Mechanics of Continua-Spring 2017-Recitation Session of Week 1

Jacob Shapiro

February 23, 2017

1 Haunted by Analysis 2

1.1 The Frechet Derivative

We give a reminder of what a Frechet derivative is.
Definition 1. Let $f: V \rightarrow W$ be a mapping between two Banach spaces V and W. The Frechet derivative of f at some $x \in V$, denoted by $(D f)(x)$, is a bounded linear operator $\mathcal{B}(V, W)$ which is an approximation of f near x in the following sense:

$$
\lim _{h \rightarrow 0} \frac{\|f(x+h)-f(x)-((D f)(x))(h)\|_{W}}{\|h\|_{V}}=0
$$

f is called Frechet-differentiable iff $(D f)(x)$ exists for all $x \in V$.
Claim 2. Assume that V and W are finite dimensional. Then every linear operator is bounded. Furthermore, If all partial derivatives of f exist and are continuous, then f is Frechet differentiable and $(D f)(x)$ is identified with the matrix given with entries $\left(\partial_{j} f_{i}\right)(x)$ (the Jacobian matrix). The converse is false as seen in some pathological examples.

Claim 3. If f is linear itself then $(D f)(x)$ is independent of x and is equal to f.

Proof. (Df) (x) is unique if it exists (...). Then assuming f is linear, we have

$$
\frac{\|f(x+h)-f(x)-((D f)(x))(h)\|_{W}}{\|h\|_{V}}=\frac{\|f(h)-((D f)(x))(h)\|_{W}}{\|h\|_{V}}
$$

so that $(D f)(x):=f$ does the job.
Remark 4. Note that $(D f)(x)$ can also be seen as a map $V \ni x \mapsto(D f)(x) \in$ $\mathcal{B}(V, W)$. In this sense, this map is not generically linear. Indeed, here's an
example: $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f\left(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right):=\left[\begin{array}{l}\left(x_{1}\right)^{3} \\ \left(x_{2}\right)^{3} \\ \left(x_{3}\right)^{3}\end{array}\right]$. The Frechet derivative of this map is given by the matrix

$$
\begin{aligned}
{[(D f)(x)]_{i, j=1}^{3} } & \equiv\left[\begin{array}{lll}
\left(\partial_{1} f_{1}\right)(x) & \left(\partial_{2} f_{1}\right)(x) & \left(\partial_{3} f_{1}\right)(x) \\
\left(\partial_{1} f_{2}\right)(x) & \left(\partial_{2} f_{2}\right)(x) & \left(\partial_{3} f_{2}\right)(x) \\
\left(\partial_{1} f_{3}\right)(x) & \left(\partial_{2} f_{3}\right)(x) & \left(\partial_{3} f_{3}\right)(x)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3\left(x_{1}\right)^{2} & 0 & 0 \\
0 & 3\left(x_{2}\right)^{2} & 0 \\
0 & 0 & 3\left(x_{3}\right)^{2}
\end{array}\right]
\end{aligned}
$$

and this matrix, as a function of x, is clearly not linear.

2 Linear Algebra

2.1 Orientation

Let V be a finite dimensional vector space. We know that there is an isomorphism $V \cong \mathbb{R}^{n}$ for some $n \in \mathbb{N}_{>0}$.

Definition 5. A choice of such an isomorhism $f: V \rightarrow \mathbb{R}^{n}$ is an orientation on V.

Definition 6. Two orientations $f_{1}: V \rightarrow \mathbb{R}^{n}$ and $f_{2}: V \rightarrow \mathbb{R}^{n}$ are called "equivalent" iff the linear map $f_{1} \circ f_{2}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, which is an $n \times n$ matrix, has positive determinant.

Claim 7. There are exactly two equivalence classes for orientations.
Definition 8. A map $f: V \rightarrow V$ is orientation preserving iff $\operatorname{det}((D f)(x))>0$ for all $x \in V$.

Example 9. Consider the reflection on \mathbb{R}^{3}, given by $-\mathbb{1}_{3 \times 3}$. Its determinant is $(-1)^{3}=-1$ so it is not orientation preserving.

Remark 10. Deformations of rigid bodies should preserve orientation.

2.2 Symmetric positive definite matrices

Definition 11. (Cholesky decomposition) A matrix $P \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is called positive iff there is some $A_{P} \in M a t_{n \times n}(\mathbb{R})$ such that $\left(A_{P}\right)^{T} A_{P}=P$.

Claim 12. The following are equivalent:

1. P is positive.
2. P is symmetric and has eigenvalues in $[0, \infty)$.
3. P is symmetric and $\langle x, P x\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$.

Proof. 1. implies 2.: Assume that P is positive. Then $P=A^{T} A$ for some A. Then $P^{T}=\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A=P$ so that P is symmetric. Let $\lambda \in \sigma(P)$. Then there is some $v \in \mathbb{R}^{n} \backslash\{0\}$ such that $P v=\lambda v$. If $\lambda=0$ we are finished. Otherwise, $A^{T} A v=\lambda v$ implies

$$
\begin{aligned}
1 & =\frac{\|v\|^{2}}{\|v\|^{2}} \\
& =\frac{\langle v, v\rangle}{\|v\|^{2}} \\
& =\frac{\frac{1}{\lambda}\langle v, \lambda v\rangle}{\|v\|^{2}} \\
& =\frac{\frac{1}{\lambda}\left\langle v, A^{T} A v\right\rangle}{\|v\|^{2}} \\
& =\frac{\frac{1}{\lambda}\langle A v, A v\rangle}{\|v\|^{2}} \\
& =\frac{\frac{\|A v\|^{2}}{\lambda}}{\|v\|^{2}}
\end{aligned}
$$

which implies that $\lambda=\frac{\|A v\|^{2}}{\|v\|^{2}}>0$. Since λ was an arbitrary eigenvalue of P, we find $\sigma(P) \subseteq \mathbb{R}_{\geq 0}$.
2. implies 3.: Any symmetric matrix may be orthogonally diagonalized: $P=O^{T} D O$ where $O \in O(n)$ and D is a diagonal matrix whose entries are the eigenvalues of P. Since we assume $\sigma(P) \in \mathbb{R}_{\geq 0}$, the entries of D are in $\mathbb{R}_{\geq 0}$. Then if $x \in \mathbb{R}^{n}$ is given,

$$
\begin{aligned}
\langle x, P x\rangle= & \left\langle x, O^{T} D O x\right\rangle \\
= & \langle O x, D O x\rangle \\
= & \sum_{i=1}^{n} \sum_{j=1}^{n}(O x)_{i} D_{i j}(O x)_{j} \\
& (D \text { is diagonal }) \\
= & \sum_{i=1}^{n}(O x)_{i} D_{i i}(O x)_{i} \\
= & \sum_{i=1}^{n}\left[(O x)_{i}\right]^{2} D_{i i} \\
\geq & 0
\end{aligned}
$$

Each term in the last sum is non-negative numbers due to it being the product of two non-negative numbers.
3. implies 1.: P is symmetric, so we diagonalize it as $P=O^{T} D O$ as above. Then note that by the above calculation, $D_{i i} \geq 0$ for all i (otherwise we reach a contradiction). As a result, \sqrt{D} is defined and is a diagonal matrix whose entries are $\sqrt{D_{i j}}$. Define $A:=\sqrt{D} O$. Then

$$
\begin{aligned}
A^{T} A & =(\sqrt{D} O)^{T} \sqrt{D} O \\
& =O^{T} \sqrt{D} \sqrt{D} O \\
& =O^{T} D O \\
& =P
\end{aligned}
$$

2.3 Polar Decomposition

Let $A \in M a t_{n \times n}(\mathbb{R})$ be given. As we've seen in the lecture, there are unique left and right polar decompositions given by

$$
\begin{aligned}
A & =O|A| \\
& =\left|A^{T}\right| O
\end{aligned}
$$

where $|A| \equiv \sqrt{A^{T} A}$ and $O:=A|A|^{-1}=\left|A^{T}\right|^{-1} A$.
Example 13. (Thanks to Hansueli) Note that in general $|A| \neq\left|A^{T}\right|$. Indeed, Let $A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}2 & -2 \\ 1 & 1\end{array}\right]$. We have

$$
\begin{aligned}
A^{T} A & =\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right]\right)^{T} \frac{1}{\sqrt{2}}\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
2 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{cc}
5 & -3 \\
-3 & 5
\end{array}\right]
\end{aligned}
$$

whereas

$$
\begin{aligned}
A A^{T} & =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right]\left(\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right]\right)^{T} \\
& =\frac{1}{2}\left[\begin{array}{cc}
2 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-2 & 1
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{ll}
8 & 0 \\
0 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

This example corresponds to $\left|A^{T}\right| \equiv \sqrt{A A^{T}}$ being stretch along the e_{1} axis and then $A|A|^{-1}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ being rotation by 45 degrees.

