Functional Analysis Princeton University MAT520 HW8, assigned on Nov 8 2025

November 8, 2025

Here \mathcal{H} is a separable Hilbert space.

1. Let $\{e_i\}_i$ be an ONB in \mathcal{H} and $A \in \mathcal{B}(\mathcal{H})$. Show that the sequence

$$\left\{ \sum_{i,j=1}^{N} \langle e_i, Ae_j \rangle e_i \otimes e_j^* \right\}_{N}$$

converges in SOT to A. Find an example of an A for which this convergence does not hold in operator norm.

2. Let R be the unilateral right shift operator on $\ell^2(\mathbb{N})$:

$$Re_i := e_{i+1} \qquad (j \in \mathbb{N})$$

where $\{e_j\}_{j\in\mathbb{N}}$ is the standard basis of $\ell^2(\mathbb{N})$ and extend linearly.

- (a) Calculate R^* .
- (b) Calculate $|R|^2$ and $|R^*|^2$.
- (c) Show that R is a partial isometry.
- (d) Calculate $\sigma\left(R\right),\sigma\left(R^{*}\right),\sigma\left(\left|R\right|^{2}\right)$ and $\sigma\left(\left|R^{*}\right|^{2}\right)$.
- 3. Let \hat{R} be the bilateral right shift operator on $\ell^{2}\left(\mathbb{Z}\right)$:

$$\hat{R}e_j := e_{j+1} \qquad (j \in \mathbb{Z})$$

where $\{e_j\}_{j\in\mathbb{Z}}$ is the standard basis of $\ell^2(\mathbb{Z})$ and extend linearly.

- (a) Calculate \hat{R}^* .
- (b) Calculate $\left| \hat{R} \right|^2$ and $\left| \hat{R}^* \right|$.
- (c) Show that \hat{R} is a unitary.
- (d) Calculate $\sigma\left(\hat{R}\right), \sigma\left(\hat{R}^*\right), \sigma\left(\left|\hat{R}\right|^2\right)$ and $\sigma\left(\left|\hat{R}^*\right|^2\right)$.
- 4. Let $\frac{1}{X} \in \mathcal{B}\left(\ell^{2}\left(\mathbb{N}\right)\right)$ be given by

$$\frac{1}{X}e_j := \frac{1}{j}e_j \qquad (j \in \mathbb{N})$$

and extend linearly.

- (a) Calculate $\left(\frac{1}{X}\right)^*$.
- (b) Calculate $\sigma\left(\frac{1}{X}\right)$.
- (c) Show that $\frac{1}{X}$ does not have closed range (but show it directly, not via the indirect route we saw in class).

5. Show that if M is a closed linear subspace and $P_M: \mathcal{H} \to \mathcal{H}$ is given by

$$P_M \psi := a$$

where $\psi = a + b$ in the unique decomposition $\mathcal{H} = M \oplus M^{\perp}$, then P_M is a *self-adjoint projection*, i.e., show that $P_M = P_M^* = P_M^2$. Conversely, given any self-adjoint projection $P \in \mathcal{B}(\mathcal{H})$, find a closed linear subspace M such that $P = P_M$.

6. Let $\{A_n\}_n \subseteq \mathcal{B}(\mathcal{H})$ such that for any $\varphi, \psi \in \mathcal{H}$,

$$\exists \lim_{n} \langle \varphi, A_n \psi \rangle$$
.

Show there exists $A \in \mathcal{B}(\mathcal{H})$ such that $A_n \to A$ weakly.

7. For any t > 0, let $T_t \in \mathcal{B}\left(L^2(\mathbb{R})\right)$ be given by

$$T_t \varphi := \varphi(\cdot + t) \qquad (\varphi \in L^2) .$$

- (a) Calculate $||T_t||$.
- (b) Find a limit to which T_t converges as $t \to \infty$ (in which operator topology?).
- 8. Show that multiplication is not jointly continuous as a map

$$\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$$

if $\mathcal{B}(\mathcal{H})$ is given the strong operator topology.

- 9. Let $A_n \to A, B_n \to B$ in the strong operator topology. Show that $A_n B_n \to AB$ in the strong operator topology.
- 10. Let $A_n \to A$, $B_n \to B$ in the weak operator topology. Find a counter example for $A_n B_n \to AB$ in the weak operator topology.
- 11. Show that for $A \in \mathcal{B}(\mathcal{H})$,

$$||A||_{\text{op}} = \sup (\{ |\langle \varphi, A\psi \rangle| \mid ||\varphi|| = ||\psi|| = 1 \})$$

and if $A = A^*$ then

$$\left\|A\right\|_{\operatorname{op}} = \sup\left(\left\{\,\left|\left\langle\varphi,A\varphi\right\rangle\right|\,\right|\,\left\|\varphi\right\| = 1\,\right\}\right)\,.$$

- 12. Show that if $A_n \ge 0$, $A_n \to A$ in norm (resp. strongly) then $\sqrt{A_n} \to \sqrt{A}$ in norm (resp. strongly).
- 13. Show that if $A_n \to A$ in norm then $|A_n| \to |A|$ in norm.
- 14. Show that if $A_n \to A$ and $A_n^* \to A^*$ strongly then $|A_n| \to |A|$ strongly.
- 15. Find a counter example to

$$|||A| - |B||| \le ||A - B||$$
.

- 16. Let P,Q be two orthogonal projections onto subspaces M,N in a Hilbert space \mathcal{H} such that [P,Q]=0.
 - (a) Show $P^{\perp} \equiv \mathbb{1} P$, Q^{\perp} , PQ, P + Q PQ and P + Q 2PQ are orthogonal projections.
 - (b) What is the relation between the projections in the previous item and M, N?
- 17. Let P,Q be two orthogonal projections onto subspaces M,N in a Hilbert space \mathcal{H} . Show that

$$\operatorname{s-lim}_{n\to\infty} (PQ)^n$$

exists and is the orthogonal projection onto $M \cap N$.

- 18. Let $A \in \mathcal{B}(\mathcal{H})$. Show that the set of $\lambda \in \sigma(A)$ such that λ is not an eigenvalue of A and im $(A \lambda \mathbb{1})$ is closed but not the whole of \mathcal{H} is an open subset of \mathbb{C} .
- 19. Define the numerical range N(A) of $A \in \mathcal{B}(\mathcal{H})$ via

$$N(A) := \{ \langle \psi, A\psi \rangle \mid \psi \in \mathcal{H} \land ||\psi|| = 1 \}.$$

(a) Show that

$$\sigma(A) \subseteq \overline{N(A)}$$
.

(b) Find an example where $N\left(A\right)$ is not closed and

$$\sigma(A) \nsubseteq N(A)$$
.

(c) Find an example where

$$\sigma\left(A\right) \neq N\left(A\right) = \overline{N\left(A\right)}$$
.

20. Show that if $A \in \mathcal{B}(\mathcal{H})$ has $A = A^*$ then

$$\left\| \left(A - z \mathbb{1} \right)^{-1} \right\| \leq \frac{1}{\left| \mathbb{I} \mathbf{m} \left\{ z \right\} \right|} \qquad \left(z \in \mathbb{C} : \left| \mathbb{I} \mathbf{m} \left\{ z \right\} \right| > 0 \right) \,.$$

- 21. Show that if $A \in \mathcal{B}(\mathcal{H})$ is an isometry then im (A) is closed in \mathcal{H} .
- 22. Let $V \in \mathcal{B}\left(L^2\left([0,1] \to \mathbb{C}\right)\right)$ be give by

$$V\left(\psi\right):=\int_{0}^{\cdot}\psi\qquad\left(\psi\in L^{2}\right)\,.$$

(a) Show that V is well-defined (it is a bounded linear map) with

$$V^*\left(\psi\right) = \int_0^1 \psi \qquad \left(\psi \in L^2\right) \,.$$

- (b) Show that the spectral radius of V, r(V), equals zero and that $\sigma(V) = \{0\}$.
- (c) Show that $||V|| = \frac{2}{\pi}$.
- 23. Let $\mathcal{F}:\ell^{2}\left(\mathbb{Z}\right)\to L^{2}\left(\mathbb{S}^{1}\right)$ be the Fourier series given by

$$\ell^{2}\left(\mathbb{Z}\right)\ni\psi\mapsto\left(\left[0,2\pi\right]\ni k\mapsto\sum_{n\in\mathbb{Z}}\mathrm{e}^{-\mathrm{i}kn}\psi_{n}=:\hat{\psi}\left(k\right)\right).$$

Let $A \in \mathcal{B}\left(\ell^{2}\left(\mathbb{Z}\right)\right)$ be the discrete Laplacian:

$$A = R + R^*$$

where R is the bilateral right shift operator

$$R\delta_n := \delta_{n+1} \qquad (n \in \mathbb{Z})$$

and $\{\delta_n\}_{n\in\mathbb{Z}}$ the standard basis of $\ell^2(\mathbb{Z})$. Calculate

$$\mathcal{F}A\mathcal{F}^* \in \mathcal{B}\left(L^2\left(\mathbb{S}^1\right)\right)$$
.

24. Call an operator $A\in\mathcal{B}\left(\ell^{2}\left(\mathbb{Z}^{d}\right)\right)$ local iff

$$\inf_{x,y\in\mathbb{Z}^d} -\frac{1}{\|x-y\|} \log\left(\left|\left\langle \delta_x, A\delta_y \right\rangle\right|\right) > 0.$$

Show that if $A = A^*$ and A is local then $(A - z\mathbb{1})^{-1}$ is local too for any $z \in \mathbb{C} : |\mathbb{Im}\{z\}| > 0$.