The Neumann Problem

June 6, 2017

1 Formulation of the Problem

Let D be a bounded open subset in R? with 9D its boundary such that D
is sufficiently nice (to be stipulated later as Lipschitz). Let f € L2 (D) and
g : L? (D) be two given scalar fields and n : 9D — S%~! be the normal unit
vector to the boundary. Prove that

Agp =f
{(W) lop =9 @

has a unique solution up to a constant for the unknown scalar field ¢ : D — R

in H!' (D) if and only if
Yy
[i=] 2)
D oD

(This last condition makes sense because L? C L)

1.1 Sketch of Solution

1. Verify that if a solution of (1) exists, then (2) must be satisfied using the
divergence theorem.

2. Formulate (1) as a variational problem: ¢ solves (1) iff

[ o == [ ro+ [ g w (3)

Assuming (2) is satisfied.

3. Write (3) using the bilinear and linear respectively forms

oo ) = /D (Vo) - (V4)

and

n(@) = /wa/wgw



4. Use the Lax-Milgram theorem, which says that if w is continuous, 7 is
continuous, and w is elliptic (meaning w (¢, ¥) > oz|\1/)||2 for all ¢ for some
a > 0) then there is a unique solution ¢ to the equation

w((p, ')_77 =0

In order to show that w and 7 are continuous, use the Cauchy-Schwarz
inequality; in order to show that w is elliptic, use the Poincare inequality

el < ClVy|

for some C' > 0.

1.2 Solution

(We follow notes by Hervé Le Dret found on https://www.ljll.math.upmec.fr/~ledret/M1ApproxPDE.html)
1 Note. Regarding (2), we see that if ¢ solves (1), then using the divergence

theorem we find
[ae = [v.vo)
D D

(Div. thm.)
= / (V) -n
oD

so that using Ag = f and the boundary condition (V) - n|,, = g, we arrive at
the compatability condition (2). Conversely, if (2) does not hold then as seen,
there cannot exist a solution.

First we introduce some notation:

2 Definition. D (D) is the space of all infinitely differentiable scalar-fields on
D such that which have compact support. Its dual, D' (D), is the space of all
distributions on D. It is the space of all continuous linear forms D (D) — R.

3 Definition. Cpt (D) is the set of all compact subsets of D.

4 Definition. We define
LP

loc

Note that L. . (D) contains all L? (D) spaces, and that L] . (D) is continuously

and injectively embedded in D’ (D).

(D) = {u:D—=R|ul, el (K)VK eCpt(D)}

5 Claim. If uw € L. (D) is such that

loc

/ugo = 0 VYpeD(D)
D

then v = 0 almost-everywhere.



’ Proof. Omitted. O

6 Definition. Let m € N and p € [1, 0o]. The Sobolev space W™P (D) is
defined as

W™?(D) = {uelLP(D)|0 €L’ (D) YVaeN:|a| <m}

where we are using the multi-index notation for a. Note also that as u € LP (D),
it is not necessarily differentiable in the usual sense, but it is in a distribution
LP (D) C LL.(D) C D' (D); as distributions are infinitely differentiable, 9%u

loc
makes sense. Then the requirement is that 0%u is a distribution that comes

from a function in LP (D). We also define for convenience
H™(D) = W™?2(D)

and note W97 (D) = LP (D). We also have a natural norm:

p
[ullym.opy = Z (HaauHLP(Q))

a€Nd:|a|<m
for all p € [1, co) and

P7 | — = max 0%ul|; o
= S o s

Note that for p = 2 we can see that ||| ;7. p) comes from the inner product

(u, U>Hm(D) = Z (0%u, 3%>L2(Q)

a€eN:|a|<m

as L? () is a Hilbert space.

Note that W™ P (D) are Banach spaces and so H™ (D) is a Hilbert space.
For example, the step function H is in L! but is its (distributional) derivative,
the delta function dg is not a function.

7 Definition. The closure of D (D) in H™ (D) is denoted by H{" (D). This is
a sub-Hilbert-space in H™ (D).

8 Definition. A bounded open subset C' C R is called Lipschitz if its boundary
is “sufficiently regular” in the sense that it can be thought of as locally being
the graph of a Lipschitz continuous function.

9 Claim. If D is Lipschitz then 3y : H' (D) — L? (D) continuous linear
such that for all u € C* (D), 7o (ulp) = ulyp. There is also a well defined
continuous linear mapping 7 : H? (D) — L? (0D) given by

d
T (u) = Z Yo (D) n;



and such that for all u € C? (ﬁ),

mn(ulp) = (Vu)-n

where n is the normal unit vector to 9D.

10 Definition. Define H := {4 € H' (D) | [, =0} which makes sense as
H' (D) C L*(D) € L' (D).

11 Claim. H is a Hilbert space using the same scalar product as that of H! ().

Proof. We show that H € Closed (H' (2)). Let { h, }, be a sequence in H
such that h, — h in H' (D) for some h € H (D). Want h € H. Then of
course as H' (D) C L? (D), we have h,, — h in L? (D), and then by Cauchy-
Schwarz in L' (D) as well. Thus, since each h,, € H, its integral is zero and

SO
Of/hn
D
[ n
D

so that h € H as well. O

—

12 Claim. (Variational formulation of the Neumann problem) ¢ € H? (D) solves
the Neumann problem above iff for any ¢ € H,

| o)) - /wa/wm(w

Assuming f and g obey the compatability condition above.

Proof. Take an arbitrary ¥ € H and multiply the equation Ay = f with it
to get

(Ap)y = fy

Note that since p € H? (D), Ap € L*(D); also, ¢ € H' (D) implies ¢ €
L? (D). Then via Hoelder’s inequality that (Ap)y € L (D) so that the left
hand side is integrable. Since f € L? (D) and v € L? (D), again by Hoelder
f1y € L' (D) so that we can integrate the equation and obtain:

[@ov = [ fu




We now use Green’s first identity on the left hand side to get
[@av = - [ o0+ [ 6(ve)n
D D oD

- [0+ [ wg

Of course this cannot really be written since ¢ is not a map on 9D but only
on D so that we must use 9 and then Green’s first identity is written as

J@au = —[ @m0+ [ wwme

So that we find using the boundary condition that ¢ fulfills:

J@ov = = [ oo+ [

oD

We find

| w0 - /E)ng(J(w)/Dm

which is what we wanted to show.
Conversely, if we have some ¢ € H? (D) such that

@@ = [ o)~ [0 wen (1)

Now because D (D) is not actually contained within H, we need a little song
and dance about defining, for each ¢ € D (D),

b= v v

and now 1/; € H. Note ¥ and 1; differ by a constant, namely, fi fD P =k,
D



so that Vi) = V. Hence if ¢ € D (D),

| o = [ @ (v9)

(By hypothesm

_ /aDg% /fw
- [ g’yo(w*k)*/f(w*k)

’(/)ED( :>’70 —0/\’}/0(l€) k‘)

e ,0)

(Using the compatability condition)

- [
Since this holds for all ) € D (D), we can use (5) to conclude Ay = f in the
distributional sense. But f € L? (D), so this holds in L? (D) as well.

So now we need to establish that ¢ obeys the boundary conditions.
Using Green’s formula now on the left-hand side of (4) again we find

~[@avs [ w@ne = [ guw-[ o wen
But now we may use Ay = f to find
[ w@oie-9 = 0 wen
oD

If g € Hz (D) then via ¢ € H2(D), 71 (¢) € Hz (dD), so that there is
some 1 € H so that yo (¢) =71 (¢) — g and we find

/ (1) —g)? = 0
oD

so it must be that v1 (¢) —g = 0 and ¢ obeys the Neumann boundary solution
of (1) as needed. O

13 Note. Defining the bilinear form wa : H x H — R by

alet) = [ (Vo (V9) Vi) eHxH
and a linear form ny 4 : H — R via

mo@ = = [ o [ mow) wen

We see via that ¢ solves (1) iff

A(CP, ) = Mg



14 Claim. (Lax-Milgram) Let H be a Hilbert space, w be a bilinear form and
a linear form, such that:

1. w is continuous: M > 0 such that
lwe, ) < Mlelllvll V(e v) € H?

2. w is H-elliptic: Ja > 0 such that

w@, ) > aly? Yo eH

3. n is continuous: IC' > 0 such that

@) < Clgl VoeH

Then Jl¢ € H such that

wip,?) = 1 (5)

Proof. We start with uniqueness: Let ¢1 and @2 both satisfy (5). Using
linearity of w in its first argument we have

wlpr—p2,7) = 0
In particular,

w(pr — @2, o1 —@2) = 0

Now using the fact that w is H-elliptic we have actually that

2
allpr =2 <0

and so ||¢o1 — p2|| = 0 as @ > 0. But a norm is zero iff its argument is zero,
so that ¢ = @a.

We turn to existence:

Define Q : H — H’ by ¥ — w (¢, -). Then the variational problem is to
find a ¢ such that

Q) = 1

Since w is continuous, € (p) is continuous (and also linear by bilinearity)
so that € is well defined. 7 is also continuous so that the variational problem
is in fact an equation to be solve in H’, the dual of H.

Since 7 is given and ¢ is the unknown, the question is whether 2 is an
epimorphism.

Claim. im () € Closed (H').




Proof. Let {7, }, be a sequence in im (Q2) such that m, — 7 for some
m € H'. If we can show that 7 € im (£2) then our result is implied.

Note that since ,, converges, it is Cauchy. Since it is in im (), we have
a sequence { v, }, in H such that Q (¢,) = m, for all n. By H-ellipticity,
we have

IN

w (’(/}n - ¢m7 ¢n - '(/Jm)
<Q ('(/}n) -Q (¢m) 3 ¢n - ’(/}m>7.[/’7.[

[n — Ym®

RO |r

= a <7rn — Ty Yn — ¢m>7.y’7.[

(Cauchy-Schwarz)

1
< EHﬂ'n - ﬂ-m””wn - ¢m||

Thus if ||¢, — ¥m|| = 0 we are finished, as then that means { ¢, }, con-
verges. Otherwise, we have

1
”wn*@bm” < _Hﬂ'n*']rm“
(0%

so that { ¢, }, is Cauchy, and by completeness of #, converges. So that
there is some ¢ € H such that ¢,, — 1. But Q is continuous, so that

m = limm,
n
= liyrln Q (¢n)
= o(ime)
= Q(y)
and we find m € im () as desired. O

Claim. im (2) = H’ (density)



Proof. We show this by showing that (im ()" = {0 }. Let = € (im ()"
Then

Q@), my = 0

for all v € H. If § : H' — H is the isomorphism furnished by the Riesz
representation theorem, then

<Q ('(/J) ) 7r>7-[’ = <OJ ('(/Jv ) ) 7r>’,l-['

so that
w(¥,6(m) = 0
for all ¢ € H. So pick ¥ = § (7) to get

0 = w((m),d(m))

2

= all§ (x|
by H-ellipticity. But o > 0 so that § (m) = 0, hence # = 0. But 7 was
arbitrary, so that (im (Q))" = {0}. O
We then have as an immediate result that €2 is an epimorphism. O

15 Claim. (Poincare-Wirtinger inequality) Let D be a Lipschitz open subset of
R<. Then there exists a constant C' depending on D such that for ally) € H* (D),

e

< ClIVYL2p) (6)
L2(D)

’ Proof. Omitted. O

16 Claim. (The Lax-Milgram theorem may be used) The conditions of 14 are
fulfilled by wa and 7y, 4.

Proof. We first show the elipticity of wa:

wA (’l/), /(/})

/D (V) - (V)
IV 1132 o)

Because ¢ € H, [, ¢ = 0 so that (6) implies

19120 < CPIVENT2p)




Hence

||'(/)H?{1(D)
11720y + IV
(1+C?) IVel7ap)
(14 C*)wa (¥, ¥)

115,

IN

So that wa is H-elliptic with constnat o := (1 + 02)_1.

We now show continuity of wa:

wa (w,v)| = [ (V) - (Vo)
< / |(Vu) - (V)|
(Cauchy-Schwarz)
< ||VU||L2(D)||VUHL2(D)
< ”uHHl(D)”v”Hl(D)
For 7y, 4, we have
ol = |- [ 1o+ [ o)
D aD

(Cauchy-Schwarz)

HfHLZ(D)||¢||L2(D) + H9||L2(BD)||’YO (¢)HL2(«9D)
(70 is continuous, so for some constant ¢ > 0)

IN

A

= HfHLZ(D)||¢||H1(D) + HgHLz(aD)CHwHHl(D)
O

17 Remark. H is a subspace of H' (D) which is L? (D)-orthogonal to the con-
stant maps: If ¢ is a constant map, and ¢ € H:

(¥, C>L2(D) = /7/10

- ofv
(Y eH)
=0

and since the constants maps are also solutions of (1), we conclude that the
general solution of (1) is taken from H @ R.
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