Analytical Mechanics Recitation Session of Week 13

Jacob Shapiro

December 14, 2016

1 Go with the Flow

Let $f \in \mathbb{N}_{\geq 1}$ (the number of degrees of freedom in the system) and define $\Gamma := \mathbb{R}^{2f}$ (the phase space manifold) which has a differentiable manifold structure.

1 Remark. In this document (perhaps contrary to before) Γ is the phase space (position and momentum), $\gamma : \mathbb{R} \to \Gamma$ is a typical trajectory (time parametrized) in phase space. As usual, if a function depends on both \mathbb{R} (time) and Γ (phase space), then the symbol ∂ alone means time derivative, ∂_i means derivative with respect to the *i*th coordinate in Γ (so if $i \in \{1, \ldots, f\}$ then ∂_i is derivative with respect to the position part of phase space and ∂_{i+f} is derivative with respect to the momentum part of the phase space.

2 Definition. A flow is a group morphism $\varphi : \mathbb{R} \to Aut(\Gamma)$ where \mathbb{R} is considered as the additive group, and Γ has the structure of a differentiable manifold (and it is in to that structure that automorphisms of Γ refer to, not to the structure of a vector space! In this regard the term automorphism is perhaps confusing).

3 Definition. Given a flow $\varphi : \mathbb{R} \to Aut(\Gamma)$, its *orbits*, *trajectories*, or *integral* curves is the following set of trajectories

 $\mathcal{O}(\varphi) := \{ \gamma : \mathbb{R} \to \Gamma \mid \gamma(t) := (\varphi(t))(x) \text{ for all } t \in \mathbb{R} \text{ for some } x \in \Gamma \}$

Since we know that $\varphi(0) = \mathbb{1}_{\Gamma} (\varphi \text{ is a group morphism})$, this means that the trajectories of φ are obtained by varying over all possible starting points.

4 Claim. For all $(x, y) \in \Gamma^2$, define $x \sim y$ iff $\exists (\gamma, t_x, t_y) \in \mathcal{O}(\varphi) \times \mathbb{R}^2$: $(\gamma(t_z) = z \forall z \in \{x, y\})$ iff there is an orbit connecting x and y. Then \sim is an equivalence relation on Γ . Hence $\mathcal{O}(\varphi)$ partitions Γ into the images of disjoint orbits.

5 Definition. Given a flow $\varphi : \mathbb{R} \to Aut(\Gamma)$, the vector field induced by φ , $v_{\varphi} : \Gamma \to \Gamma$, is defined as the vector field giving the velocity vector of an orbit

which passes through the given point (through every point there passes an orbit by the previous claim).

Given a point $x \in \Gamma$, we have an orbit $\gamma_x \in \mathcal{O}(\varphi)$ that passes through x at time zero given by: $\gamma_x(t) \equiv (\varphi(t))(x)$ for all $t \in \mathbb{R}$. Indeed,

$$\gamma_x (0) = (\varphi (0)) (x)$$

(\varphi is a group morphism)
$$\equiv (\mathbb{1}_{\Gamma}) (x)$$

$$= x$$

We thus define

$$v_{\varphi}(x) := (\partial \gamma_x) (0)$$

$$\equiv (\mathbb{R} \ni t \mapsto (\varphi(t)) (x) \in \Gamma)' \big|_{t=0}$$

6 Definition. Given a vector field $v : \Gamma \to \Gamma$, a flow $\varphi_v : \mathbb{R} \to Aut(\Gamma)$ is (sometimes) defined as follows. Let $(t, x) \in \mathbb{R} \times \Gamma$ be given. Then we seek a solution $\gamma : \mathbb{R} \to \Gamma$ to the first order differential equation

$$v \circ \gamma = \partial \gamma$$

with the initial condition $\gamma(0) = x$. By the Picard–Lindelöf theorem, if v is Lipschitz continuous there exists a unique solution γ at least locally (that is, there is some $\varepsilon > 0$ such that the equation is solved by γ at least on $(-\varepsilon, \varepsilon)$ (instead of \mathbb{R})). If that unique solution may actually be extended from $(-\varepsilon, \varepsilon)$ to \mathbb{R} then v is called *complete*. For complete vector fields we define the induced flow

$$(\varphi_v(t))(x) := \gamma(t)$$

7 Claim. Not every vector field is complete.

Proof. Consider $v : \mathbb{R} \to \mathbb{R}$ given by $v(x) := x^2 + 1$. Then the differential equation to solve to get its integral curves is

$$\partial \gamma = \gamma^2 + 1$$

which is solved by $\gamma = \tan(\cdot - C)$ for some $C \in \mathbb{R}$. If our initial condition is $\gamma(0) = x$ then $x = \tan(-C)$ so that $C = -\arctan(x)$ and we find

$$\gamma(t) = \tan(t + \arctan(x))$$

Of course this solution cannot work globally: $\tan \equiv \frac{\sin}{\cos}$ is undefined on $\frac{\pi}{2}\mathbb{Z}$.

8 Claim. If v is compactly supported then it is complete.

9 Definition. Given a flow $\varphi : \mathbb{R} \to Aut(\Gamma)$, we define its associated Jacobian matrix $A_{\varphi} : \mathbb{R} \times \Gamma \to Mat_{2f \times 2f}(\mathbb{R})$ via the entries $(i, j) \in \{1, \ldots, 2f\}^2$

$$\left(A_{\varphi}\left(t,\,x\right)\right)_{i,\,j} \quad := \quad \left(\partial_{j}\left(\varphi\left(t\right)\right)_{i}\right)\left(x\right) \quad \forall \left(t,\,x\right) \in \mathbb{R} \times \Gamma$$

10 Definition. A flow $\varphi : \mathbb{R} \to Aut(\Gamma)$ is *canonical* iff its associated Jacobian matrix $A_{\varphi}(t, x)$ is symplectic for all $(t, x) \in \mathbb{R} \times \Gamma$.

11 Claim. Let $\varphi : \mathbb{R} \to Aut(\Gamma)$ be a flow. Then φ is canonical iff there is some map $F_{\varphi} : \Gamma \to \mathbb{R}$ such that for any $x \in \Gamma$, the following differential equation for the unknown path $\mathbb{R} \ni t \mapsto (\varphi(t))(x) \in \Gamma$ is obeyed

$$\Omega \partial \left(\varphi \left(t\right)\right) \left(x\right) = \nabla F_{\varphi} \circ \left(\varphi \left(t\right)\right) \left(x\right)$$

with the boundary condition

$$(\varphi(0))(x) = x$$

 F_{φ} is called the generating function of the canonical flow φ . In particular we find that H is the generating function of the canonical flow given by all physical trajectories.

Proof. Let v_{φ} be the vector field defined from φ . Then we have by definition for any $x \in \Gamma$ the differential equation for the unknown path $\mathbb{R} \ni t \mapsto \gamma_x(t) \in \Gamma$ (where we have defined $\gamma_x(t) := (\varphi(t))(x)$ for brevity):

$$\partial \gamma_x = v_\varphi \circ \gamma_x \tag{1}$$

Then

$$\begin{aligned} \left(\left(\partial A_{\varphi} \right)(t, x) \right)_{i, j} &\equiv \left(\partial \partial_{j} \left(\varphi\left(t \right) \right)_{i} \right)(x) \\ & (\text{We may exchange the order of differentiation}) \\ &= \left(\partial_{j} \partial \left(\varphi\left(t \right) \right)_{i} \right)(x) \\ & (\text{Use the equation above}) \\ &= \partial_{j} \left(v_{\varphi} \right)_{i} \circ \left(\left(\varphi\left(t \right) \right)(x) \right) \\ & (\text{Use the chain rule}) \\ &= \sum_{l} \left(\left(\partial_{l} \left(v_{\varphi} \right)_{i} \right) \circ \left(\left(\varphi\left(t \right) \right)(x) \right) \right) \partial_{j} \left(\left(\varphi\left(t \right) \right)(x) \right)_{l} \\ & (\text{Use the definition of } A_{\varphi_{v}}) \\ &= \sum_{l} \left(\left(\partial_{l} \left(v_{\varphi} \right)_{i} \right) \circ \left(\left(\varphi\left(t \right) \right)(x) \right) \right) \left(A_{\varphi} \left(t, x \right) \right)_{l, j} \end{aligned}$$

If we define a new matrix V_{φ} by components $V_{il} := \partial_l (v_{\varphi})_i$ then we find

$$\partial A_{\varphi} = (V_{\varphi} \circ \gamma_x) A_{\varphi}$$

Note that $\varphi(0) = \mathbb{1}_{\Gamma}$ (group morphism) so that $A_{\varphi}(0, x) = \mathbb{1}_{2f \times 2f}$ for any

 $x\in \Gamma.$ But the identity matrix is symplectic. So we find

$$\left(A_{\varphi}\left(0,\,x\right)\right)^{T}\Omega A_{\varphi}\left(0,\,x\right) = \Omega$$

If φ is to be canonical, we need to have that $A_{\varphi}(t, x)$ is symplectic for any t. That is,

$$(A_{\varphi}(t, x))^{T} \Omega A_{\varphi}(t, x) \stackrel{!}{=} \Omega$$

= $(A_{\varphi}(0, x))^{T} \Omega A_{\varphi}(0, x)$

so that means we need the matrix-valued function of t

$$t \mapsto (A_{\varphi}(t, x))^T \Omega A_{\varphi}(t, x)$$

to be constant in time:

$$\partial \left[\left(A_{\varphi} \left(t, \, x \right) \right)^T \Omega A_{\varphi} \left(t, \, x \right) \right] \stackrel{!}{=} 0 \tag{2}$$

But

$$\partial \left[\left(A_{\varphi} \left(t, \, x \right) \right)^{T} \Omega A_{\varphi} \left(t, \, x \right) \right] = \left[\partial \left(A_{\varphi} \left(t, \, x \right) \right)^{T} \right] \Omega A_{\varphi} \left(t, \, x \right) + \left(A_{\varphi} \left(t, \, x \right) \right)^{T} \Omega \partial A_{\varphi} \left(t, \, x \right)$$

$$\left(\text{Use } \partial A_{\varphi} = \left(V_{\varphi} \circ \gamma_{x} \right) A_{\varphi} \right)$$

$$= A_{\varphi} \left(t, \, x \right)^{T} \left(V_{\varphi} \circ \gamma_{x} \left(t \right) \right)^{T} \Omega A_{\varphi} \left(t, \, x \right) + \left(A_{\varphi} \left(t, \, x \right) \right)^{T} \Omega \left(V_{\varphi} \circ \gamma_{x} \left(t \right) \right) A_{\varphi} \left(t, \, x \right)$$

$$\left(\text{Factorize} \right)$$

$$= A_{\varphi} \left(t, \, x \right)^{T} \left[\left(V_{\varphi} \circ \gamma_{x} \left(t \right) \right)^{T} \Omega + \Omega \left(V_{\varphi} \circ \gamma_{x} \left(t \right) \right) \right] A_{\varphi} \left(t, \, x \right)$$

Now recall $\varphi(t)$ is an automorphism for any t, so that A_{φ} must be invertible as a matrix, hence (2) implies

and hence by hint in the last question in homework 11 (symmetric matrix can be diagonalized) we find that there must be some $F_{\varphi}: \Gamma \to \mathbb{R}$ whose gradient is Ωv_{φ} :

$$\Omega v_{\varphi} = \nabla F_{\varphi}$$

Plugging in the value of v_{φ} from (1) by evaluating at γ_x we find

$$\begin{array}{rcl} \Omega v_{\varphi} \circ \gamma_{x} & = & \nabla F_{\varphi} \circ \gamma_{x} \\ & & \uparrow \\ & \Omega \partial \gamma_{x} & = & \nabla F_{\varphi} \circ \gamma_{x} \end{array}$$

And then placing back the definition of γ_x we find the result.

2 Time Dependence of Generators

Recall that the canonical equations of motion for a trajectory in phase space $\gamma : \mathbb{R} \to \Gamma$ are given by

$$\dot{\gamma} = \Omega^T \left(\nabla H \right) \circ \gamma$$

where H is the Hamiltonian. Then we have for any scalar quantity $F : \Gamma \to \mathbb{R}$, the time derivative of it evaluated on a trajectory which is a solution of the equations of motion is given by:

$$\begin{array}{lll} \partial \left(F \circ \gamma \right) &=& \sum_{i=1}^{2f} \left[\left(\partial_i F \right) \circ \gamma \right] \partial \gamma_i \\ &\equiv& \left\langle \nabla F \circ \gamma, \, \partial \gamma \right\rangle_{\Gamma} \\ &\equiv& \left\langle \nabla F \circ \gamma, \, \dot{\gamma} \right\rangle_{\Gamma} \\ & \left(\text{Above E.o.M.} \right) \\ &=& \left\langle \nabla F \circ \gamma, \, \Omega^T \left(\nabla H \right) \circ \gamma \right\rangle_{\Gamma} \\ &=& \left\langle \nabla F, \, \Omega^T \nabla H \right\rangle_{\Gamma} \circ \gamma \\ &=& \left\langle \Omega \nabla F, \, \nabla H \right\rangle_{\Gamma} \circ \gamma \\ &=& \left\langle \nabla \nabla F, \, \nabla H \right\rangle_{\Gamma} \circ \gamma \\ &=& \left\langle \nabla H, \, \Omega \nabla F \right\rangle_{\Gamma} \circ \gamma \end{array}$$

We thus define the Poisson bracket of two scalars $(A, B) \in (\mathbb{R}^{\Gamma})^2$ as

 $\{A, B\} := \langle \nabla A, \Omega \nabla B \rangle_{\Gamma}$

and find

$$\partial \left(F \circ \gamma \right) = \{ H, F \} \circ \gamma$$

3 Canonical Transformations

In this section we consider the phase space $\Gamma \equiv \mathbb{R}^{2f}$ as a differentiable manifold and not so much as a vector space.

12 Definition. A bijection $b: \Gamma \to \Gamma$ is called a canonical transformation iff it leaves the canonical equations of motion for the trajectory $\gamma : \mathbb{R} \to \Gamma$ invariant:

$$\begin{split} \Omega \partial \gamma &= (\nabla H) \circ \gamma \\ \uparrow \\ \Omega \partial \left(\underbrace{b^{-1} \circ \gamma}_{\tilde{\gamma}} \right) &= \left(\nabla \left(\underbrace{H \circ b}_{\tilde{H}} \right) \right) \circ \left(\underbrace{b^{-1} \circ \gamma}_{\tilde{\gamma}} \right) \end{split}$$

This means that

$$\begin{split} \Omega \partial \gamma &= \Omega \partial \left(b \circ \tilde{\gamma} \right) \\ &= \Omega \sum_{i=1}^{2f} \left(\partial_i b \circ \tilde{\gamma} \right) \partial \tilde{\gamma}_i \\ &\stackrel{!}{=} e_i \left(\partial_i (H) \circ \gamma \right) \\ &= e_i \left(\partial_i \left(\tilde{H} \circ b^{-1} \right) \right) \circ b \circ \tilde{\gamma} \\ &= e_i \left(\left(\left(\partial_j \tilde{H} \right) \circ b^{-1} \right) \underbrace{\partial_i \left(b^{-1} \right)_j}_{(B^{-1})_{ji}} \right) \circ b \circ \tilde{\gamma} \end{split}$$

We find that

$$(B^T \Omega B) \partial \tilde{\gamma} \stackrel{!}{=} \nabla \tilde{H} \circ \tilde{\gamma}$$

which implies that

$$B^T \Omega B \stackrel{!}{=} \Omega$$

that is, that B is symplectic (evaluated anywhere).

Thus we conclude: $b: \Gamma \to \Gamma$ is a canonical transformation iff the matrixvalued function whose elements are the functions $\partial_i b_j: \Gamma \to \mathbb{R}$ is symplectic.

3.1 Generating Canonical Transformations

As in HW11Q3, we have a coordinate canonical transformation which possibly depends on time $b: \Gamma \times \mathbb{R} \to \Gamma$. It induces a new trajectory as

$$\gamma = b \circ (\tilde{\gamma} \times \mathbb{1}_{\mathbb{R}})$$

If b is to be canonical, then the Lagrangians of the two systems must be equivalent, that is, the same up to a total time derivative:

$$\sum_{i=1}^{f} \gamma_{i+f}(t) \dot{\gamma}_{i}(t) - H(\gamma(t), t) \stackrel{!}{=} \sum_{i=1}^{f} \tilde{\gamma}_{i+f}(t) \dot{\tilde{\gamma}}_{i}(t) - \tilde{H}(\tilde{\gamma}(t), t) + \dot{S}_{0}(\tilde{\gamma}(t), t)$$

for some scalar field $S_0: \Gamma \times \mathbb{R} \to \mathbb{R}$.

This implies the identity of differential forms

$$\sum_{i=1}^{f} \gamma_{i+f}(t) \,\mathrm{d}\gamma_{i}(t) - H\left(\gamma\left(t\right), t\right) \,\mathrm{d}t \quad \stackrel{!}{=} \quad \sum_{i=1}^{f} \tilde{\gamma}_{i+f}(t) \,\mathrm{d}\tilde{\gamma}_{i}(t) - \tilde{H}\left(\tilde{\gamma}\left(t\right), t\right) \,\mathrm{d}t + \mathrm{d}S_{0}\left(\tilde{\gamma}\left(t\right), t\right) \,\mathrm{d}t$$

Define

$$S := S_0 + \sum_{i=1}^{f} \tilde{\gamma}_{i+f}(t) \,\tilde{\gamma}_i(t)$$

Then

$$dS = dS_{0} + \sum_{i=1}^{f} d\tilde{\gamma}_{i+f}(t) \tilde{\gamma}_{i}(t)$$

$$= dS_{0} + \sum_{i=1}^{f} [d\tilde{\gamma}_{i+f}(t)\tilde{\gamma}_{i}(t) + \tilde{\gamma}_{i+f}(t) d\tilde{\gamma}_{i}(t)]$$

$$= \sum_{i=1}^{f} \gamma_{i+f}(t) d\gamma_{i}(t) - H(\gamma(t), t) dt + \tilde{H}(\tilde{\gamma}(t), t) dt + \sum_{i=1}^{f} d\tilde{\gamma}_{i+f}(t)\tilde{\gamma}_{i}(t)$$

$$= \sum_{i=1}^{f} [\gamma_{i+f}(t) d\gamma_{i}(t) + \tilde{\gamma}_{i}(t) d\tilde{\gamma}_{i+f}(t)] + \left[\tilde{H}(\tilde{\gamma}(t), t) - H(\gamma(t), t)\right] dt$$

Assume we could express S as a function of $\{\gamma_i\}_{i=1}^f$ and $\{\tilde{\gamma}_{i+f}\}_{i=1}^f$. Then the above equation implies

$$\begin{array}{rcl} \partial_{\gamma_i}S &=& \gamma_{i+f} \\ \partial_{\tilde{\gamma}_{i+f}}S &=& \tilde{\gamma}_i \\ \partial_tS &=& \tilde{H}-H \end{array}$$

We use the second equation to find $\{\gamma_i\}$ in terms of $\{\tilde{\gamma}_i\}_{i=1}^{2f}$ and t, and place this in the first and third equations to find $\{\gamma_i\}_{i=1}^{2f}$ in terms of $\{\tilde{\gamma}_i\}_{i=1}^{2f}$ and t. This is why S is called a generator of canonical transformations.

Different choices of S lead to (necessarily) various canonical transformations, which is why this is useful.