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Here # is a separable Hilbert space.
1. Let {¢; }; be an ONB in # and A € B (#). Show that the sequence

N

Z (ei, Aej) e; @ €]

ij=1 N

converges in SOT to A. Find an example of an A for which this convergence does not hold in operator norm.

2. Let R be the unilateral right shift operator on ¢ (N):
Rej = €j+1 (] S N)
where { ; },y is the standard basis of ¢? (N) and extend linearly.

Calculate R*.

(a)

(b) Calculate |R|* and |R*|°.
)
)

(c) Show that R is a partial isometry.
(d) Caleulate o (R) o (R*) o (|RI*) and o (|R"[*).
3. Let R be the bilateral right shift operator on (2 (Z):
]%ej = €541 (] € Z)
where { ¢; },_ is the standard basis of (?(Z) and extend linearly.
(a) Calculate R*.

(b) Calculate ’R‘Q and ‘]:?*

(c) Show that R is a unitary.

(d) Calculate o (R) o (R*) o (‘fzf) and o (

4. Let + € B (2 (N)) be given by

R*

)

and extend linearly.
(a) Calculate (%)*
(b) Calculate o ().

(c) Show that + does not have closed range (but show it directly, not via the indirect route we saw in class).
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Show that if M is a closed linear subspace and Py : # — ¥ is given by
PM’lb = a

where 1) = a + b in the unique decomposition # = M @ M=, then Py is a self-adjoint projection, i.e., show that
Py = P}, = Pi,. Conversely, given any self-adjoint projection P € B (#), find a closed linear subspace M such
that P = P]u.

Let { Ay, },, € B(#) such that for any ¢, ¢ € #,
Flim (p, A1) .
n

Show there exists A € B (#) such that A,, — A weakly.

For any t > 0, let T; € B (L? (R)) be given by

Tip = @(-+1) (peL?) .

(a) Calculate ||T%]|.

(b) Find a limit to which T} converges as ¢ — oo (in which operator topology?).
Show that multiplication is not jointly continuous as a map
B(H) x B(H) — B(F)
if B (#) is given the strong operator topology.
Let A, — A, B, — B in the strong operator topology. Show that A, B, — AB in the strong operator topology.

Let A, — A, B, — B in the weak operator topology. Find a counter example for A, B, — AB in the weak operator
topology.

Show that for A € B (#),
[A[lop, = sup ({ Ko, AV [ [loll = ol =11})

and if A = A* then
[Allyp = sup ({ {@, Ap)| [ llell =11) -

Show that if A, > 0, A, — A in norm (resp. strongly) then \/A,, — v/A in norm (resp. strongly).
Show that if A, — A in norm then |A,| — |A| in norm.
Show that if A, — A and A — A* strongly then |A,| — |A] strongly.

Find a counter example to
Al =Bl < [lA-B].

Let P, @ be two orthogonal projections onto subspaces M, N in a Hilbert space # such that [P, Q] = 0.

(a) Show P+ =1 — P, Q*, PQ, P+ Q — PQ and P + @ — 2PQ are orthogonal projections.
(b) What is the relation between the projections in the previous item and M, N7

Let P, Q be two orthogonal projections onto subspaces M, N in a Hilbert space #. Show that

s-lim (PQ)"

n—oo
exists and is the orthogonal projection onto M N N.

Let A € B(#¢). Show that the set of A € o (A) such that A is not an eigenvalue of A and im (A — A1) is closed but
not the whole of # is an open subset of C.

Define the numerical range N (A) of A € B (#) via

N(A) :={ (), Ap) [ e H A p][ =1} .



(a) Show that

c(A)C N (A).
(b) Find an example where N (A) is not closed and

o (A) ¢ N (A).

(¢) Find an example where
o(A)#N(A)=N(A).

20. Show that if A € B (#) has A = A* then

H(A—zﬂ)*’ (z€C:|lm{z}| >0) .

< o
[l {2}

21. Show that if A € B (#) is an isometry then im (A) is closed in #.

22. Let V € B (L?([0,1] — C)) be give by

V() ::/ v (pel?).
0
(a) Show that V is well-defined (it is a bounded linear map) with
1
vw=[v wer).

(b) Show that the spectral radius of V, r (V'), equals zero and that o (V) = {0 }.

(c) Show that ||V = 2.
23. Let F : 2 (Z) — L* (S') be the Fourier series given by

2 (Z) 39— <[o, 21 S ks Y ey, = ¢ (k)) :

nezZ

Let A € B (£?(Z)) be the discrete Laplacian:
A=R+R"

where R is the bilateral right shift operator
R6, := 6n+1 (’I’L S Z)
and { 4, },, . the standard basis of ¢? (Z). Calculate
FAF € B (L2 (sh) .
24. Call an operator A € B (62 (Zd)) local iff

inf ———log (|(8,, A8,)]) > 0.
a:,yGZd H%—y” g(|< y>|)

Show that if A = A* and A is local then (A — z1) ™" is local too for any z € C : |lm {z}| > 0.



