The Neumann Problem

June 6, 2017

1 Formulation of the Problem

Let D be a bounded open subset in \mathbb{R}^d with ∂D its boundary such that D is sufficiently nice (to be stipulated later as Lipschitz). Let $f \in L^2(D)$ and $g: L^2(\partial D)$ be two given scalar fields and $n: \partial D \to S^{d-1}$ be the normal unit vector to the boundary. Prove that

$$\begin{cases} \Delta \varphi &= f\\ (\nabla \varphi) \cdot n|_{\partial D} &= g \end{cases}$$
(1)

has a unique solution up to a constant for the unknown scalar field $\varphi: D \to \mathbb{R}$ in $H^1(D)$ if and only if

$$\int_{D} f = \int_{\partial D} g \tag{2}$$

(This last condition makes sense because $L^2 \subseteq L^1$)

1.1 Sketch of Solution

- 1. Verify that if a solution of (1) exists, then (2) must be satisfied using the divergence theorem.
- 2. Formulate (1) as a variational problem: φ solves (1) iff

$$\int_{D} (\nabla \varphi) \cdot (\nabla \psi) = -\int_{D} f \psi + \int_{\partial D} g \psi \quad \forall \psi$$
(3)

Assuming (2) is satisfied.

3. Write (3) using the bilinear and linear respectively forms

$$\omega \left(\varphi, \psi \right) \;\; := \;\; \int_{D} \left(\nabla \varphi \right) \cdot \left(\nabla \psi \right)$$

and

$$\eta\left(\psi\right) := -\int_{D} f\psi + \int_{\partial D} g\psi$$

4. Use the Lax-Milgram theorem, which says that if ω is continuous, η is continuous, and ω is elliptic (meaning $\omega(\psi, \psi) \ge \alpha \|\psi\|^2$ for all ψ for some $\alpha > 0$) then there is a unique solution φ to the equation

$$\omega\left(\varphi,\,\cdot\right) - \eta \quad = \quad 0$$

In order to show that ω and η are continuous, use the Cauchy-Schwarz inequality; in order to show that ω is elliptic, use the Poincare inequality

$$\|\psi\| \leq C \|\nabla\psi\|$$

for some C > 0.

1.2 Solution

(We follow notes by Hervé Le Dret found on https://www.ljll.math.upmc.fr/~ledret/M1ApproxPDE.html) 1 Note. Regarding (2), we see that if φ solves (1), then using the divergence theorem we find

$$\int_{D} \Delta \varphi \equiv \int_{D} \nabla \cdot (\nabla \varphi)$$
(Div. thm.)
$$= \int_{\partial D} (\nabla \varphi) \cdot n$$

so that using $\Delta \varphi = f$ and the boundary condition $(\nabla \varphi) \cdot n|_{\partial D} = g$, we arrive at the compatability condition (2). Conversely, if (2) does not hold then as seen, there cannot exist a solution.

First we introduce some notation:

2 Definition. $\mathcal{D}(D)$ is the space of all infinitely differentiable scalar-fields on D such that which have compact support. Its dual, $\mathcal{D}'(D)$, is the space of all distributions on D. It is the space of all continuous linear forms $\mathcal{D}(D) \to \mathbb{R}$.

3 Definition. Cpt(D) is the set of all compact subsets of D.

4 Definition. We define

$$L^{p}_{\text{loc}}(D) := \{ u: D \to \mathbb{R} \mid u|_{K} \in L^{p}(K) \,\forall K \in Cpt(D) \}$$

Note that $L^{1}_{loc}(D)$ contains all $L^{p}(D)$ spaces, and that $L^{1}_{loc}(D)$ is continuously and injectively embedded in $\mathcal{D}'(D)$.

5 Claim. If $u \in L^1_{loc}(D)$ is such that

$$\int_{D} u\varphi = 0 \quad \forall \varphi \in \mathcal{D}\left(D\right)$$

then u = 0 almost-everywhere.

6 Definition. Let $m \in \mathbb{N}$ and $p \in [1, \infty]$. The Sobolev space $W^{m, p}(D)$ is defined as

$$W^{m, p}(D) := \left\{ u \in L^{p}(D) \mid \partial^{\alpha} u \in L^{p}(D) \; \forall \alpha \in \mathbb{N}^{d} : |\alpha| \le m \right\}$$

where we are using the multi-index notation for α . Note also that as $u \in L^p(D)$, it is not necessarily differentiable in the usual sense, but it is in a distribution $L^p(D) \subseteq L^1_{\text{loc}}(D) \subseteq \mathcal{D}'(D)$; as distributions are infinitely differentiable, $\partial^{\alpha} u$ makes sense. Then the requirement is that $\partial^{\alpha} u$ is a distribution that comes from a function in $L^p(D)$. We also define for convenience

$$H^m\left(D\right) := W^{m,2}\left(D\right)$$

and note $W^{0, p}(D) \equiv L^{p}(D)$. We also have a natural norm:

$$\|u\|_{W^{m,p}(D)} := \left(\sum_{a \in \mathbb{N}^d : |\alpha| \le m} \left(\|\partial^{\alpha} u\|_{L^p(\Omega)} \right)^p \right)^{\frac{1}{p}}$$

for all $p \in [1, \infty)$ and

$$\|u\|_{W^{m,\infty}(D)} := \max_{\alpha \in \mathbb{N}^d : |\alpha| \le m} \|\partial^{\alpha} u\|_{L^{\infty}(D)}$$

Note that for p = 2 we can see that $\|\cdot\|_{H^m(D)}$ comes from the inner product

$$\langle u, v \rangle_{H^m(D)} := \sum_{\alpha \in \mathbb{N}^d : |\alpha| \le m} \langle \partial^{\alpha} u, \partial^{\alpha} v \rangle_{L^2(\Omega)}$$

as $L^{2}(\Omega)$ is a Hilbert space.

Note that $W^{m, p}(D)$ are Banach spaces and so $H^{m}(D)$ is a Hilbert space. For example, the step function H is in L^{1} but is its (distributional) derivative, the delta function δ_{0} is not a function.

7 Definition. The closure of $\mathcal{D}(D)$ in $H^m(D)$ is denoted by $H_0^m(D)$. This is a sub-Hilbert-space in $H^m(D)$.

8 Definition. A bounded open subset $C \subseteq \mathbb{R}^d$ is called Lipschitz if its boundary is "sufficiently regular" in the sense that it can be thought of as locally being the graph of a Lipschitz continuous function.

9 Claim. If D is Lipschitz then $\exists !\gamma_0 : H^1(D) \to L^2(\partial D)$ continuous linear such that for all $u \in C^1(\overline{D})$, $\gamma_0(u|_D) = u|_{\partial D}$. There is also a well defined continuous linear mapping $\gamma_1 : H^2(D) \to L^2(\partial D)$ given by

$$\gamma_1(u) := \sum_{i=1}^a \gamma_0(\partial_i u) n_i$$

and such that for all $u \in C^2(\overline{D})$,

$$\gamma_1\left(\left.u\right|_D\right) = (\nabla u) \cdot n$$

where n is the normal unit vector to ∂D .

10 Definition. Define $\mathcal{H} := \{ \psi \in H^1(D) \mid \int_D \psi = 0 \}$ which makes sense as $H^1(D) \subseteq L^2(D) \subseteq L^1(D)$.

11 Claim. \mathcal{H} is a Hilbert space using the same scalar product as that of $H^{1}(\Omega)$.

Proof. We show that $\mathcal{H} \in Closed(H^1(\Omega))$. Let $\{h_n\}_n$ be a sequence in \mathcal{H} such that $h_n \to h$ in $H^1(D)$ for some $h \in H^1(D)$. Want $h \in \mathcal{H}$. Then of course as $H^1(D) \subseteq L^2(D)$, we have $h_n \to h$ in $L^2(D)$, and then by Cauchy-Schwarz in $L^1(D)$ as well. Thus, since each $h_n \in \mathcal{H}$, its integral is zero and so

$$\begin{array}{rcl} 0 & = & \int_D h_r \\ & \rightarrow & \int_D h \end{array}$$

so that $h \in \mathcal{H}$ as well.

12 Claim. (Variational formulation of the Neumann problem) $\varphi \in H^2(D)$ solves the Neumann problem above iff for any $\psi \in \mathcal{H}$,

$$\int_{D} \left(\nabla \varphi \right) \cdot \left(\nabla \psi \right) \quad = \quad - \int_{D} f \psi + \int_{\partial D} g \gamma_{0} \left(\psi \right)$$

Assuming f and g obey the compatability condition above.

Proof. Take an arbitrary $\psi \in \mathcal{H}$ and multiply the equation $\Delta \varphi = f$ with it to get

$$(\Delta \varphi) \psi = f \psi$$

Note that since $\varphi \in H^2(D)$, $\Delta \varphi \in L^2(D)$; also, $\psi \in H^1(D)$ implies $\psi \in L^2(D)$. Then via Hoelder's inequality that $(\Delta \varphi) \psi \in L^1(D)$ so that the left hand side is integrable. Since $f \in L^2(D)$ and $\psi \in L^2(D)$, again by Hoelder $f\psi \in L^1(D)$ so that we can integrate the equation and obtain:

$$\int_D \left(\Delta \varphi \right) \psi \quad = \quad \int_D f \psi$$

We now use Green's first identity on the left hand side to get

$$\begin{split} \int_{D} \left(\Delta \varphi \right) \psi &= -\int_{D} \left(\nabla \varphi \right) \cdot \left(\nabla \psi \right) + \int_{\partial D} \psi \left(\nabla \varphi \right) \cdot n \\ &= -\int_{D} \left(\nabla \varphi \right) \cdot \left(\nabla \psi \right) + \int_{\partial D} \psi g \end{split}$$

Of course this cannot really be written since φ is not a map on ∂D but only on D so that we must use 9 and then Green's first identity is written as

$$\int_{D} (\Delta \varphi) \psi = - \int_{D} (\nabla \varphi) \cdot (\nabla \psi) + \int_{\partial D} \gamma_{0} (\psi) \gamma_{1} (\varphi)$$

So that we find using the boundary condition that φ fulfills:

$$\int_{D} (\Delta \varphi) \psi = - \int_{D} (\nabla \varphi) \cdot (\nabla \psi) + \int_{\partial D} \gamma_{0} (\psi) g$$

We find

$$\int_{D} \left(\nabla \varphi \right) \cdot \left(\nabla \psi \right) \quad = \quad \int_{\partial D} g \gamma_0 \left(\psi \right) - \int_{D} f \psi$$

which is what we wanted to show.

Conversely, if we have some $\varphi \in H^{2}(D)$ such that

$$\int_{D} (\nabla \varphi) \cdot (\nabla \psi) = \int_{\partial D} g \gamma_0(\psi) - \int_{D} f \psi \quad \forall \psi \in \mathcal{H}$$
(4)

Now because $\mathcal{D}(D)$ is not actually contained within \mathcal{H} , we need a little song and dance about defining, for each $\psi \in \mathcal{D}(D)$,

$$\tilde{\psi} := \psi - \frac{1}{\int_D} \int_D \psi$$

and now $\tilde{\psi} \in \mathcal{H}$. Note ψ and $\tilde{\psi}$ differ by a constant, namely, $\frac{1}{\int_D} \int_D \psi =: k$,

so that $\nabla \psi = \nabla \tilde{\psi}$. Hence if $\psi \in \mathcal{D}(D)$,

$$\begin{split} \int_{D} (\nabla \varphi) \cdot (\nabla \psi) &= \int_{D} (\nabla \varphi) \cdot \left(\nabla \tilde{\psi} \right) \\ & \text{(By hypothesis)} \\ &= \int_{\partial D} g \gamma_0 \left(\tilde{\psi} \right) - \int_{D} f \tilde{\psi} \\ &= \int_{\partial D} g \gamma_0 \left(\psi - k \right) - \int_{D} f \left(\psi - k \right) \\ & \left(\psi \in \mathcal{D} \left(D \right) \Longrightarrow \gamma_0 \left(\psi \right) = 0 \land \gamma_0 \left(k \right) = k \right) \\ &= -\int_{D} f \psi - k \left(\int_{D} f - \int_{\partial D} g \right) \\ & \text{(Using the compatability condition)} \\ &= -\int_{D} f \psi \end{split}$$

Since this holds for all $\psi \in \mathcal{D}(D)$, we can use (5) to conclude $\Delta \varphi = f$ in the distributional sense. But $f \in L^2(D)$, so this holds in $L^2(D)$ as well.

So now we need to establish that φ obeys the boundary conditions.

Using Green's formula now on the left-hand side of (4) again we find

$$-\int_{D} \left(\Delta\varphi\right)\psi + \int_{\partial D} \gamma_{0}\left(\psi\right)\gamma_{1}\left(\varphi\right) = \int_{\partial D} g\gamma_{0}\left(\psi\right) - \int_{D} f\psi \qquad \forall \psi \in \mathcal{H}$$

But now we may use $\Delta \varphi = f$ to find

$$\int_{\partial D} \gamma_0 \left(\psi \right) \left(\gamma_1 \left(\varphi \right) - g \right) = 0 \qquad \forall \psi \in \mathcal{H}$$

If $g \in H^{\frac{1}{2}}(D)$ then via $\varphi \in H^{2}(D)$, $\gamma_{1}(\varphi) \in H^{\frac{1}{2}}(\partial D)$, so that there is some $\psi \in \mathcal{H}$ so that $\gamma_{0}(\psi) = \gamma_{1}(\varphi) - g$ and we find

$$\int_{\partial D} \left(\gamma_1 \left(\varphi \right) - g \right)^2 = 0$$

so it must be that $\gamma_1(\varphi) - g = 0$ and φ obeys the Neumann boundary solution of (1) as needed.

13 Note. Defining the bilinear form $\omega_{\Delta} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ by

$$\omega_{\Delta}(\varphi, \psi) := \int_{D} (\nabla \varphi) \cdot (\nabla \psi) \qquad \forall (\varphi, \psi) \in \mathcal{H} \times \mathcal{H}$$

and a linear form $\eta_{f,g}: \mathcal{H} \to \mathbb{R}$ via

$$\eta_{f,g}(\psi) := -\int_{D} f\psi + \int_{\partial D} g\gamma_{0}(\psi) \qquad \forall \psi \in \mathcal{H}$$

We see via that φ solves (1) iff

$$\omega_{\Delta}(\varphi, \cdot) = \eta_{f,g}$$

14 Claim. (Lax-Milgram) Let $\mathcal H$ be a Hilbert space, ω be a bilinear form and η a linear form, such that:

1. ω is continuous: $\exists M > 0$ such that

$$|\omega(\varphi, \psi)| \leq M \|\varphi\| \|\psi\| \quad \forall (\varphi, \psi) \in \mathcal{H}^2$$

2. ω is \mathcal{H} -elliptic: $\exists \alpha > 0$ such that

$$\omega\left(\psi,\,\psi\right) \geq \alpha \|\psi\|^2 \qquad \forall v \in \mathcal{H}$$

3. η is continuous: $\exists C > 0$ such that

$$\left|\eta\left(\psi\right)\right| \leq C \left\|\psi\right\| \quad \forall v \in \mathcal{H}$$

Then $\exists ! \varphi \in \mathcal{H}$ such that

$$\omega\left(\varphi,\,\cdot\right) \quad = \quad \eta \tag{5}$$

Proof. We start with uniqueness: Let φ_1 and φ_2 both satisfy (5). Using linearity of ω in its first argument we have

$$\omega\left(\varphi_1 - \varphi_2, \cdot\right) = 0$$

In particular,

$$\omega \left(\varphi_1 - \varphi_2, \, \varphi_1 - \varphi_2 \right) = 0$$

Now using the fact that ω is \mathcal{H} -elliptic we have actually that

$$\alpha \|\varphi_1 - \varphi_2\|^2 \le 0$$

and so $\|\varphi_1 - \varphi_2\| = 0$ as $\alpha > 0$. But a norm is zero iff its argument is zero, so that $\varphi_1 = \varphi_2$.

We turn to existence:

Define $\Omega : \mathcal{H} \to \mathcal{H}'$ by $\psi \mapsto \omega(\psi, \cdot)$. Then the variational problem is to find a φ such that

$$\Omega\left(\varphi\right) = \eta$$

Since ω is continuous, $\Omega(\varphi)$ is continuous (and also linear by bilinearity) so that Ω is well defined. η is also continuous so that the variational problem is in fact an equation to be solve in \mathcal{H}' , the dual of \mathcal{H} .

Since η is given and φ is the unknown, the question is whether Ω is an epimorphism.

Claim. $im(\Omega) \in Closed(\mathcal{H}').$

Proof. Let $\{\pi_n\}_n$ be a sequence in $im(\Omega)$ such that $\pi_n \to \pi$ for some $\pi \in \mathcal{H}'$. If we can show that $\pi \in im(\Omega)$ then our result is implied.

Note that since π_n converges, it is Cauchy. Since it is in $im(\Omega)$, we have a sequence $\{\psi_n\}_n$ in \mathcal{H} such that $\Omega(\psi_n) = \pi_n$ for all n. By \mathcal{H} -ellipticity, we have

$$\begin{aligned} \left\|\psi_{n}-\psi_{m}\right\|^{2} &\leq \frac{1}{\alpha}\omega\left(\psi_{n}-\psi_{m},\,\psi_{n}-\psi_{m}\right) \\ &= \frac{1}{\alpha}\left\langle\Omega\left(\psi_{n}\right)-\Omega\left(\psi_{m}\right),\,\psi_{n}-\psi_{m}\right\rangle_{\mathcal{H}',\,\mathcal{H}} \\ &= \frac{1}{\alpha}\left\langle\pi_{n}-\pi_{m},\,\psi_{n}-\psi_{m}\right\rangle_{\mathcal{H}',\,\mathcal{H}} \\ &\quad \text{(Cauchy-Schwarz)} \\ &\leq \frac{1}{\alpha}\left\|\pi_{n}-\pi_{m}\right\|\left\|\psi_{n}-\psi_{m}\right\| \end{aligned}$$

Thus if $\|\psi_n - \psi_m\| = 0$ we are finished, as then that means $\{\psi_n\}_n$ converges. Otherwise, we have

$$\|\psi_n - \psi_m\| \leq \frac{1}{\alpha} \|\pi_n - \pi_m\|$$

so that $\{\psi_n\}_n$ is Cauchy, and by completeness of \mathcal{H} , converges. So that there is some $\psi \in \mathcal{H}$ such that $\psi_n \to \psi$. But Ω is continuous, so that

$$\pi = \lim_{n} \pi_{n}$$
$$= \lim_{n} \Omega(\psi_{n})$$
$$= \Omega\left(\lim_{n} \psi_{n}\right)$$
$$= \Omega(\psi)$$

and we find $\pi \in im(\Omega)$ as desired.

Claim. $\overline{im(\Omega)} = \mathcal{H}'$ (density)

Proof. We show this by showing that $(im(\Omega))^{\perp} = \{0\}$. Let $\pi \in (im(\Omega))^{\perp}$. Then

$$\langle \Omega (\psi), \pi \rangle_{\mathcal{H}'} = 0$$

for all $\psi \in \mathcal{H}$. If $\delta : \mathcal{H}' \to \mathcal{H}$ is the isomorphism furnished by the Riesz representation theorem, then

$$\langle \Omega (\psi) , \pi \rangle_{\mathcal{H}'} = \langle \omega (\psi, \cdot) , \pi \rangle_{\mathcal{H}'} = \omega (\psi, \delta (\pi))$$

so that

$$\omega\left(\psi,\,\delta\left(\pi\right)\right) = 0$$

for all $\psi \in \mathcal{H}$. So pick $\psi = \delta(\pi)$ to get

$$0 = \omega \left(\delta \left(\pi \right), \, \delta \left(\pi \right) \right) \\ \geq \alpha \| \delta \left(\pi \right) \|^{2}$$

by \mathcal{H} -ellipticity. But $\alpha > 0$ so that $\delta(\pi) = 0$, hence $\pi = 0$. But π was arbitrary, so that $(im(\Omega))^{\perp} = \{0\}$.

We then have as an immediate result that Ω is an epimorphism.

15 Claim. (Poincare-Wirtinger inequality) Let D be a Lipschitz open subset of \mathbb{R}^{d} . Then there exists a constant C depending on D such that for all $\psi \in H^{1}(D)$,

$$\left\|\psi - \frac{1}{\int_D} \int_D \psi\right\|_{L^2(D)} \leq C \|\nabla \psi\|_{L^2(D)}$$
(6)

Proof. Omitted.

16 Claim. (The Lax-Milgram theorem may be used) The conditions of 14 are fulfilled by ω_{Δ} and $\eta_{f,g}$.

Proof. We first show the elipticity of ω_{Δ} :

$$\omega_{\Delta}(\psi, \psi) \equiv \int_{D} (\nabla \psi) \cdot (\nabla \psi)$$
$$\equiv \|\nabla \psi\|_{L^{2}(D)}^{2}$$

Because $\psi \in \mathcal{H}$, $\int_D \psi = 0$ so that (6) implies

$$\|\psi\|_{L^2(D)}^2 \leq C^2 \|\nabla\psi\|_{L^2(D)}^2$$

Hence

$$\begin{aligned} \|\psi\|_{\mathcal{H}}^{2} &\equiv \|\psi\|_{H^{1}(D)}^{2} \\ &\equiv \|\psi\|_{L^{2}(D)}^{2} + \|\nabla\psi\|_{L^{2}(D)}^{2} \\ &\leq (1+C^{2}) \|\nabla\psi\|_{L^{2}(D)}^{2} \\ &= (1+C^{2}) \omega_{\Delta}(\psi,\psi) \end{aligned}$$

So that ω_{Δ} is \mathcal{H} -elliptic with constnat $\alpha := (1 + C^2)^{-1}$. We now show continuity of ω_{Δ} :

$$\begin{aligned} |\omega_{\Delta}(u, v)| &\equiv \left| \int_{D} (\nabla u) \cdot (\nabla v) \right| \\ &\leq \int_{D} |(\nabla u) \cdot (\nabla v)| \\ &\quad (\text{Cauchy-Schwarz}) \\ &\leq \|\nabla u\|_{L^{2}(D)} \|\nabla v\|_{L^{2}(D)} \\ &\leq \|u\|_{H^{1}(D)} \|v\|_{H^{1}(D)} \end{aligned}$$

For $\eta_{f,g}$, we have

$$\begin{aligned} |\eta_{f,g}(\psi)| &\equiv \left| -\int_{D} f\psi + \int_{\partial D} g\gamma_{0}(\psi) \right| \\ & (\text{Cauchy-Schwarz}) \\ &\leq \| f\|_{L^{2}(D)} \|\psi\|_{L^{2}(D)} + \|g\|_{L^{2}(\partial D)} \|\gamma_{0}(\psi)\|_{L^{2}(\partial D)} \\ & (\gamma_{0} \text{ is continuous, so for some constant } c > 0) \\ &\leq \| f\|_{L^{2}(D)} \|\psi\|_{H^{1}(D)} + \|g\|_{L^{2}(\partial D)} c\|\psi\|_{H^{1}(D)} \end{aligned}$$

17 Remark. \mathcal{H} is a subspace of $H^{1}(D)$ which is $L^{2}(D)$ -orthogonal to the constant maps: If c is a constant map, and $\psi \in \mathcal{H}$:

$$\langle \psi, c \rangle_{L^{2}(D)} \equiv \int_{D} \psi c$$

$$= c \int_{D} \psi$$

$$(\psi \in \mathcal{H})$$

$$= 0$$

and since the constants maps are also solutions of (1), we conclude that the general solution of (1) is taken from $\mathcal{H} \oplus \mathbb{R}$.