# Analytical Mechanics Recitation Session of Week 13 

Jacob Shapiro

December 14, 2016

## 1 Go with the Flow

Let $f \in \mathbb{N}_{\geq 1}$ (the number of degrees of freedom in the system) and define $\Gamma:=$ $\mathbb{R}^{2 f}$ (the phase space manifold) which has a differentiable manifold structure.
1 Remark. In this document (perhaps contrary to before) $\Gamma$ is the phase space (position and momentum), $\gamma: \mathbb{R} \rightarrow \Gamma$ is a typical trajectory (time parametrized) in phase space. As usual, if a function depends on both $\mathbb{R}$ (time) and $\Gamma$ (phase space), then the symbol $\partial$ alone means time derivative, $\partial_{i}$ means derivative with respect to the $i$ th coordinate in $\Gamma$ (so if $i \in\{1, \ldots, f\}$ then $\partial_{i}$ is derivative with respect to the position part of phase space and $\partial_{i+f}$ is derivative with respect to the momentum part of the phase space.

2 Definition. A flow is a group morphism $\varphi: \mathbb{R} \rightarrow A u t(\Gamma)$ where $\mathbb{R}$ is considered as the additive group, and $\Gamma$ has the structure of a differentiable manifold (and it is in to that structure that automorphisms of $\Gamma$ refer to, not to the structure of a vector space! In this regard the term automorphism is perhaps confusing).

3 Definition. Given a flow $\varphi: \mathbb{R} \rightarrow A u t(\Gamma)$, its orbits, trajectories, or integral curves is the following set of trajectories

$$
\mathcal{O}(\varphi):=\{\gamma: \mathbb{R} \rightarrow \Gamma \mid \gamma(t):=(\varphi(t))(x) \text { for all } t \in \mathbb{R} \text { for some } x \in \Gamma\}
$$

Since we know that $\varphi(0)=\mathbb{1}_{\Gamma}$ ( $\varphi$ is a group morphism), this means that the trajectories of $\varphi$ are obtained by varying over all possible starting points.

4 Claim. For all $(x, y) \in \Gamma^{2}$, define $x \sim y$ iff $\exists\left(\gamma, t_{x}, t_{y}\right) \in \mathcal{O}(\varphi) \times \mathbb{R}^{2}$ : $\left(\gamma\left(t_{z}\right)=z \forall z \in\{x, y\}\right)$ iff there is an orbit connecting $x$ and $y$. Then $\sim$ is an equivalence relation on $\Gamma$. Hence $\mathcal{O}(\varphi)$ partitions $\Gamma$ into the images of disjoint orbits.

5 Definition. Given a flow $\varphi: \mathbb{R} \rightarrow \operatorname{Aut}(\Gamma)$, the vector field induced by $\varphi$, $v_{\varphi}: \Gamma \rightarrow \Gamma$, is defined as the vector field giving the veloctiy vector of an orbit
which passes through the given point (through every point there passes an orbit by the previous claim).

Given a point $x \in \Gamma$, we have an orbit $\gamma_{x} \in \mathcal{O}(\varphi)$ that passes through $x$ at time zero given by: $\gamma_{x}(t) \equiv(\varphi(t))(x)$ for all $t \in \mathbb{R}$. Indeed,

$$
\begin{aligned}
\gamma_{x}(0)= & (\varphi(0))(x) \\
& (\varphi \text { is a group morphism }) \\
\equiv & \left(\mathbb{1}_{\Gamma}\right)(x) \\
= & x
\end{aligned}
$$

We thus define

$$
\begin{aligned}
v_{\varphi}(x) & :=\left(\partial \gamma_{x}\right)(0) \\
& \left.\equiv(\mathbb{R} \ni t \mapsto(\varphi(t))(x) \in \Gamma)^{\prime}\right|_{t=0}
\end{aligned}
$$

6 Definition. Given a vector field $v: \Gamma \rightarrow \Gamma$, a flow $\varphi_{v}: \mathbb{R} \rightarrow A u t(\Gamma)$ is (sometimes) defined as follows. Let $(t, x) \in \mathbb{R} \times \Gamma$ be given. Then we seek a solution $\gamma: \mathbb{R} \rightarrow \Gamma$ to the first order differential equation

$$
v \circ \gamma=\partial \gamma
$$

with the initial condition $\gamma(0)=x$. By the Picard-Lindelöf theorem, if $v$ is Lipschitz continuous there exists a unique solution $\gamma$ at least locally (that is, there is some $\varepsilon>0$ such that the equation is solved by $\gamma$ at least on $(-\varepsilon, \varepsilon)$ (instead of $\mathbb{R}$ )). If that unique solution may actually be extended from $(-\varepsilon, \varepsilon)$ to $\mathbb{R}$ then $v$ is called complete. For complete vector fields we define the induced flow

$$
\left(\varphi_{v}(t)\right)(x):=\gamma(t)
$$

7 Claim. Not every vector field is complete.
Proof. Consider $v: \mathbb{R} \rightarrow \mathbb{R}$ given by $v(x):=x^{2}+1$. Then the differential equation to solve to get its integral curves is

$$
\partial \gamma=\gamma^{2}+1
$$

which is solved by $\gamma=\tan (\cdot-C)$ for some $C \in \mathbb{R}$. If our initial condition is $\gamma(0)=x$ then $x=\tan (-C)$ so that $C=-\arctan (x)$ and we find

$$
\gamma(t)=\tan (t+\arctan (x))
$$

Of course this solution cannot work globally: $\tan \equiv \frac{\sin }{\cos }$ is undefined on $\frac{\pi}{2} \mathbb{Z}$.

8 Claim. If $v$ is compactly supported then it is complete.

9 Definition. Given a flow $\varphi: \mathbb{R} \rightarrow$ Aut $(\Gamma)$, we define its associated Jacobian $\operatorname{matrix} A_{\varphi}: \mathbb{R} \times \Gamma \rightarrow \operatorname{Mat}_{2 f \times 2 f}(\mathbb{R})$ via the entries $(i, j) \in\{1, \ldots, 2 f\}^{2}$

$$
\left(A_{\varphi}(t, x)\right)_{i, j}:=\quad\left(\partial_{j}(\varphi(t))_{i}\right)(x) \quad \forall(t, x) \in \mathbb{R} \times \Gamma
$$

10 Definition. A flow $\varphi: \mathbb{R} \rightarrow$ Aut $(\Gamma)$ is canonical iff its associated Jacobian matrix $A_{\varphi}(t, x)$ is symplectic for all $(t, x) \in \mathbb{R} \times \Gamma$.

11 Claim. Let $\varphi: \mathbb{R} \rightarrow \operatorname{Aut}(\Gamma)$ be a flow. Then $\varphi$ is canonical iff there is some $\operatorname{map} F_{\varphi}: \Gamma \rightarrow \mathbb{R}$ such that for any $x \in \Gamma$, the following differential equation for the unknown path $\mathbb{R} \ni t \mapsto(\varphi(t))(x) \in \Gamma$ is obeyed

$$
\Omega \partial(\varphi(t))(x)=\nabla F_{\varphi} \circ(\varphi(t))(x)
$$

with the boundary condition

$$
(\varphi(0))(x)=x
$$

$F_{\varphi}$ is called the generating function of the canonical flow $\varphi$. In particular we find that $H$ is the generating function of the canonical flow given by all physical trajectories.

Proof. Let $v_{\varphi}$ be the vector field defined from $\varphi$. Then we have by definition for any $x \in \Gamma$ the differential equation for the unknown path $\mathbb{R} \ni t \mapsto \gamma_{x}(t) \in$ $\Gamma$ (where we have defined $\gamma_{x}(t):=(\varphi(t))(x)$ for brevity):

$$
\begin{equation*}
\partial \gamma_{x}=v_{\varphi} \circ \gamma_{x} \tag{1}
\end{equation*}
$$

Then

$$
\begin{aligned}
\left(\left(\partial A_{\varphi}\right)(t, x)\right)_{i, j} \equiv & \left(\partial \partial_{j}(\varphi(t))_{i}\right)(x) \\
& (\text { We may exchange the order of differentiation }) \\
= & \left(\partial_{j} \partial(\varphi(t))_{i}\right)(x) \\
& (\text { Use the equation above }) \\
= & \partial_{j}\left(v_{\varphi}\right)_{i} \circ((\varphi(t))(x)) \\
& (\text { Use the chain rule }) \\
= & \sum_{l}\left(\left(\partial_{l}\left(v_{\varphi}\right)_{i}\right) \circ((\varphi(t))(x))\right) \partial_{j}((\varphi(t))(x))_{l} \\
& \left(\text { Use the definition of } A_{\varphi_{v}}\right) \\
= & \sum_{l}\left(\left(\partial_{l}\left(v_{\varphi}\right)_{i}\right) \circ((\varphi(t))(x))\right)\left(A_{\varphi}(t, x)\right)_{l, j}
\end{aligned}
$$

If we define a new matrix $V_{\varphi}$ by components $V_{i l}:=\partial_{l}\left(v_{\varphi}\right)_{i}$ then we find

$$
\partial A_{\varphi}=\left(V_{\varphi} \circ \gamma_{x}\right) A_{\varphi}
$$

Note that $\varphi(0)=\mathbb{1}_{\Gamma}\left(\right.$ group morphism) so that $A_{\varphi}(0, x)=\mathbb{1}_{2 f \times 2 f}$ for any
$x \in \Gamma$. But the identity matrix is symplectic. So we find

$$
\left(A_{\varphi}(0, x)\right)^{T} \Omega A_{\varphi}(0, x)=\Omega
$$

If $\varphi$ is to be canonical, we need to have that $A_{\varphi}(t, x)$ is symplectic for any $t$. That is,

$$
\begin{aligned}
\left(A_{\varphi}(t, x)\right)^{T} \Omega A_{\varphi}(t, x) & \stackrel{!}{=} \Omega \\
& =\left(A_{\varphi}(0, x)\right)^{T} \Omega A_{\varphi}(0, x)
\end{aligned}
$$

so that means we need the matrix-valued function of $t$

$$
t \mapsto\left(A_{\varphi}(t, x)\right)^{T} \Omega A_{\varphi}(t, x)
$$

to be constant in time:

$$
\begin{equation*}
\partial\left[\left(A_{\varphi}(t, x)\right)^{T} \Omega A_{\varphi}(t, x)\right] \stackrel{!}{=} 0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
\partial\left[\left(A_{\varphi}(t, x)\right)^{T} \Omega A_{\varphi}(t, x)\right]= & {\left[\partial\left(A_{\varphi}(t, x)\right)^{T}\right] \Omega A_{\varphi}(t, x)+\left(A_{\varphi}(t, x)\right)^{T} \Omega \partial A_{\varphi}(t, x) } \\
& \left(\operatorname{Use} \partial A_{\varphi}=\left(V_{\varphi} \circ \gamma_{x}\right) A_{\varphi}\right) \\
= & A_{\varphi}(t, x)^{T}\left(V_{\varphi} \circ \gamma_{x}(t)\right)^{T} \Omega_{\varphi}(t, x)+ \\
& +\left(A_{\varphi}(t, x)\right)^{T} \Omega\left(V_{\varphi} \circ \gamma_{x}(t)\right) A_{\varphi}(t, x) \\
& (\text { Factorize }) \\
= & A_{\varphi}(t, x)^{T}\left[\left(V_{\varphi} \circ \gamma_{x}(t)\right)^{T} \Omega+\Omega\left(V_{\varphi} \circ \gamma_{x}(t)\right)\right] A_{\varphi}(t, x)
\end{aligned}
$$

Now recall $\varphi(t)$ is an automorphism for any $t$, so that $A_{\varphi}$ must be invertible as a matrix, hence (2) implies

$$
\begin{aligned}
\left(V_{\varphi} \circ \gamma_{x}(t)\right)^{T} \Omega+\Omega\left(V_{\varphi} \circ \gamma_{x}(t)\right) & =0 \\
& \downarrow \\
\left(V_{\varphi} \circ \gamma_{x}(t)\right)^{T} \Omega & =-\Omega\left(V_{\varphi} \circ \gamma_{x}(t)\right) \\
& \downarrow\left(\Omega^{T}=-\Omega\right) \\
\left(\Omega V_{\varphi} \circ \gamma_{x}(t)\right)^{T} & =\Omega V_{\varphi} \circ \gamma_{x}(t)
\end{aligned}
$$

and hence by hint in the last question in homework 11 (symmetric matrix can be diagonalized) we find that there must be some $F_{\varphi}: \Gamma \rightarrow \mathbb{R}$ whose gradient is $\Omega v_{\varphi}$ :

$$
\Omega v_{\varphi}=\nabla F_{\varphi}
$$

Plugging in the value of $v_{\varphi}$ from (1) by evaluating at $\gamma_{x}$ we find

$$
\begin{aligned}
\Omega v_{\varphi} \circ \gamma_{x} & =\nabla F_{\varphi} \circ \gamma_{x} \\
& \mathfrak{q} \\
\Omega \partial \gamma_{x} & =\nabla F_{\varphi} \circ \gamma_{x}
\end{aligned}
$$

And then placing back the definition of $\gamma_{x}$ we find the result.

## 2 Time Dependence of Generators

Recall that the canonical equations of motion for a trajectory in phase space $\gamma: \mathbb{R} \rightarrow \Gamma$ are given by

$$
\dot{\gamma}=\Omega^{T}(\nabla H) \circ \gamma
$$

where $H$ is the Hamiltonian. Then we have for any scalar quantity $F: \Gamma \rightarrow \mathbb{R}$, the time derivative of it evaluated on a trajectory which is a solution of the equations of motion is given by:

$$
\begin{aligned}
\partial(F \circ \gamma)= & \sum_{i=1}^{2 f}\left[\left(\partial_{i} F\right) \circ \gamma\right] \partial \gamma_{i} \\
\equiv & \langle\nabla F \circ \gamma, \partial \gamma\rangle_{\Gamma} \\
\equiv & \langle\nabla F \circ \gamma, \dot{\gamma}\rangle_{\Gamma} \\
& \text { (Above E.o.M.) } \\
= & \left\langle\nabla F \circ \gamma, \Omega^{T}(\nabla H) \circ \gamma\right\rangle_{\Gamma} \\
= & \left\langle\nabla F, \Omega^{T} \nabla H\right\rangle_{\Gamma} \circ \gamma \\
= & \langle\Omega \nabla F, \nabla H\rangle_{\Gamma} \circ \gamma \\
= & \langle\nabla H, \Omega \nabla F\rangle_{\Gamma} \circ \gamma
\end{aligned}
$$

We thus define the Poisson bracket of two scalars $(A, B) \in\left(\mathbb{R}^{\Gamma}\right)^{2}$ as

$$
\{A, B\}:=\langle\nabla A, \Omega \nabla B\rangle_{\Gamma}
$$

and find

$$
\partial(F \circ \gamma)=\{H, F\} \circ \gamma
$$

## 3 Canonical Transformations

In this section we consider the phase space $\Gamma \equiv \mathbb{R}^{2 f}$ as a differentiable manifold and not so much as a vector space.

12 Definition. A bijection $b: \Gamma \rightarrow \Gamma$ is called a canonical transformation iff it leaves the canonical equations of motion for the trajectory $\gamma: \mathbb{R} \rightarrow \Gamma$ invariant:

$$
\begin{aligned}
\Omega \partial \gamma & =(\nabla H) \circ \gamma \\
& \mathfrak{\imath} \\
\Omega \partial(\underbrace{b^{-1} \circ \gamma}_{\tilde{\gamma}}) & =(\nabla(\underbrace{H \circ b}_{\tilde{H}})) \circ(\underbrace{b^{-1} \circ \gamma}_{\tilde{\gamma}})
\end{aligned}
$$

This means that

$$
\begin{aligned}
\Omega \partial \gamma & =\Omega \partial(b \circ \tilde{\gamma}) \\
& =\Omega \sum_{i=1}^{2 f}\left(\partial_{i} b \circ \tilde{\gamma}\right) \partial \tilde{\gamma}_{i} \\
& \stackrel{!}{=} e_{i}\left(\partial_{i} H\right) \circ \gamma \\
& =e_{i}\left(\partial_{i}\left(\tilde{H} \circ b^{-1}\right)\right) \circ b \circ \tilde{\gamma} \\
& =e_{i}(\left(\left(\partial_{j} \tilde{H}\right) \circ b^{-1}\right) \underbrace{\partial_{i}\left(b^{-1}\right)_{j}}_{\left(B^{-1}\right)_{j i}}) \circ b \circ \tilde{\gamma}
\end{aligned}
$$

We find that

$$
\left(B^{T} \Omega B\right) \partial \tilde{\gamma} \stackrel{!}{=} \nabla \tilde{H} \circ \tilde{\gamma}
$$

which implies that

$$
B^{T} \Omega B \stackrel{!}{=} \Omega
$$

that is, that $B$ is symplectic (evaluated anywhere).
Thus we conclude: $b: \Gamma \rightarrow \Gamma$ is a canonical transformation iff the matrixvalued function whose elements are the functions $\partial_{i} b_{j}: \Gamma \rightarrow \mathbb{R}$ is symplectic.

### 3.1 Generating Canonical Transformations

As in HW11Q3, we have a coordinate canonical transformation which possibly depends on time $b: \Gamma \times \mathbb{R} \rightarrow \Gamma$. It induces a new trajectory as

$$
\gamma=b \circ\left(\tilde{\gamma} \times \mathbb{1}_{\mathbb{R}}\right)
$$

If $b$ is to be canonical, then the Lagrangians of the two systems must be equivalent, that is, the same up to a total time derivative:
$\sum_{i=1}^{f} \gamma_{i+f}(t) \dot{\gamma}_{i}(t)-H(\gamma(t), t) \stackrel{!}{=} \sum_{i=1}^{f} \tilde{\gamma}_{i+f}(t) \dot{\tilde{\gamma}}_{i}(t)-\tilde{H}(\tilde{\gamma}(t), t)+\dot{S}_{0}(\tilde{\gamma}(t), t)$
for some scalar field $S_{0}: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$.
This implies the identity of differential forms
$\sum_{i=1}^{f} \gamma_{i+f}(t) \mathrm{d} \gamma_{i}(t)-H(\gamma(t), t) \mathrm{d} t \stackrel{!}{=} \sum_{i=1}^{f} \tilde{\gamma}_{i+f}(t) \mathrm{d} \tilde{\gamma}_{i}(t)-\tilde{H}(\tilde{\gamma}(t), t) \mathrm{d} t+\mathrm{d} S_{0}(\tilde{\gamma}(t), t)$
Define

$$
S:=S_{0}+\sum_{i=1}^{f} \tilde{\gamma}_{i+f}(t) \tilde{\gamma}_{i}(t)
$$

Then

$$
\begin{aligned}
\mathrm{d} S & =\mathrm{d} S_{0}+\sum_{i=1}^{f} \mathrm{~d} \tilde{\gamma}_{i+f}(t) \tilde{\gamma}_{i}(t) \\
& =\mathrm{d} S_{0}+\sum_{i=1}^{f}\left[\mathrm{~d} \tilde{\gamma}_{i+f}(t) \tilde{\gamma}_{i}(t)+\tilde{\gamma}_{i+f}(t) \mathrm{d} \tilde{\gamma}_{i}(t)\right] \\
& =\sum_{i=1}^{f} \gamma_{i+f}(t) \mathrm{d} \gamma_{i}(t)-H(\gamma(t), t) \mathrm{d} t+\tilde{H}(\tilde{\gamma}(t), t) \mathrm{d} t+\sum_{i=1}^{f} \mathrm{~d} \tilde{\gamma}_{i+f}(t) \tilde{\gamma}_{i}(t) \\
& =\sum_{i=1}^{f}\left[\gamma_{i+f}(t) \mathrm{d} \gamma_{i}(t)+\tilde{\gamma}_{i}(t) \mathrm{d} \tilde{\gamma}_{i+f}(t)\right]+[\tilde{H}(\tilde{\gamma}(t), t)-H(\gamma(t), t)] \mathrm{d} t
\end{aligned}
$$

Assume we could express $S$ as a function of $\left\{\gamma_{i}\right\}_{i=1}^{f}$ and $\left\{\tilde{\gamma}_{i+f}\right\}_{i=1}^{f}$. Then the above equation implies

$$
\begin{aligned}
\partial_{\gamma_{i}} S & =\gamma_{i+f} \\
\partial_{\tilde{\gamma}_{i+f}} S & =\tilde{\gamma}_{i} \\
\partial_{t} S & =\tilde{H}-H
\end{aligned}
$$

We use the second equation to find $\left\{\gamma_{i}\right\}$ in terms of $\left\{\tilde{\gamma}_{i}\right\}_{i=1}^{2 f}$ and $t$, and place this in the first and third equations to find $\left\{\gamma_{i}\right\}_{i=1}^{2 f}$ in terms of $\left\{\tilde{\gamma}_{i}\right\}_{i=1}^{2 f}$ and $t$. This is why $S$ is called a generator of canonical transformations.

Different choices of $S$ lead to (necessarily) various canonical transformations, which is why this is useful.

