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1 Haunted by Analysis 2

1.1 The Frechet Derivative

We give a reminder of what a Frechet derivative is.

Definition 1. Let f : V — W be a mapping between two Banach spaces V'
and W. The Frechet derivative of f at some z € V, denoted by (Df) (z), is a
bounded linear operator B (V, W) which is an approximation of f near x in the
following sense:
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f is called Frechet-differentiable iff (D f) (x) exists for all z € V.

Claim 2. Assume that V and W are finite dimensional. Then every linear
operator is bounded. Furthermore, If all partial derivatives of f exist and are
continuous, then f is Frechet differentiable and (D f) (z) is identified with the
matrix given with entries (9; f;) (x) (the Jacobian matrix). The converse is false
as seen in some pathological examples.

Claim 3. If f is linear itself then (Df) (z) is independent of x and is equal to
I

Proof. (Df)(x) is unique if it exists (...). Then assuming f is linear, we have

lf (@ +h) = f(2) = (D) @) Wllw  _ [If(h) = (Df) (@) (W)llw
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so that (Df) (z) := f does the job. O

Remark 4. Note that (Df) (z) can also be seen as a map V 3 z — (Df) (x) €
B (V, W). In this sense, this map is not generically linear. Indeed, here’s an
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example: f:R? — R given by f | |x2| | := |(22)*|. The Frechet derivative
L3 (z3)°

of this map is given by the matrix

, [(01f1) () (D2f1) (x) (B3f1) (x)
(Df) (@)]; j=1 = |(O1f2) (x) (92f2) (x) (93f2) ()
L(01f3) (z) (Daf3) (x) (0af3)(x)
3(z1)> 0 0
= 0  3()® 0
L o 0 3(x)

and this matrix, as a function of x, is clearly not linear.

2 Linear Algebra

2.1 Orientation

Let V be a finite dimensional vector space. We know that there is an isomor-
phism V =2 R" for some n € Nyg.

Definition 5. A choice of such an isomorhism f : V' — R" is an orientation on
V.

Definition 6. Two orientations f; : V. — R™ and fo : V — R"™ are called
“equivalent” iff the linear map f; o fo ' : R” — R”, which is an n x n matrix,
has positive determinant.

Claim 7. There are exactly two equivalence classes for orientations.

Definition 8. A map f: V — V is orientation preserving iff det ((Df) (x)) > 0
forall z € V.

Example 9. Consider the reflection on R3, given by —1l3y3. Its determinant
is (—1)* = —1 so it is not orientation preserving.

Remark 10. Deformations of rigid bodies should preserve orientation.

2.2 Symmetric positive definite matrices

Definition 11. (Cholesky decomposition) A matrix P € Mat,xn (R) is called
positive iff there is some Ap € Mat, x, (R) such that (Ap)T Ap = P.

Claim 12. The following are equivalent:

1. P is positive.



2. P is symmetric and has eigenvalues in [0, c0).

3. P is symmetric and (z, Px) > 0 for all x € R™.

Proof. 1. implies 2.: Assume that P is positive. Then P = AT A for some A.
Then PT = (ATA)T = AT (AT)T = ATA = P so that P is symmetric. Let
A € o (P). Then there is some v € R™\ {0} such that Pv = Av. If A = 0 we
are finished. Otherwise, A7 Av = \v implies
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which implies that A = ”ﬁTllL > 0. Since A was an arbitrary eigenvalue of P,

we find o (P) C R>o.

2. implies 3.: Any symmetric matrix may be orthogonally diagonalized:
P =0TDO where O € O (n) and D is a diagonal matrix whose entries are the
eigenvalues of P. Since we assume o (P) € R>¢, the entries of D are in Rx>g.
Then if z € R™ is given,

(z, Pr) = (z,0"DOz)
= (Oz, DOx)
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Each term in the last sum is non-negative numbers due to it being the product
of two non-negative numbers.



3. implies 1.: P is symmetric, so we diagonalize it as P = OT DO as above.
Then note that by the above calculation, D;; > 0 for all ¢ (otherwise we reach
a contradiction). As a result, VD is defined and is a diagonal matrix whose
entries are y/D;j. Define A := vV DO. Then

AT A

(\/I_DO)T VDO

= 0"VDVDO
= O0TDho
P

2.3 Polar Decomposition

Let A € Mat,xn, (R) be given. As we’ve seen in the lecture, there are unique
left and right polar decompositions given by

A = OJA|
— |47|0

where [A| = VATA and O := A|A| "' = ‘AT‘il A

Example 13. (Thanks to Hansueli) Note that in general |A| # |AT|. Indeed,

LetA:% E _12] We have
a — (L2 2 L2 -2
- o\v2 L 1 N
12 1][2 -2
To2(-2 1)1 1
1[5 -3
2|3 5]
whereas
aur — L2 -2l -2
-l 1 \\er 1




This example corresponds to ‘AT‘ = VAAT being stretch along the e; axis and

then A]A|"" = L [1

-1 . .
711 ] being rotation by 45 degrees.



	Haunted by Analysis 2
	The Frechet Derivative

	Linear Algebra
	Orientation
	Symmetric positive definite matrices
	Polar Decomposition


