The Neumann Problem

June 6, 2017

1 Formulation of the Problem

Let D be a bounded open subset in \mathbb{R}^{d} with ∂D its boundary such that D is sufficiently nice (to be stipulated later as Lipschitz). Let $f \in L^{2}(D)$ and $g: L^{2}(\partial D)$ be two given scalar fields and $n: \partial D \rightarrow S^{d-1}$ be the normal unit vector to the boundary. Prove that

$$
\begin{cases}\Delta \varphi & =f \tag{1}\\ \left.(\nabla \varphi) \cdot n\right|_{\partial D} & =g\end{cases}
$$

has a unique solution up to a constant for the unknown scalar field $\varphi: D \rightarrow \mathbb{R}$ in $H^{1}(D)$ if and only if

$$
\begin{equation*}
\int_{D} f=\int_{\partial D} g \tag{2}
\end{equation*}
$$

(This last condition makes sense because $L^{2} \subseteq L^{1}$)

1.1 Sketch of Solution

1. Verify that if a solution of (1) exists, then (2) must be satisfied using the divergence theorem.
2. Formulate (1) as a variational problem: φ solves (1) iff

$$
\begin{equation*}
\int_{D}(\nabla \varphi) \cdot(\nabla \psi)=-\int_{D} f \psi+\int_{\partial D} g \psi \quad \forall \psi \tag{3}
\end{equation*}
$$

Assuming (2) is satisfied.
3. Write (3) using the bilinear and linear respectively forms

$$
\omega(\varphi, \psi):=\int_{D}(\nabla \varphi) \cdot(\nabla \psi)
$$

and

$$
\eta(\psi):=-\int_{D} f \psi+\int_{\partial D} g \psi
$$

4. Use the Lax-Milgram theorem, which says that if ω is continuous, η is continuous, and ω is elliptic (meaning $\omega(\psi, \psi) \geq \alpha\|\psi\|^{2}$ for all ψ for some $\alpha>0)$ then there is a unique solution φ to the equation

$$
\omega(\varphi, \cdot)-\eta=0
$$

In order to show that ω and η are continuous, use the Cauchy-Schwarz inequality; in order to show that ω is elliptic, use the Poincare inequality

$$
\|\psi\| \leq C\|\nabla \psi\|
$$

for some $C>0$.

1.2 Solution

(We follow notes by Hervé Le Dret found on https://www.ljll.math.upmc.fr / ~ledret/M1ApproxPDE.html)
1 Note. Regarding (2), we see that if φ solves (1), then using the divergence theorem we find

$$
\begin{aligned}
\int_{D} \Delta \varphi \equiv & \int_{D} \nabla \cdot(\nabla \varphi) \\
& \text { (Div. thm.) } \\
= & \int_{\partial D}(\nabla \varphi) \cdot n
\end{aligned}
$$

so that using $\Delta \varphi=f$ and the boundary condition $\left.(\nabla \varphi) \cdot n\right|_{\partial D}=g$, we arrive at the compatability condition (2). Conversely, if (2) does not hold then as seen, there cannot exist a solution.

First we introduce some notation:
2 Definition. $\mathcal{D}(D)$ is the space of all infinitely differentiable scalar-fields on D such that which have compact support. Its dual, $\mathcal{D}^{\prime}(D)$, is the space of all distributions on D. It is the space of all continuous linear forms $\mathcal{D}(D) \rightarrow \mathbb{R}$.

3 Definition. $C p t(D)$ is the set of all compact subsets of D.

4 Definition. We define

$$
L_{\mathrm{loc}}^{p}(D):=\left\{u: D \rightarrow \mathbb{R}|u|_{K} \in L^{p}(K) \forall K \in C p t(D)\right\}
$$

Note that $L_{\mathrm{loc}}^{1}(D)$ contains all $L^{p}(D)$ spaces, and that $L_{\mathrm{loc}}^{1}(D)$ is continuously and injectively embedded in $\mathcal{D}^{\prime}(D)$.

5 Claim. If $u \in L_{\text {loc }}^{1}(D)$ is such that

$$
\int_{D} u \varphi=0 \quad \forall \varphi \in \mathcal{D}(D)
$$

then $u=0$ almost-everywhere.

6 Definition. Let $m \in \mathbb{N}$ and $p \in[1, \infty]$. The Sobolev space $W^{m, p}(D)$ is defined as

$$
W^{m, p}(D):=\left\{u \in L^{p}(D)\left|\partial^{\alpha} u \in L^{p}(D) \forall \alpha \in \mathbb{N}^{d}:|\alpha| \leq m\right\}\right.
$$

where we are using the multi-index notation for α. Note also that as $u \in L^{p}(D)$, it is not necessarily differentiable in the usual sense, but it is in a distribution $L^{p}(D) \subseteq L_{\mathrm{loc}}^{1}(D) \subseteq \mathcal{D}^{\prime}(D) ;$ as distributions are infinitely differentiable, $\partial^{\alpha} u$ makes sense. Then the requirement is that $\partial^{\alpha} u$ is a distribution that comes from a function in $L^{p}(D)$. We also define for convenience

$$
H^{m}(D):=W^{m, 2}(D)
$$

and note $W^{0, p}(D) \equiv L^{p}(D)$. We also have a natural norm:

$$
\|u\|_{W^{m, p}(D)}:=\left(\sum_{a \in \mathbb{N}^{d}:|\alpha| \leq m}\left(\left\|\partial^{\alpha} u\right\|_{L^{p}(\Omega)}\right)^{p}\right)^{\frac{1}{p}}
$$

for all $p \in[1, \infty)$ and

$$
\|u\|_{W^{m, \infty}(D)}:=\max _{\alpha \in \mathbb{N}^{d}:|\alpha| \leq m}\left\|\partial^{\alpha} u\right\|_{L^{\infty}(D)}
$$

Note that for $p=2$ we can see that $\|\cdot\|_{H^{m}(D)}$ comes from the inner product

$$
\langle u, v\rangle_{H^{m}(D)}:=\sum_{\alpha \in \mathbb{N}^{d}:|\alpha| \leq m}\left\langle\partial^{\alpha} u, \partial^{\alpha} v\right\rangle_{L^{2}(\Omega)}
$$

as $L^{2}(\Omega)$ is a Hilbert space.
Note that $W^{m, p}(D)$ are Banach spaces and so $H^{m}(D)$ is a Hilbert space. For example, the step function H is in L^{1} but is its (distributional) derivative, the delta function δ_{0} is not a function.

7 Definition. The closure of $\mathcal{D}(D)$ in $H^{m}(D)$ is denoted by $H_{0}^{m}(D)$. This is a sub-Hilbert-space in $H^{m}(D)$.

8 Definition. A bounded open subset $C \subseteq \mathbb{R}^{d}$ is called Lipschitz if its boundary is "sufficiently regular" in the sense that it can be thought of as locally being the graph of a Lipschitz continuous function.

9 Claim. If D is Lipschitz then $\exists!\gamma_{0}: H^{1}(D) \rightarrow L^{2}(\partial D)$ continuous linear such that for all $u \in C^{1}(\bar{D}), \gamma_{0}\left(\left.u\right|_{D}\right)=\left.u\right|_{\partial D}$. There is also a well defined continuous linear mapping $\gamma_{1}: H^{2}(D) \rightarrow L^{2}(\partial D)$ given by

$$
\gamma_{1}(u):=\sum_{i=1}^{d} \gamma_{0}\left(\partial_{i} u\right) n_{i}
$$

and such that for all $u \in C^{2}(\bar{D})$,

$$
\gamma_{1}\left(\left.u\right|_{D}\right)=(\nabla u) \cdot n
$$

where n is the normal unit vector to ∂D.

10 Definition. Define $\mathcal{H}:=\left\{\psi \in H^{1}(D) \mid \int_{D} \psi=0\right\}$ which makes sense as $H^{1}(D) \subseteq L^{2}(D) \subseteq L^{1}(D)$.

11 Claim. \mathcal{H} is a Hilbert space using the same scalar product as that of $H^{1}(\Omega)$.

Proof. We show that $\mathcal{H} \in \operatorname{Closed}\left(H^{1}(\Omega)\right)$. Let $\left\{h_{n}\right\}_{n}$ be a sequence in \mathcal{H} such that $h_{n} \rightarrow h$ in $H^{1}(D)$ for some $h \in H^{1}(D)$. Want $h \in \mathcal{H}$. Then of course as $H^{1}(D) \subseteq L^{2}(D)$, we have $h_{n} \rightarrow h$ in $L^{2}(D)$, and then by CauchySchwarz in $L^{1}(D)$ as well. Thus, since each $h_{n} \in \mathcal{H}$, its integral is zero and so

$$
\begin{aligned}
0 & =\int_{D} h_{n} \\
& \rightarrow \int_{D} h
\end{aligned}
$$

so that $h \in \mathcal{H}$ as well.

12 Claim. (Variational formulation of the Neumann problem) $\varphi \in H^{2}(D)$ solves the Neumann problem above iff for any $\psi \in \mathcal{H}$,

$$
\int_{D}(\nabla \varphi) \cdot(\nabla \psi)=-\int_{D} f \psi+\int_{\partial D} g \gamma_{0}(\psi)
$$

Assuming f and g obey the compatability condition above.
Proof. Take an arbitrary $\psi \in \mathcal{H}$ and multiply the equation $\Delta \varphi=f$ with it to get

$$
(\Delta \varphi) \psi=f \psi
$$

Note that since $\varphi \in H^{2}(D), \Delta \varphi \in L^{2}(D)$; also, $\psi \in H^{1}(D)$ implies $\psi \in$ $L^{2}(D)$. Then via Hoelder's inequality that $(\Delta \varphi) \psi \in L^{1}(D)$ so that the left hand side is integrable. Since $f \in L^{2}(D)$ and $\psi \in L^{2}(D)$, again by Hoelder $f \psi \in L^{1}(D)$ so that we can integrate the equation and obtain:

$$
\int_{D}(\Delta \varphi) \psi=\int_{D} f \psi
$$

We now use Green's first identity on the left hand side to get

$$
\begin{aligned}
\int_{D}(\Delta \varphi) \psi & =-\int_{D}(\nabla \varphi) \cdot(\nabla \psi)+\int_{\partial D} \psi(\nabla \varphi) \cdot n \\
& =-\int_{D}(\nabla \varphi) \cdot(\nabla \psi)+\int_{\partial D} \psi g
\end{aligned}
$$

Of course this cannot really be written since φ is not a map on ∂D but only on D so that we must use 9 and then Green's first identity is written as

$$
\int_{D}(\Delta \varphi) \psi=-\int_{D}(\nabla \varphi) \cdot(\nabla \psi)+\int_{\partial D} \gamma_{0}(\psi) \gamma_{1}(\varphi)
$$

So that we find using the boundary condition that φ fulfills:

$$
\int_{D}(\Delta \varphi) \psi=-\int_{D}(\nabla \varphi) \cdot(\nabla \psi)+\int_{\partial D} \gamma_{0}(\psi) g
$$

We find

$$
\int_{D}(\nabla \varphi) \cdot(\nabla \psi)=\int_{\partial D} g \gamma_{0}(\psi)-\int_{D} f \psi
$$

which is what we wanted to show.
Conversely, if we have some $\varphi \in H^{2}(D)$ such that

$$
\begin{equation*}
\int_{D}(\nabla \varphi) \cdot(\nabla \psi)=\int_{\partial D} g \gamma_{0}(\psi)-\int_{D} f \psi \quad \forall \psi \in \mathcal{H} \tag{4}
\end{equation*}
$$

Now because $\mathcal{D}(D)$ is not actually contained within \mathcal{H}, we need a little song and dance about defining, for each $\psi \in \mathcal{D}(D)$,

$$
\tilde{\psi}:=\psi-\frac{1}{\int_{D}} \int_{D} \psi
$$

and now $\tilde{\psi} \in \mathcal{H}$. Note ψ and $\tilde{\psi}$ differ by a constant, namely, $\frac{1}{\int_{D}} \int_{D} \psi=: k$,
so that $\nabla \psi=\nabla \tilde{\psi}$. Hence if $\psi \in \mathcal{D}(D)$,

$$
\begin{aligned}
\int_{D}(\nabla \varphi) \cdot(\nabla \psi)= & \int_{D}(\nabla \varphi) \cdot(\nabla \tilde{\psi}) \\
& (\text { By hypothesis }) \\
= & \int_{\partial D} g \gamma_{0}(\tilde{\psi})-\int_{D} f \tilde{\psi} \\
= & \int_{\partial D} g \gamma_{0}(\psi-k)-\int_{D} f(\psi-k) \\
& \left(\psi \in \mathcal{D}(D) \Longrightarrow \gamma_{0}(\psi)=0 \wedge \gamma_{0}(k)=k\right) \\
= & -\int_{D} f \psi-k\left(\int_{D} f-\int_{\partial D} g\right) \\
& (\text { Using the compatability condition }) \\
= & -\int_{D} f \psi
\end{aligned}
$$

Since this holds for all $\psi \in \mathcal{D}(D)$, we can use (5) to conclude $\Delta \varphi=f$ in the distributional sense. But $f \in L^{2}(D)$, so this holds in $L^{2}(D)$ as well.

So now we need to establish that φ obeys the boundary conditions.
Using Green's formula now on the left-hand side of (4) again we find

$$
-\int_{D}(\Delta \varphi) \psi+\int_{\partial D} \gamma_{0}(\psi) \gamma_{1}(\varphi)=\int_{\partial D} g \gamma_{0}(\psi)-\int_{D} f \psi \quad \forall \psi \in \mathcal{H}
$$

But now we may use $\Delta \varphi=f$ to find

$$
\int_{\partial D} \gamma_{0}(\psi)\left(\gamma_{1}(\varphi)-g\right)=0 \quad \forall \psi \in \mathcal{H}
$$

If $g \in H^{\frac{1}{2}}(D)$ then via $\varphi \in H^{2}(D), \gamma_{1}(\varphi) \in H^{\frac{1}{2}}(\partial D)$, so that there is some $\psi \in \mathcal{H}$ so that $\gamma_{0}(\psi)=\gamma_{1}(\varphi)-g$ and we find

$$
\int_{\partial D}\left(\gamma_{1}(\varphi)-g\right)^{2}=0
$$

so it must be that $\gamma_{1}(\varphi)-g=0$ and φ obeys the Neumann boundary solution of (1) as needed.

13 Note. Defining the bilinear form $\omega_{\Delta}: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{R}$ by

$$
\omega_{\Delta}(\varphi, \psi):=\int_{D}(\nabla \varphi) \cdot(\nabla \psi) \quad \forall(\varphi, \psi) \in \mathcal{H} \times \mathcal{H}
$$

and a linear form $\eta_{f, g}: \mathcal{H} \rightarrow \mathbb{R}$ via

$$
\eta_{f, g}(\psi):=-\int_{D} f \psi+\int_{\partial D} g \gamma_{0}(\psi) \quad \forall \psi \in \mathcal{H}
$$

We see via that φ solves (1) iff

$$
\omega_{\Delta}(\varphi, \cdot)=\eta_{f, g}
$$

14 Claim. (Lax-Milgram) Let \mathcal{H} be a Hilbert space, ω be a bilinear form and η a linear form, such that:

1. ω is continuous: $\exists M>0$ such that

$$
|\omega(\varphi, \psi)| \leq M\|\varphi\|\|\psi\| \quad \forall(\varphi, \psi) \in \mathcal{H}^{2}
$$

2. ω is \mathcal{H}-elliptic: $\exists \alpha>0$ such that

$$
\omega(\psi, \psi) \geq \alpha\|\psi\|^{2} \quad \forall v \in \mathcal{H}
$$

3. η is continuous: $\exists C>0$ such that

$$
|\eta(\psi)| \leq C\|\psi\| \quad \forall v \in \mathcal{H}
$$

Then $\exists!\varphi \in \mathcal{H}$ such that

$$
\begin{equation*}
\omega(\varphi, \cdot)=\eta \tag{5}
\end{equation*}
$$

Proof. We start with uniqueness: Let φ_{1} and φ_{2} both satisfy (5). Using linearity of ω in its first argument we have

$$
\omega\left(\varphi_{1}-\varphi_{2}, \cdot\right)=0
$$

In particular,

$$
\omega\left(\varphi_{1}-\varphi_{2}, \varphi_{1}-\varphi_{2}\right)=0
$$

Now using the fact that ω is \mathcal{H}-elliptic we have actually that

$$
\alpha\left\|\varphi_{1}-\varphi_{2}\right\|^{2} \leq 0
$$

and so $\left\|\varphi_{1}-\varphi_{2}\right\|=0$ as $\alpha>0$. But a norm is zero iff its argument is zero, so that $\varphi_{1}=\varphi_{2}$.

We turn to existence:
Define $\Omega: \mathcal{H} \rightarrow \mathcal{H}^{\prime}$ by $\psi \mapsto \omega(\psi, \cdot)$. Then the variational problem is to find a φ such that

$$
\Omega(\varphi)=\eta
$$

Since ω is continuous, $\Omega(\varphi)$ is continuous (and also linear by bilinearity) so that Ω is well defined. η is also continuous so that the variational problem is in fact an equation to be solve in \mathcal{H}^{\prime}, the dual of \mathcal{H}.

Since η is given and φ is the unknown, the question is whether Ω is an epimorphism.
Claim. $\operatorname{im}(\Omega) \in \operatorname{Closed}\left(\mathcal{H}^{\prime}\right)$.

Proof. Let $\left\{\pi_{n}\right\}_{n}$ be a sequence in $i m(\Omega)$ such that $\pi_{n} \rightarrow \pi$ for some $\pi \in \mathcal{H}^{\prime}$. If we can show that $\pi \in i m(\Omega)$ then our result is implied.

Note that since π_{n} converges, it is Cauchy. Since it is in $\operatorname{im}(\Omega)$, we have a sequence $\left\{\psi_{n}\right\}_{n}$ in \mathcal{H} such that $\Omega\left(\psi_{n}\right)=\pi_{n}$ for all n. By \mathcal{H}-ellipticity, we have

$$
\begin{aligned}
\left\|\psi_{n}-\psi_{m}\right\|^{2} \leq & \frac{1}{\alpha} \omega\left(\psi_{n}-\psi_{m}, \psi_{n}-\psi_{m}\right) \\
= & \frac{1}{\alpha}\left\langle\Omega\left(\psi_{n}\right)-\Omega\left(\psi_{m}\right), \psi_{n}-\psi_{m}\right\rangle_{\mathcal{H}^{\prime}, \mathcal{H}} \\
= & \frac{1}{\alpha}\left\langle\pi_{n}-\pi_{m}, \psi_{n}-\psi_{m}\right\rangle_{\mathcal{H}^{\prime}, \mathcal{H}} \\
& (\text { Cauchy-Schwarz }) \\
\leq & \frac{1}{\alpha}\left\|\pi_{n}-\pi_{m}\right\|\left\|\psi_{n}-\psi_{m}\right\|
\end{aligned}
$$

Thus if $\left\|\psi_{n}-\psi_{m}\right\|=0$ we are finished, as then that means $\left\{\psi_{n}\right\}_{n}$ converges. Otherwise, we have

$$
\left\|\psi_{n}-\psi_{m}\right\| \leq \frac{1}{\alpha}\left\|\pi_{n}-\pi_{m}\right\|
$$

so that $\left\{\psi_{n}\right\}_{n}$ is Cauchy, and by completeness of \mathcal{H}, converges. So that there is some $\psi \in \mathcal{H}$ such that $\psi_{n} \rightarrow \psi$. But Ω is continuous, so that

$$
\begin{aligned}
\pi & =\lim _{n} \pi_{n} \\
& =\lim _{n} \Omega\left(\psi_{n}\right) \\
& =\Omega\left(\lim _{n} \psi_{n}\right) \\
& =\Omega(\psi)
\end{aligned}
$$

and we find $\pi \in i m(\Omega)$ as desired.

Claim. $\overline{\operatorname{im}(\Omega)}=\mathcal{H}^{\prime}$ (density)

Proof. We show this by showing that $(\operatorname{im}(\Omega))^{\perp}=\{0\}$. Let $\pi \in(\operatorname{im}(\Omega))^{\perp}$. Then

$$
\langle\Omega(\psi), \pi\rangle_{\mathcal{H}^{\prime}}=0
$$

for all $\psi \in \mathcal{H}$. If $\delta: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$ is the isomorphism furnished by the Riesz representation theorem, then

$$
\begin{aligned}
\langle\Omega(\psi), \pi\rangle_{\mathcal{H}^{\prime}} & =\langle\omega(\psi, \cdot), \pi\rangle_{\mathcal{H}^{\prime}} \\
& =\omega(\psi, \delta(\pi))
\end{aligned}
$$

so that

$$
\omega(\psi, \delta(\pi))=0
$$

for all $\psi \in \mathcal{H}$. So pick $\psi=\delta(\pi)$ to get

$$
\begin{aligned}
0 & =\omega(\delta(\pi), \delta(\pi)) \\
& \geq \alpha\|\delta(\pi)\|^{2}
\end{aligned}
$$

by \mathcal{H}-ellipticity. But $\alpha>0$ so that $\delta(\pi)=0$, hence $\pi=0$. But π was arbitrary, so that $(\operatorname{im}(\Omega))^{\perp}=\{0\}$.

We then have as an immediate result that Ω is an epimorphism.

15 Claim. (Poincare-Wirtinger inequality) Let D be a Lipschitz open subset of \mathbb{R}^{d}. Then there exists a constant C depending on D such that for all $\psi \in H^{1}(D)$,

$$
\begin{equation*}
\left\|\psi-\frac{1}{\int_{D}} \int_{D} \psi\right\|_{L^{2}(D)} \leq C\|\nabla \psi\|_{L^{2}(D)} \tag{6}
\end{equation*}
$$

Proof. Omitted.

16 Claim. (The Lax-Milgram theorem may be used) The conditions of 14 are fulfilled by ω_{Δ} and $\eta_{f, g}$.

Proof. We first show the elipticity of ω_{Δ} :

$$
\begin{aligned}
\omega_{\Delta}(\psi, \psi) & \equiv \int_{D}(\nabla \psi) \cdot(\nabla \psi) \\
& \equiv\|\nabla \psi\|_{L^{2}(D)}^{2}
\end{aligned}
$$

Because $\psi \in \mathcal{H}, \int_{D} \psi=0$ so that (6) implies

$$
\|\psi\|_{L^{2}(D)}^{2} \leq C^{2}\|\nabla \psi\|_{L^{2}(D)}^{2}
$$

Hence

$$
\begin{aligned}
\|\psi\|_{\mathcal{H}}^{2} & \equiv\|\psi\|_{H^{1}(D)}^{2} \\
& \equiv\|\psi\|_{L^{2}(D)}^{2}+\|\nabla \psi\|_{L^{2}(D)}^{2} \\
& \leq\left(1+C^{2}\right)\|\nabla \psi\|_{L^{2}(D)}^{2} \\
& =\left(1+C^{2}\right) \omega_{\Delta}(\psi, \psi)
\end{aligned}
$$

So that ω_{Δ} is \mathcal{H}-elliptic with constnat $\alpha:=\left(1+C^{2}\right)^{-1}$.
We now show continuity of ω_{Δ} :

$$
\begin{aligned}
\left|\omega_{\Delta}(u, v)\right| & \equiv\left|\int_{D}(\nabla u) \cdot(\nabla v)\right| \\
& \leq \int_{D}|(\nabla u) \cdot(\nabla v)| \\
& \leq\|\nabla u\|_{L^{2}(D)}\|\nabla v\|_{L^{2}(D)} \\
& \leq\|u\|_{H^{1}(D)}\|v\|_{H^{1}(D)}
\end{aligned}
$$

For $\eta_{f, g}$, we have

$$
\begin{aligned}
\left|\eta_{f, g}(\psi)\right| \equiv & \left|-\int_{D} f \psi+\int_{\partial D} g \gamma_{0}(\psi)\right| \\
& (\text { Cauchy-Schwarz }) \\
\leq & \|f\|_{L^{2}(D)}\|\psi\|_{L^{2}(D)}+\|g\|_{L^{2}(\partial D)}\left\|\gamma_{0}(\psi)\right\|_{L^{2}(\partial D)} \\
& \left(\gamma_{0} \text { is continuous, so for some constant } c>0\right) \\
\leq & \|f\|_{L^{2}(D)}\|\psi\|_{H^{1}(D)}+\|g\|_{L^{2}(\partial D)} c\|\psi\|_{H^{1}(D)}
\end{aligned}
$$

17 Remark. \mathcal{H} is a subspace of $H^{1}(D)$ which is $L^{2}(D)$-orthogonal to the constant maps: If c is a constant map, and $\psi \in \mathcal{H}$:

$$
\begin{aligned}
\langle\psi, c\rangle_{L^{2}(D)} & \equiv \int_{D} \psi c \\
& =c \int_{D} \psi \\
& (\psi \in \mathcal{H}) \\
& 0
\end{aligned}
$$

and since the constants maps are also solutions of (1), we conclude that the general solution of (1) is taken from $\mathcal{H} \oplus \mathbb{R}$.

