Mechanics of Continua–Spring 2017–Recitation Session of Week 1

Jacob Shapiro

February 23, 2017

1 Haunted by Analysis 2

1.1 The Frechet Derivative

We give a reminder of what a Frechet derivative is.

Definition 1. Let $f: V \to W$ be a mapping between two Banach spaces V and W. The Frechet derivative of f at some $x \in V$, denoted by (Df)(x), is a bounded linear operator $\mathcal{B}(V, W)$ which is an approximation of f near x in the following sense:

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - ((Df)(x))(h)\|_{W}}{\|h\|_{V}} = 0$$

f is called Frechet-differentiable iff (Df)(x) exists for all $x \in V$.

Claim 2. Assume that V and W are finite dimensional. Then every linear operator is bounded. Furthermore, If all partial derivatives of f exist and are continuous, then f is Frechet differentiable and (Df)(x) is identified with the matrix given with entries $(\partial_j f_i)(x)$ (the Jacobian matrix). The converse is false as seen in some pathological examples.

Claim 3. If f is linear itself then (Df)(x) is independent of x and is equal to f.

Proof. (Df)(x) is unique if it exists (...). Then assuming f is linear, we have

$$\frac{\|f(x+h) - f(x) - ((Df)(x))(h)\|_{W}}{\|h\|_{V}} = \frac{\|f(h) - ((Df)(x))(h)\|_{W}}{\|h\|_{V}}$$

so that (Df)(x) := f does the job.

Remark 4. Note that (Df)(x) can also be seen as a map $V \ni x \mapsto (Df)(x) \in \mathcal{B}(V, W)$. In this sense, this map is *not* generically linear. Indeed, here's an

example: $f : \mathbb{R}^3 \to \mathbb{R}^3$ given by $f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) := \begin{bmatrix} (x_1)^3 \\ (x_2)^3 \\ (x_3)^3 \end{bmatrix}$. The Frechet derivative of this map is given by the matrix

$$\begin{split} \left[(Df) (x) \right]_{i, \, j=1}^{3} &\equiv \begin{bmatrix} (\partial_{1} f_{1}) (x) & (\partial_{2} f_{1}) (x) & (\partial_{3} f_{1}) (x) \\ (\partial_{1} f_{2}) (x) & (\partial_{2} f_{2}) (x) & (\partial_{3} f_{2}) (x) \\ (\partial_{1} f_{3}) (x) & (\partial_{2} f_{3}) (x) & (\partial_{3} f_{3}) (x) \end{bmatrix} \\ &= \begin{bmatrix} 3 (x_{1})^{2} & 0 & 0 \\ 0 & 3 (x_{2})^{2} & 0 \\ 0 & 0 & 3 (x_{3})^{2} \end{bmatrix} \end{split}$$

and this matrix, as a function of x, is clearly not linear.

2 Linear Algebra

2.1 Orientation

Let V be a finite dimensional vector space. We know that there is an isomorphism $V \cong \mathbb{R}^n$ for some $n \in \mathbb{N}_{>0}$.

Definition 5. A choice of such an isomorphism $f: V \to \mathbb{R}^n$ is an orientation on V.

Definition 6. Two orientations $f_1 : V \to \mathbb{R}^n$ and $f_2 : V \to \mathbb{R}^n$ are called "equivalent" iff the linear map $f_1 \circ f_2^{-1} : \mathbb{R}^n \to \mathbb{R}^n$, which is an $n \times n$ matrix, has positive determinant.

Claim 7. There are exactly two equivalence classes for orientations.

Definition 8. A map $f: V \to V$ is orientation preserving iff det ((Df)(x)) > 0 for all $x \in V$.

Example 9. Consider the reflection on \mathbb{R}^3 , given by $-\mathbb{1}_{3\times 3}$. Its determinant is $(-1)^3 = -1$ so it is not orientation preserving.

Remark 10. Deformations of rigid bodies should preserve orientation.

2.2 Symmetric positive definite matrices

Definition 11. (Cholesky decomposition) A matrix $P \in Mat_{n \times n}(\mathbb{R})$ is called positive iff there is some $A_P \in Mat_{n \times n}(\mathbb{R})$ such that $(A_P)^T A_P = P$.

Claim 12. The following are equivalent:

1. P is positive.

2. P is symmetric and has eigenvalues in $[0, \infty)$.

3. P is symmetric and $\langle x, Px \rangle \ge 0$ for all $x \in \mathbb{R}^n$.

Proof. 1. implies 2.: Assume that P is positive. Then $P = A^T A$ for some A. Then $P^T = (A^T A)^T = A^T (A^T)^T = A^T A = P$ so that P is symmetric. Let $\lambda \in \sigma(P)$. Then there is some $v \in \mathbb{R}^n \setminus \{0\}$ such that $Pv = \lambda v$. If $\lambda = 0$ we are finished. Otherwise, $A^T A v = \lambda v$ implies

$$1 = \frac{\|v\|^{2}}{\|v\|^{2}}$$

$$= \frac{\langle v, v \rangle}{\|v\|^{2}}$$

$$= \frac{\frac{1}{\lambda} \langle v, \lambda v \rangle}{\|v\|^{2}}$$

$$= \frac{\frac{1}{\lambda} \langle v, A^{T} A v \rangle}{\|v\|^{2}}$$

$$= \frac{\frac{1}{\lambda} \langle Av, Av \rangle}{\|v\|^{2}}$$

$$= \frac{\frac{\|Av\|^{2}}{\lambda}}{\|v\|^{2}}$$

which implies that $\lambda = \frac{\|Av\|^2}{\|v\|^2} > 0$. Since λ was an arbitrary eigenvalue of P, we find $\sigma(P) \subseteq \mathbb{R}_{\geq 0}$.

2. implies 3.: Any symmetric matrix may be orthogonally diagonalized: $P = O^T DO$ where $O \in O(n)$ and D is a diagonal matrix whose entries are the eigenvalues of P. Since we assume $\sigma(P) \in \mathbb{R}_{\geq 0}$, the entries of D are in $\mathbb{R}_{\geq 0}$. Then if $x \in \mathbb{R}^n$ is given,

$$\langle x, Px \rangle = \langle x, O^T D Ox \rangle$$

$$= \langle Ox, D Ox \rangle$$

$$= \sum_{i=1}^n \sum_{j=1}^n (Ox)_i D_{ij} (Ox)_j$$

$$(D \text{ is diagonal})$$

$$= \sum_{i=1}^n (Ox)_i D_{ii} (Ox)_i$$

$$= \sum_{i=1}^n [(Ox)_i]^2 D_{ii}$$

$$> 0$$

Each term in the last sum is non-negative numbers due to it being the product of two non-negative numbers.

3. implies 1.: P is symmetric, so we diagonalize it as $P = O^T D O$ as above. Then note that by the above calculation, $D_{ii} \ge 0$ for all i (otherwise we reach a contradiction). As a result, \sqrt{D} is defined and is a diagonal matrix whose entries are $\sqrt{D_{ij}}$. Define $A := \sqrt{DO}$. Then

$$A^{T}A = \left(\sqrt{D}O\right)^{T}\sqrt{D}O$$
$$= O^{T}\sqrt{D}\sqrt{D}O$$
$$= O^{T}DO$$
$$= P$$

2.3 Polar Decomposition

Let $A \in Mat_{n \times n}(\mathbb{R})$ be given. As we've seen in the lecture, there are unique left and right polar decompositions given by

$$\begin{array}{rcl} A & = & O \left| A \right| \\ & = & \left| A^T \right| O \end{array}$$

where $|A| \equiv \sqrt{A^T A}$ and $O := A |A|^{-1} = |A^T|^{-1} A$.

Example 13. (Thanks to Hansueli) Note that in general $|A| \neq |A^T|$. Indeed, Let $A = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix}$. We have

$$A^{T}A = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2\\ 1 & 1 \end{bmatrix}\right)^{T} \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2\\ 1 & 1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 2 & 1\\ -2 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2\\ 1 & 1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 5 & -3\\ -3 & 5 \end{bmatrix}$$

whereas

$$AA^{T} = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2\\ 1 & 1 \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2\\ 1 & 1 \end{bmatrix} \right)^{T}$$
$$= \frac{1}{2} \begin{bmatrix} 2 & -2\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1\\ -2 & 1 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 8 & 0\\ 0 & 2 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0\\ 0 & 1 \end{bmatrix}$$

4

This example corresponds to $|A^T| \equiv \sqrt{AA^T}$ being stretch along the e_1 axis and then $A |A|^{-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ being rotation by 45 degrees.