Functional Analysis Princeton University MAT520 HW9, Assigned on Nov 15 2025

November 15, 2025

1 Compact operators

- 1. In an infinite dimensional Hilbert space, show that if A is invertible then it cannot be compact.
- 2. Show that if A_n is a sequence of operators such that for any bounded $B \subseteq \mathcal{H}$, $\overline{A_n(B)}$ is a compact set in \mathcal{H} , and $A_n \to A$ in norm, then also $\overline{A(B)}$ is a compact subset.
- 3. Let $A \in \mathcal{B}(\mathcal{H})$ be compact and $\{\varphi_n\}_n \subseteq \mathcal{H}$ converge weakly (in the sense of the Banach space weak topology on \mathcal{H}) to some $\varphi \in \mathcal{H}$. Show that $A\varphi_n \to A\varphi$ in norm.
- 4. Figure out if the following operators are compact or not (and prove what you think):
 - (a) $u \otimes v^*$ for some $u, v \in \mathcal{H}$.
 - (b) On the Banach space $X := C([0,1] \to \mathbb{C})$ with $\|\cdot\|_{\infty}$, let $A: X \to X$ be given

$$(A\varphi)(x) := \int_{y=0}^{1} K(x, y) \varphi(y) dy$$

where $K: [0,1]^2 \to \mathbb{C}$ is some *continuous* function.

(c) $A:=\frac{1}{1+X^2}$ on $\ell^2\left(\mathbb{Z}\right)$ where X is the position operator given by

$$(X\psi)(n) \equiv n\psi(n)$$
 $(n \in \mathbb{Z}; \psi \in \ell^2(\mathbb{Z}))$

and we employ the holomorphic functional calculus to define A.

5. Let \mathcal{H} be some separable Hilbert space. On $\mathcal{H} \oplus \mathcal{H}$ (external direct sum), let

$$H := \begin{bmatrix} 0 & S^* \\ S & 0 \end{bmatrix}$$

for some $S \in \mathcal{B}(\mathcal{H})$. Find the polar decomposition of H.

- 6. Show that an idempotent is compact if and only if it is of finite rank.
- 7. Show that no nonzero multiplication operator on $L^2([0,1])$ is compact.
- 8. Show that if $A \in \mathcal{B}(\mathcal{H})$ is compact and $\{e_n\}_n$ is an ONB then $||Ae_n|| \to 0$. Find a counter-example of the converse.
- 9. Let $\Omega \subseteq \mathbb{R}^3$ be a bounded region with a smooth boundary surface $\partial\Omega$. Let $f:\partial\Omega \to \mathbb{C}$ be continuous. Fix some parameter m>0. It is a theorem that there exists a unique function $\varphi_f:\overline{\Omega}\to\mathbb{C}$ which is twice differentiable in Ω and continuous on $\overline{\Omega}$ such that

$$\left(-\Delta + m^2 \mathbb{1} \right) \varphi_f = 0$$

$$\left. \varphi_f \right|_{\partial \Omega} = f \, .$$

Indeed, there is a continuous function $K: \overline{\Omega} \times \partial \Omega \to \mathbb{C}$ (called the Poisson kernel of $-\Delta + m^2 \mathbb{1}$ in the interior of Ω) which allows the solution of the above Dirichlet problem be written as

$$\varphi_f(x) = \int_{y \in \partial\Omega} K(x, y) f(y) d\sigma(y)$$

where σ is the volume measure on $\partial\Omega$.

Show that the operator

$$T: C(\partial\Omega) \to C(\overline{\Omega}): f \mapsto \varphi_f$$

is a bounded linear operator which is compact.

[For more background on, see Gilbarg-Trudinger, Elliptic Partial Differential Equations of Second Order].

2 Fredholm operators

- 11. Provide an example of a norm continuous path of operators $[0,1] \ni t \mapsto A_t$ for which dim ker A_t has jump discontinuities.
- 12. Show that, for $A \in \mathcal{B}(\mathcal{H})$, dim coker $(A) < \infty$ iff both: (1) dim ker $A^* < \infty$ and (2) im $(A) \in \text{Closed}(\mathcal{H})$.
- 13. Show that if X is the position operator on $\ell^2(\mathbb{N})$ then $\frac{1}{X}$ does not have a closed image.
- 14. Show that if $A: V_1 \to V_2$ is a linear map between two finite dimensional Hilbert spaces then A is Fredholm and

$$index (A) = \dim V_1 - \dim V_2.$$

Conclude that square matrices always have zero Fredholm index.

- 15. Prove that a compact operator cannot be Fredholm if dim $\mathcal{H} = \infty$.
- 16. Show that if K is compact then 1 K is Fredholm.