Functional Analysis Princeton University MAT520 HW7, published on Nov 2nd 2025

November 2, 2025

1 C-star algebras

In the following exercises, \mathcal{A} is a C-star algebra with involution $*: \mathcal{A} \to \mathcal{A}$ and norm $\|\cdot\|$. $a, b, \dots \in \mathcal{A}$. Please see the corresponding section in the lecture notes for the definitions of algebraic conditions on elements in a C-star algebra.

When solving these exercises please don't forget that $\mathcal{B}(\mathcal{H})$ is a c-star algebra so everything you prove here will be useful for operators on Hilbert space.

- 1. Show that if a is a partial isometry (i.e. $|a|^2$ is an idempotent) then $a = aa^*a = aa^*aa^*a$.
- 2. Show that a is a partial isometry iff a^* is a partial isometry.
- 3. Show that if p, q are self-adjoint projections then $||p q|| \le 1$.
- 4. Show that if u, v are unitary then $||u v|| \le 2$.
- 5. Show that if a is self-adjoint with $||a|| \le 1$ then

$$a+i\sqrt{1-a^2}$$
, $a-i\sqrt{1-a^2}$

are unitary. Conclude that any $b \in \mathcal{A}$ is the linear combination of four unitaries.

- 6. Two self-adjoint projections p, q are said to be orthogonal (written $p \perp q$) iff pq = 0. Show that the following are equivalent:
 - (a) $p \perp q$.
 - (b) p + q is a self-adjoint projection.
 - (c) $p + q \le 1$.
- 7. Let v_1, \ldots, v_n be partial isometries and suppose that

$$\sum_{j=1}^{n} |v_j|^2 = \sum_{j=1}^{n} |v_j^*|^2 = 1.$$

Show that $\sum_{j=1}^{n} v_j$ is unitary.

8. Show that for any $\varepsilon > 0$ there exists a $\delta_{\varepsilon} > 0$ such that if a obeys

$$\max\left(\left\{\|a-a^*\|, \left\|a^2-a\right\|\right\}\right) \le \delta_{\varepsilon}$$

then there exists a self-adjoint projection p with $||a-p|| \le \varepsilon$.

9. Show that for any $\varepsilon > 0$ there exists a $\delta_{\varepsilon} > 0$ such that if a obeys

$$\max\left(\left\{\left\|\left|a\right|^{2}-\mathbb{1}\right\|,\left\|\left|a^{*}\right|^{2}-\mathbb{1}\right\|\right.\right\}\right)\leq\delta_{\varepsilon}$$

then there exists a unitary u with $||a - u|| \le \varepsilon$.

- 10. Show that $\sigma\left(p\right)\subseteq\left\{\,0,1\,\right\}$ for an idempotent p.
- 11. Show that ||p|| = 1 for a non-zero self-adjoint projection p.
- 12. Show that the spectral radius r(a) of a self-adjoint a equals its norm ||a||.
- 13. Show that $\sigma\left(u\right)\subseteq\mathbb{S}^{1}$ if u is unitary (i.e. $\left|u\right|^{2}=\left|u^{*}\right|^{2}=\mathbb{1}$).
- 14. Show that $\sigma(a) \subseteq [0, \infty)$ if a is positive (i.e. $a = |b|^2 \exists b$).
- 15. Show that $\sigma(a) \subseteq \mathbb{R}$ if $a = a^*$.
- 16. Show that a is invertible if $|a|^2 \ge \varepsilon \mathbb{1}$ for some $\varepsilon > 0$ and $|a^*|^2 \ge \delta \mathbb{1}$ for some $\delta > 0$; (recall $a \ge b$ iff $a b \ge 0$ iff $a b = |c|^2$ for some c).