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1 Haunted by Analysis 2

1.1 The Frechet Derivative

We give a reminder of what a Frechet derivative is.

Definition 1. Let f : V → W be a mapping between two Banach spaces V
and W . The Frechet derivative of f at some x ∈ V , denoted by (Df) (x), is a
bounded linear operator B (V, W ) which is an approximation of f near x in the
following sense:

lim
h→0

∥f (x+ h)− f (x) − ((Df) (x)) (h)∥W
∥h∥V

= 0

f is called Frechet-differentiable iff (Df) (x) exists for all x ∈ V .

Claim 2. Assume that V and W are finite dimensional. Then every linear
operator is bounded. Furthermore, If all partial derivatives of f exist and are
continuous, then f is Frechet differentiable and (Df) (x) is identified with the
matrix given with entries (∂jfi) (x) (the Jacobian matrix). The converse is false
as seen in some pathological examples.

Claim 3. If f is linear itself then (Df) (x) is independent of x and is equal to
f .

Proof. (Df) (x) is unique if it exists (...). Then assuming f is linear, we have

∥f (x+ h)− f (x) − ((Df) (x)) (h)∥W
∥h∥V

=
∥f (h)− ((Df) (x)) (h)∥W

∥h∥V

so that (Df) (x) := f does the job.

Remark 4. Note that (Df) (x) can also be seen as a map V ∋ x &→ (Df) (x) ∈
B (V, W ). In this sense, this map is not generically linear. Indeed, here’s an
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example: f : R3 → R3 given by f

⎛

⎝

⎡

⎣

x1

x2

x3

⎤

⎦

⎞

⎠ :=

⎡

⎣

(x1)
3

(x2)
3

(x3)
3

⎤

⎦. The Frechet derivative

of this map is given by the matrix

[(Df) (x)]3i, j=1
≡

⎡

⎣

(∂1f1) (x) (∂2f1) (x) (∂3f1) (x)
(∂1f2) (x) (∂2f2) (x) (∂3f2) (x)
(∂1f3) (x) (∂2f3) (x) (∂3f3) (x)

⎤

⎦

=

⎡

⎣

3 (x1)
2 0 0

0 3 (x2)
2 0

0 0 3 (x3)
2

⎤

⎦

and this matrix, as a function of x, is clearly not linear.

2 Linear Algebra

2.1 Orientation

Let V be a finite dimensional vector space. We know that there is an isomor-
phism V ∼= Rn for some n ∈ N>0.

Definition 5. A choice of such an isomorhism f : V → Rn is an orientation on
V .

Definition 6. Two orientations f1 : V → Rn and f2 : V → Rn are called
“equivalent” iff the linear map f1 ◦ f2 −1 : Rn → Rn, which is an n× n matrix,
has positive determinant.

Claim 7. There are exactly two equivalence classes for orientations.

Definition 8. A map f : V → V is orientation preserving iff det ((Df) (x)) > 0
for all x ∈ V .

Example 9. Consider the reflection on R3, given by −13×3. Its determinant
is (−1)3 = −1 so it is not orientation preserving.

Remark 10. Deformations of rigid bodies should preserve orientation.

2.2 Symmetric positive definite matrices

Definition 11. (Cholesky decomposition) A matrix P ∈ Matn×n (R) is called
positive iff there is some AP ∈ Matn×n (R) such that (AP )

T
AP = P .

Claim 12. The following are equivalent:

1. P is positive.
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2. P is symmetric and has eigenvalues in [0, ∞).

3. P is symmetric and ⟨x, Px⟩ ≥ 0 for all x ∈ Rn.

Proof. 1. implies 2.: Assume that P is positive. Then P = ATA for some A.

Then PT =
(

ATA
)T

= AT
(

AT
)T

= ATA = P so that P is symmetric. Let
λ ∈ σ (P ). Then there is some v ∈ Rn\ { 0 } such that Pv = λv. If λ = 0 we
are finished. Otherwise, ATAv = λv implies

1 =
∥v∥2

∥v∥2

=
⟨v, v⟩
∥v∥2

=
1

λ
⟨v, λv⟩
∥v∥2

=
1

λ

〈

v, ATAv
〉

∥v∥2

=
1

λ
⟨Av, Av⟩
∥v∥2

=
∥Av∥2

λ

∥v∥2

which implies that λ = ∥Av∥2

∥v∥2 > 0. Since λ was an arbitrary eigenvalue of P ,

we find σ (P ) ⊆ R≥0.
2. implies 3.: Any symmetric matrix may be orthogonally diagonalized:

P = OTDO where O ∈ O (n) and D is a diagonal matrix whose entries are the
eigenvalues of P . Since we assume σ (P ) ∈ R≥0, the entries of D are in R≥0.
Then if x ∈ Rn is given,

⟨x, Px⟩ =
〈

x, OTDOx
〉

= ⟨Ox, DOx⟩

=
n
∑

i=1

n
∑

j=1

(Ox)iDij (Ox)j

(D is diagonal)

=
n
∑

i=1

(Ox)i Dii (Ox)i

=
n
∑

i=1

[(Ox)i]
2
Dii

≥ 0

Each term in the last sum is non-negative numbers due to it being the product
of two non-negative numbers.
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3. implies 1.: P is symmetric, so we diagonalize it as P = OTDO as above.
Then note that by the above calculation, Dii ≥ 0 for all i (otherwise we reach
a contradiction). As a result,

√
D is defined and is a diagonal matrix whose

entries are
√

Dij . Define A :=
√
DO. Then

ATA =
(√

DO
)T √

DO

= OT
√
D
√
DO

= OTDO

= P

2.3 Polar Decomposition

Let A ∈ Matn×n (R) be given. As we’ve seen in the lecture, there are unique
left and right polar decompositions given by

A = O |A|
=

∣

∣AT
∣

∣O

where |A| ≡
√
ATA and O := A |A|−1 =

∣

∣AT
∣

∣

−1
A.

Example 13. (Thanks to Hansueli) Note that in general |A| ̸=
∣

∣AT
∣

∣. Indeed,

Let A = 1√
2

[

2 −2
1 1

]

. We have

ATA =

(

1√
2

[

2 −2
1 1

])T 1√
2

[

2 −2
1 1

]

=
1

2

[

2 1
−2 1

] [

2 −2
1 1

]

=
1

2

[

5 −3
−3 5

]

whereas

AAT =
1√
2

[

2 −2
1 1

](

1√
2

[

2 −2
1 1

])T

=
1

2

[

2 −2
1 1

] [

2 1
−2 1

]

=
1

2

[

8 0
0 2

]

=

[

4 0
0 1

]
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This example corresponds to
∣

∣AT
∣

∣ ≡
√
AAT being stretch along the e1 axis and

then A |A|−1 = 1√
2

[

1 −1
1 1

]

being rotation by 45 degrees.
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