The Euler-Lagrange Equation from Hamilton's "Least" Action Principle

Jacob Shapiro

December 20, 2016

1 Definition of the Lagrangian

- Convention: If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is given then $\partial_{i} f$ is the derivative with respect to the i th argument. If $f: \mathbb{R} \rightarrow \mathbb{R}$ then ∂f or \dot{f} is the derivative (with respect to the only argument).
- Let $d \in \mathbb{N}_{\geq 1}$ be given (the number of space dimensions).
- Let $n \in \mathbb{N}_{\geq 1}$ be given (the number of particles).
- Let $V:\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}$ (the potential) be given; We assume V is differentiable. (we treat the simplest case where the potential is time independent).
- We define $m:=d n$ for breviy.
- Let $\gamma_{i}: \mathbb{R} \rightarrow \mathbb{R}^{d}$ be the trajectory of the i th particle.
- We define $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{m}$ as the trajectory of the whole system: $\Gamma:=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$.
- Thus $V \circ \Gamma: \mathbb{R} \rightarrow \mathbb{R}$.
- Given a collection of masses $\left(m_{1}, \ldots, m_{n}\right) \in\left(\mathbb{R}_{>0}\right)^{n}$, we also define another map $T:\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}$ via

$$
T\left(x_{1}, \ldots, x_{n}\right):=\frac{1}{2} \sum_{i=1}^{n} m_{i}\left\|x_{i}\right\|^{2} \quad \forall\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{R}^{d}\right)^{n}
$$

where

$$
\left\|x_{i}\right\| \equiv \sqrt{\left(x_{i}\right)_{1}^{2}+\cdots+\left(x_{i}\right)_{d}^{2}}
$$

Note that we may also consider the "flattened" version (denoted with the same letter) $T: \mathbb{R}^{m} \rightarrow \mathbb{R}$ with

$$
\begin{gathered}
\left(\tilde{m}_{j}\right)_{j=1}^{m}=(\underbrace{m_{1}, \ldots, m_{1}}_{d \text { times }}, \ldots, \underbrace{m_{n}, \ldots, m_{n}}_{d \text { times }}) \\
T\left(y_{1}, \ldots, y_{m}\right):=\frac{1}{2} \sum_{j=1}^{m} \tilde{m}_{j} y_{j}^{2} \quad \forall\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}
\end{gathered}
$$

Note T is differentiable as it is merely a polynomial.

- The definition of V and T was just to make things concrete but more generally we consider a Lagrangian (differentiable) map

$$
L: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}
$$

and in our case

$$
L\left(\left(x_{j}\right)_{j=1}^{m},\left(v_{j}\right)_{j=1}^{m}\right):=T\left(\left(v_{j}\right)_{j=1}^{m}\right)-V\left(\left(x_{j}\right)_{j=1}^{m}\right)
$$

We will also use the notation

$$
L \circ(\Gamma, \dot{\Gamma}): \underbrace{\mathbb{R}}_{\text {time }} \rightarrow \mathbb{R}=T \circ \dot{\Gamma}-V \circ \Gamma
$$

2 Definition of the Action

- Let $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$ be given such that $t_{1}<t_{2}$, and $\left(x_{1}, x_{2}\right) \in\left(\mathbb{R}^{m}\right)^{2}$ (the initial and final conditions).
- Define the Banach space $\mathcal{B}:=C^{2}\left(\left[t_{1}, t_{2}\right] \rightarrow \mathbb{R}^{m}\right)$ (the twice-differentiable maps from that interval to \mathbb{R}^{m}), with the supremum norm

$$
\|\Gamma\|_{\mathcal{B}} \equiv \sup \left(\left\{\|\Gamma(t)\|_{\mathbb{R}^{m}} \mid t \in\left[t_{1}, t_{2}\right]\right\} \cup\left\{\|\dot{\Gamma}(t)\|_{\mathbb{R}^{m}} \mid t \in\left[t_{1}, t_{2}\right]\right\}\right)
$$

Of course that norm is well-defined because a continuous image of a compact space is again compact, hence bounded.

- Define the action S_{L} corresponding to the Lagragian L and the time interval $\left[t_{1}, t_{2}\right]$ as a map $S_{L}: \mathcal{B} \rightarrow \mathbb{R}$ as follows

$$
S_{L}(\Gamma):=\int_{t_{1}}^{t_{2}}(L \circ(\Gamma, \dot{\Gamma}))(t) \mathrm{d} t \quad \forall \Gamma \in \mathcal{S}
$$

3 The Frechet Derivative of the Action

- Recall that the Fréchet [1] derivative of a map $S_{L}: \mathcal{B} \rightarrow \mathbb{R}$ between two Banach spaces at a point $\Gamma \in \mathcal{B}$ is defined as an operator $\left(D S_{L}\right)(\Gamma) \in \mathcal{L}(\mathcal{B}, \mathbb{R})$ (where $\mathcal{L}(\cdot, \cdot)$ is the space of all continuous linear operators between two spaces) such that the following limit exists and is equal to zero:

$$
\lim _{\Phi \rightarrow 0} \frac{\left|S_{L}(\Gamma+\Phi)-S_{L}(\Gamma)-\left(\left(D S_{L}\right)(\Gamma)\right)(\Phi)\right|}{\|\Phi\|_{\mathcal{B}}}=0
$$

(that is, S_{L} is Fréchet-differentiable at Γ if such an $\left(D S_{L}\right)(\Gamma)$ exists)
3.1 Claim. S_{L} is Fréchet differentiable on the whole of \mathcal{B} and its value is

$$
\begin{aligned}
\left(\left(D S_{L}\right)(\Gamma)\right)(\Phi)= & \sum_{j=1}^{m} \int_{t_{1}}^{t_{2}}\left(\left(\left(\partial_{j} L\right) \circ(\Gamma, \dot{\Gamma})\right)(t)-\partial\left[\left(\partial_{j+m} L\right) \circ(\Gamma, \dot{\Gamma})\right](t)\right) \Phi_{j}(t) \mathrm{d} t \\
& +\left.\left[\left(\partial_{j+m} L\right)(\Gamma(t), \dot{\Gamma}(t)) \Phi_{j}(t)\right]\right|_{t_{1}} ^{t_{2}}
\end{aligned}
$$

Proof. Let $\varepsilon>0$ and let $\Phi \in \mathcal{B}$ be given such that $\frac{1}{2} \varepsilon<\|\Phi\|<\varepsilon$. That implies that $\|\Phi(t)\|<\varepsilon$ and $\|\dot{\Phi}(t)\|<\varepsilon$ for all $t \in\left[t_{1}, t_{2}\right]$.

$$
S_{L}(\Gamma+\Phi) \equiv \int_{t_{1}}^{t_{2}}(L \circ(\Gamma+\Phi, \dot{\Gamma}+\dot{\Phi}))(t) \mathrm{d} t
$$

and

$$
(L \circ(\Gamma+\Phi, \dot{\Gamma}+\dot{\Phi}))(t) \equiv L(\Gamma(t)+\Phi(t), \dot{\Gamma}(t)+\dot{\Phi}(t))
$$

Since $\Phi(t)$ and $\dot{\Phi}(t)$ are smaller than ε, we can make a Taylor expansion of L around $\Phi(t)=\dot{\Phi}(t)=0$ to obtain:

$$
\begin{aligned}
L(\Gamma(t)+\Phi(t), \dot{\Gamma}(t)+\dot{\Phi}(t)) \approx & L(\Gamma(t), \dot{\Gamma}(t))+\sum_{j=1}^{m}\left(\partial_{j} L\right)(\Gamma(t), \dot{\Gamma}(t)) \Phi_{j}(t)+ \\
& +\sum_{j=1}^{m}\left(\partial_{j+m} L\right)(\Gamma(t), \dot{\Gamma}(t)) \dot{\Phi}_{j}(t)+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

Next perform integration by parts on the following integral

$$
\begin{aligned}
\int_{t_{1}}^{t_{2}}\left(\partial_{j+m} L\right)(\Gamma(t), \dot{\Gamma}(t)) \dot{\Phi}_{j}(t) \mathrm{d} t= & {\left.\left[\left(\partial_{j+m} L\right)(\Gamma(t), \dot{\Gamma}(t)) \Phi_{j}(t)\right]\right|_{t_{1}} ^{t_{2}}-} \\
& -\int_{t_{1}}^{t_{2}}\left[\partial\left(\left(\partial_{j+m} L\right)(\Gamma, \dot{\Gamma})\right)\right](t) \Phi_{j}(t) \mathrm{d} t
\end{aligned}
$$

Hence we have (using the same (tentative) formula for $\left(\left(D S_{L}\right)(\Gamma)\right)(\Phi)$ which was introduced in the claim) to get

$$
S_{L}(\Gamma+\Phi)-S_{L}(\Gamma)-\left(\left(D S_{L}\right)(\Gamma)\right)(\Phi)=\mathcal{O}\left(\varepsilon^{2}\right)\left(t_{2}-t_{1}\right)
$$

We find that

$$
\begin{aligned}
\frac{\left|S_{L}(\Gamma+\Phi)-S_{L}(\Gamma)-\left(\left(D S_{L}\right)(\Gamma)\right)(\Phi)\right|}{\|\Phi\|_{\mathcal{B}}} & =\frac{\mathcal{O}\left(\varepsilon^{2}\right)\left|t_{2}-t_{1}\right|}{\|\Phi\|_{\mathcal{B}}} \\
& \leq \mathcal{O}(\varepsilon) \frac{1}{2}\left|t_{2}-t_{1}\right|
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary and since we can always find such Φ for a given $\varepsilon>0$, we concude the statement of the claim.
3.2 Claim. If for some continuous $f:\left[t_{1}, t_{2}\right] \rightarrow \mathbb{R}, \int_{t_{1}}^{t_{2}} f g=0$ for all continuous $g:\left[t_{1}, t_{2}\right] \rightarrow \mathbb{R}$ such that $g\left(t_{1}\right)=g\left(t_{2}\right)=0$ then $f=0$. [[2] pp. 57]

Proof. Assume otherwise. Then there exists some $t_{3} \in\left[t_{1}, t_{2}\right]$ such that $\left|f\left(t_{3}\right)\right|>0$. Since f is continuous, there is some $\varepsilon>0$ such that $\inf \left(\left|f\left(B_{\varepsilon}\left(t_{3}\right)\right)\right|\right)>c$ for some $c>0$. Pick g continuous such that $g=0$ outside $B_{\varepsilon}\left(t_{3}\right), g>0$ inside $B_{\varepsilon}\left(t_{3}\right)$ and $g=1$ inside $B_{\frac{1}{2} \varepsilon}\left(t_{3}\right)$. Then

$$
\begin{aligned}
\left|\int_{t_{1}}^{t_{2}} f g\right| & \geq\left|\int_{B_{\varepsilon}\left(t_{3}\right)} f g\right| \\
& >c\left|\int_{B_{\varepsilon}\left(t_{3}\right)} g\right| \\
& >c \varepsilon
\end{aligned}
$$

This contradicts the fact that we should obtain zero on the left hand side.

4 Extremum of Action Implies Euler-Lagrange Equations

4.1 Claim. The extremal points of S_{L} where the extremum is taken over all points such that

$$
\begin{equation*}
\Gamma\left(t_{i}\right)=x_{i} \forall \quad i \in\{1,2\} \tag{1}
\end{equation*}
$$

is given by solutions to the (total number of m) Euler-Lagrange equations:

$$
\left(\partial_{j} L\right) \circ(\Gamma, \dot{\Gamma})-\partial\left[\left(\partial_{j+m} L\right) \circ(\Gamma, \dot{\Gamma})\right]=0 \quad \forall j \in\{1, \ldots, m\}
$$

Proof. The extremum of a function is obtained (by definition) when its Frechet derivative is zero. That means we should seek solutions Γ to the equation

$$
\left.\left(D S_{L}\right)(\Gamma)\right|_{\mathcal{S}}=0
$$

where \mathcal{S} is the subset of \mathcal{B} such that $\Phi\left(t_{1}\right)=\Phi\left(t_{2}\right)=0$. The reason we restrict the action of the derivative to \mathcal{S} is because this restriction is precisely what makes sure (1) is satisfied for every element considered for the extremum.

By the result earlier we have for all $\Phi \in \mathcal{S}$,

$$
\left.\left(D S_{L}\right)(\Gamma)\right|_{\mathcal{S}}(\Phi)=\sum_{j=1}^{m} \int_{t_{1}}^{t_{2}}\left(\left(\left(\partial_{j} L\right) \circ(\Gamma, \dot{\Gamma})\right)(t)-\partial\left[\left(\partial_{j+m} L\right) \circ(\Gamma, \dot{\Gamma})\right](t)\right) \Phi_{j}(t) \mathrm{d} t
$$

Since $\left.\left(D S_{L}\right)(\Gamma)\right|_{\mathcal{S}}(\Phi)=0$ should hold for any $\Phi \in \mathcal{S}$, we can successively pick individual j 's such that $\Phi=$
$\left(0,0, \ldots, \Phi_{j}, \ldots, 0,0\right)$ and so we actually get the m (separate) equations:

$$
\int_{t_{1}}^{t_{2}}\left(\left(\left(\partial_{j} L\right) \circ(\Gamma, \dot{\Gamma})\right)(t)-\partial\left[\left(\partial_{j+m} L\right) \circ(\Gamma, \dot{\Gamma})\right](t)\right) \Phi_{j}(t) \mathrm{d} t=0 \quad \forall j \in\{1, \ldots, m\}
$$

We now use 3.2 to conclude the statement of the claim.
This means that the solutions to the Euler-Lagrange equations are simply the extremum points of S_{L} in the space of paths obeying given boundary conditions, in complete analogy to how $f^{\prime}(x) \stackrel{!}{=} 0$ gives the extremum x of a map $f: \mathbb{R} \rightarrow \mathbb{R}$ as seen in high school.

References

[1] H. Cartan. Differential Calculus. Houghton Mifflin Co, 1971.
[2] MATHEMATICAL METHODS OF CLASSICAL MECHANICS. Mathematical Methods of Classical Mechanics by V.I. Arnol'd (May 16 1989). Springer, 1989.

