Functional Analysis Princeton University MAT520 HW5 Oct 2025

October 11, 2025

1 Banach algebras and the spectra of elements in it

In the following, \mathcal{A} is a \mathbb{C} -Banach algebra.

- 1. Prove Fekete's lemma: If $\{a_n\}_n \subseteq \mathbb{R}$ is sub-additive then $\lim_{n\to\infty} \frac{1}{n}a_n$ exists and equals $\inf \frac{1}{n}a_n$.
- 2. Let $R:\mathbb{C}\to\mathbb{C}$ be a rational function, i.e.,

$$R(z) = p(z) + \sum_{k=1}^{n} \sum_{l=1}^{q} c_{k,l} (z - z_k)^{-l}$$

where p is a polynomial, $n \in \mathbb{N}$, and $\{z_k\}_k, \{c_{k,l}\}_{k,l} \subseteq \mathbb{C}$. Let now $a \in \mathcal{A}$ such that $\{z_k\}_{k=1}^n \subseteq \rho(a)$. Assume further that we choose some $\sigma(a) \subseteq \Omega \in \text{Open}(\mathbb{C})$ such that R is holomorphic on Ω , and $\gamma_j : [a, b] \to \Omega$, $j = 1, \ldots, m$ a collection of m oriented loops which surround $\sigma(a)$ within Ω , such that

$$\frac{1}{2\pi i} \sum_{i=1}^{m} \oint_{\gamma_{i}} \frac{1}{z - \lambda} dz = \begin{cases} 1 & \lambda \in \sigma(a) \\ 0 & \lambda \notin \Omega \end{cases}.$$

Using Lemma 6.26 in the lecture notes (= Lemma 10.24 in Rudin) show that R(a) obeys the Cauchy integral formula, in the sense that

$$p(a) + \sum_{k=1}^{n} \sum_{l=1}^{q} c_{k,l} (a - z_k)^{-l} = \frac{1}{2\pi i} \sum_{j=1}^{m} \oint_{\gamma_j} R(z) (z\mathbb{1} - a)^{-1} dz.$$

- 3. Let \mathcal{A} be such that there exists some $a \in \mathcal{A}$ with $\sigma(a)$ not connected. Show that then \mathcal{A} contains some non-trivial idempotent (an element $b \in \mathcal{A}$ with $b^2 = b \notin \{0, \mathbb{1}\}$).
- 4. Assume that $\{a_n\}_n \subseteq \mathcal{A}$ is a sequence such that $\exists \lim_n a_n =: a \in \mathcal{A}$. Let $\Omega \in \text{Open}(\mathbb{C})$ contains a component of $\sigma(a)$. Show that $\sigma(a_n) \cap \Omega \neq \emptyset$ for all sufficiently large n. Hint: If $\sigma(a) \subseteq \Omega \sqcup \tilde{\Omega}$ where $\tilde{\Omega} \in \text{Open}(\mathbb{C})$ (in particular this means $\Omega \cap \tilde{\Omega} = \emptyset$), define $f: \mathbb{C} \to [0,1]$ such that $f|_{\Omega} = 1$ and $f|_{\tilde{\Omega}} = 1$.
- 5. Let X, Y be two Banach spaces and A, B be two bounded linear operators on X, Y respectively. Let $T \in \mathcal{B}(X \to Y)$. Show that the following two assertions are equivalent:
 - (a) TA = BT.
 - (b) Tf(A) = f(B)T for any $f: \mathbb{C} \to \mathbb{C}$ holomorphic in some open set U which contains $\sigma(A) \cup \sigma(B)$.
- 6. Show that if $a, b \in \mathcal{A}$ and $b \in \mathcal{G}$ then

$$\sigma\left(bab^{-1}\right) = \sigma\left(a\right) \,.$$

7. Show that if $a \in \mathcal{G}$ then

$$||a^{-1}|| \ge \frac{1}{\operatorname{dist}(0,\sigma(a))}.$$

8. [Upper semicontinuity of the spectral radius] If $\{a_n\}_n \subseteq \mathcal{A}$ and $a_n \to a \in \mathcal{A}$ then

$$\sup_{n} r(a_n) \le r(a) .$$

Next show that for any $\varepsilon > 0$ there exists some $N_{\varepsilon} \in \mathbb{N}$ such that if $n \geq N_{\varepsilon}$ then

$$\sigma\left(a_{n}\right)\subseteq\sigma\left(a\right)+B_{\varepsilon}\left(0_{\mathbb{C}}\right).$$

9. Show that if $a, b \in \mathcal{A}$ with $[a, b] \equiv ab - ba = 0$ then

$$\sigma(a+b) \subseteq \sigma(a) + \sigma(b)$$

and

$$\sigma(ab) \subseteq \sigma(a) \sigma(b)$$
.

10. Let \mathcal{A} be a Banach algebra and $\mathcal{B} \subseteq \mathcal{A}$ be a sub-Banach-algebra (defined in the obvious way). Let $a \in \mathcal{B}$. Show that

$$\sigma_{\mathcal{A}}(a) \subseteq \sigma_{\mathcal{B}}(a)$$
.

Find an example where the inclusion is strict.

- 11. Show that if $a^2 = a \in \mathcal{A}$ (i.e., an idempotent) then $\sigma(a) \subseteq \{0, 1\}$.
- 12. Let $a \in \mathcal{A}$ and assume that $\sigma(a) = K_1 \sqcup K_2$ with dist $(K_1, K_2) > 0$. Let Γ_i encircle only K_i . Set

$$p_i := \frac{\mathrm{i}}{2\pi} \oint (a - z\mathbb{1})^{-1} \,\mathrm{d}z.$$

Show that p_i is an idempotent, i.e., that $p_i^2 = p_i$, show that $[p_i, a] = 0$.

- 13. Show that if $f, g : \widetilde{\Omega} \to \mathbb{C}$ are holomorphic, $\Omega, \widetilde{\Omega} \in \mathrm{Open}(\mathbb{C}), \ a \in \mathcal{A}$ with $\sigma(a) \subseteq \Omega \subseteq \widetilde{\Omega}$ and $f|_{\Omega} = g|_{\Omega}$ then f(a) = g(a).
- 14. Show that if R is the unilateral right shift on $\ell^2(\mathbb{N})$ then r(R) = 1.