t))
T ΩAϕ (t, x) +

+ (Aϕ (t, x))T Ω (Vϕ ◦ γx (t))Aϕ (t, x)

(Factorize)

= Aϕ (t, x)T
[

(Vϕ ◦ γx (t))
T Ω+ Ω (Vϕ ◦ γx (t))

]

Aϕ (t, x)

Now recall ϕ (t) is an automorphism for any t, so that Aϕ must be invertible
as a matrix, hence (2) implies

(Vϕ ◦ γx (t))
T Ω+ Ω (Vϕ ◦ γx (t)) = 0

↕

(Vϕ ◦ γx (t))
T Ω = −Ω (Vϕ ◦ γx (t))

↕
(

ΩT = −Ω
)

(ΩVϕ ◦ γx (t))
T = ΩVϕ ◦ γx (t)

and hence by hint in the last question in homework 11 (symmetric matrix can
be diagonalized) we find that there must be some Fϕ : Γ → R whose gradient
is Ωvϕ:

Ωvϕ = ∇Fϕ
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Plugging in the value of vϕ from (1) by evaluating at γx we find

Ωvϕ ◦ γx = ∇Fϕ ◦ γx
↕

Ω∂γx = ∇Fϕ ◦ γx

And then placing back the definition of γx we find the result.

2 Time Dependence of Generators

Recall that the canonical equations of motion for a trajectory in phase space
γ : R → Γ are given by

γ̇ = ΩT (∇H) ◦ γ

where H is the Hamiltonian. Then we have for any scalar quantity F : Γ → R,
the time derivative of it evaluated on a trajectory which is a solution of the
equations of motion is given by:

∂ (F ◦ γ) =
2f
∑

i=1

[(∂iF ) ◦ γ]∂γi

≡ ⟨∇F ◦ γ, ∂γ⟩Γ
≡ ⟨∇F ◦ γ, γ̇⟩Γ

(Above E.o.M.)

=
〈

∇F ◦ γ, ΩT (∇H) ◦ γ
〉

Γ

=
〈

∇F, ΩT∇H
〉

Γ
◦ γ

= ⟨Ω∇F, ∇H⟩Γ ◦ γ

= ⟨∇H, Ω∇F ⟩Γ ◦ γ

We thus define the Poisson bracket of two scalars (A, B) ∈
(

RΓ
)2

as

{A, B } := ⟨∇A, Ω∇B⟩Γ

and find
∂ (F ◦ γ) = {H, F} ◦ γ

3 Canonical Transformations

In this section we consider the phase space Γ ≡ R2f as a differentiable manifold
and not so much as a vector space.

12 Definition. A bijection b : Γ → Γ is called a canonical transformation iff it
leaves the canonical equations of motion for the trajectory γ : R → Γ invariant:

Ω∂γ = (∇H) ◦ γ

↕

Ω∂

⎛

⎝b−1 ◦ γ
︸ ︷︷ ︸

γ̃

⎞

⎠ =

⎛

⎝∇

⎛

⎝H ◦ b
︸ ︷︷ ︸

H̃

⎞

⎠

⎞

⎠ ◦

⎛

⎝b−1 ◦ γ
︸ ︷︷ ︸

γ̃

⎞

⎠
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This means that

Ω∂γ = Ω∂ (b ◦ γ̃)

= Ω
2f
∑

i=1

(∂ib ◦ γ̃) ∂γ̃i

!
= ei (∂iH) ◦ γ

= ei

(

∂i

(

H̃ ◦ b−1
))

◦ b ◦ γ̃

= ei

⎛

⎜
⎜
⎝

((

∂jH̃
)

◦ b−1
)

∂i
(

b−1
)

j
︸ ︷︷ ︸

(B−1)ji

⎞

⎟
⎟
⎠

◦ b ◦ γ̃

We find that

(

BTΩB
)

∂γ̃
!
= ∇H̃ ◦ γ̃

which implies that

BTΩB
!
= Ω

that is, that B is symplectic (evaluated anywhere).
Thus we conclude: b : Γ → Γ is a canonical transformation iff the matrix-

valued function whose elements are the functions ∂ibj : Γ → R is symplectic.

3.1 Generating Canonical Transformations

As in HW11Q3, we have a coordinate canonical transformation which possibly
depends on time b : Γ× R → Γ. It induces a new trajectory as

γ = b ◦ (γ̃ × 1R)

If b is to be canonical, then the Lagrangians of the two systems must be equiv-
alent, that is, the same up to a total time derivative:

f
∑

i=1

γi+f (t) γ̇i (t)−H (γ (t) , t)
!
=

f
∑

i=1

γ̃i+f (t) ˙̃γi (t)− H̃ (γ̃ (t) , t) + Ṡ0 (γ̃ (t) , t)

for some scalar field S0 : Γ× R → R.
This implies the identity of differential forms

f
∑

i=1

γi+f (t) dγi (t)−H (γ (t) , t) dt
!
=

f
∑

i=1

γ̃i+f (t) dγ̃i (t)− H̃ (γ̃ (t) , t) dt+ dS0 (γ̃ (t) , t)

Define

S := S0 +
f
∑

i=1

γ̃i+f (t) γ̃i (t)
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Then

dS = dS0 +
f
∑

i=1

dγ̃i+f (t) γ̃i (t)

= dS0 +
f
∑

i=1

[dγ̃i+f (t)γ̃i (t) + γ̃i+f (t) dγ̃i (t)]

=
f
∑

i=1

γi+f (t) dγi (t)−H (γ (t) , t) dt+ H̃ (γ̃ (t) , t) dt+
f
∑

i=1

dγ̃i+f (t)γ̃i (t)

=
f
∑

i=1

[γi+f (t) dγi (t) + γ̃i (t) dγ̃i+f (t)] +
[

H̃ (γ̃ (t) , t)−H (γ (t) , t)
]

dt

Assume we could express S as a function of { γi }
f
i=1 and { γ̃i+f }fi=1. Then the

above equation implies

∂γiS = γi+f

∂γ̃i+f
S = γ̃i

∂tS = H̃ −H

We use the second equation to find { γi } in terms of { γ̃i }
2f
i=1 and t, and place

this in the first and third equations to find { γi }
2f
i=1 in terms of { γ̃i }

2f
i=1 and t.

This is why S is called a generator of canonical transformations.
Different choices of S lead to (necessarily) various canonical transformations,

which is why this is useful.
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