MAT520 HW4

October 6, 2025

1. Normed-closed convex subset K is weakly-cosed. To see this, for any zo € X \ K, since
K is normed-closed and convex and {zy} is (strongly-)compact and convex in X, apply
the Hahn-Banach separation theorem (Theorem 3.4 in Rudin’s Functional Analysis),
there exists A € X™* such that

Re{A} (7o) < v < Re{A}(y)

for some v € R and for all y € K. In particular, we have {z € X : [A(z — z¢)| < €} C
X \ K for some e small enough. If the closed unit ball B in X is weakly compact,
then with rK C B for r small by boundedness of K, we concude that rK and hence
K is weakly-compact (note weak topology on X is Hausdorff). To show that B is
weakly compact, we consider X = X** by reflexivity of X. In fact, with respect to
the weak topology on X and weak-star topology on X**, the spaces X and X** are
homeomorphic. Indeed, z, — = converges weakly in X if and only if J(z,) — J(z) in
the weak-star sense, where J : X — X** is the canonical map, since both translate to
Azo) = A(z) for all z € X*. Now J(B) is the closed unit ball in X** and hence is
weak-star compact by the Banach-Alaoglu theorem. Thus B is weakly-compact.

2. (i.) (Use the Banach-Alaoglu theorem to exhibit an element of (¢*°)* which is not in
() Tt is clear that u, € (¢*°)* and ||u,]| < 1 and we can apply the Banach-Alaoglu
theorem on the sequence {1, }°°; to find an element x in the closed unit ball of (£>°)*
such that for any weak-star neighborhood U of p, we have p,, € U for infinitely many
n. Let e; € £°° be the vector that takes value 1 in the j-th position and zero otherwise.
Since p,(€j) — 0, we must have p(e;) = 0; otherwise {p, }{n € (£>°)*|(n—pn)(e;)| < €}
has finitely many terms. Let a € £*° be the all 1 vector. We have p(a) = 1 by similar
reasoning. Now, consider the canonical map J : ' — (£>°)* where {z;} is mapped
to the functional A : {a;} = > a;x;. Suppose p = J(x) for some z € ¢'. We have
x; = J(x)(e;) = p(e;) =0 for all j. Thus J(z) = 0. However p # 0.

(ii.) (Show that ¢ = (¢)*.) Let J : £* — (/)* map {x,} to a functional X :
{a;} = >0, ajxz;. Tt is clear that J is injective. To show surjectivity, for A € (£')*,
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let z; := A(e;), and we have J({z;}) = A. Apply Hahn-Banach to show that J is

isometric.

. The dual of L? for p € (1,00) is L? where 1/p + 1/¢ = 1. Since L([—m,7|) C
LY([~, 7)), we will show that for any f € L'([—m, 7)), we have f(n) := [7_f(t)e™™dt —
0 as n — oo. We know that the trigonometric polynomials are dense in C([—m,7]) in
sup norm, and C([—, 7]) is dense in L'([—m, 7]) in L' norm. For f € L', find trigono-
metric polynomial p such that ||f — plle < € and find g € L' such that ||f — g[|; < e.
Then

[f)] < 1f(n) = ()] +19(n) — B(n)] + [B(n)] < 2¢ + |p(n)]

since p(n) — 0, for sufficiently large n we have \f(n)] < 2¢. Now if f, — ¢ in norm,
then g = 0. However || f,|l, = 1.

. (Show C([0,1]) is dense in L*([0, 1]) with respect to the weak-star topology and not
with respect to the norm topology.) Let 1 be the standard mollifier (see, e.g., Section
C5 in Evans’ Partial Differential Equation) and n.(z) = In(%). If f € L*, we will
show that [n.* fg — [ fg for all g € L', and note that 7. * f is smooth. Since
S e = @)llg(@)ldady < el fllcllgllzs, we can use Fubinis theorem to get

[ nexfg= [ne*gf. Thus

'/ne*fg—/fg‘ S/Ifllne*g—gl < || fllscllme * g — gl = 0

as € — 0, since . * g — g in L'. For the norm topology, we now that C([0,1]) is closed
in L>°(]0, 1]) in this topology. Since C([0,1]) € L*([0, 1]), it cannot be dense.

. First we show that B C S. Let ||zo|| < 1. We need to show that
{z:|Ni(z—x0)| <e}nNS

is nonempty for any Aq,..., A\, € X* and € > 0. The map (A,...,\,) : X — R™ has
nontrivial kernel; otherwise we will have the contradiction that dim X < n. Denote
yo # 0 the be the vector such that \;(yp) = 0 for all i. Since o — ||zg + ayol| is
continuous, and ||zg|| < 1 and ||zg + ool — oo as || — oo, by the intermediate
value theorem, there is some « such that ||zg + ayol| = 1. Thus zo + ayy € S and
Ai(zo + ayo — x9) = 0 < e. To show S C B, we note that B is weakly-closed since

B= () {z: @) <1}

[Al=1

which follows from ||z = sup = [A(@)].
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. We have

| L () = L(z)| < [Ln(2n) = Ln(2)] 4 [Ln(2) — L(2)|

The second term converges to zero since L, — L in the weak-star sense. Also, since
|L,,(z)| is bounded for each x € X, then ||L,|| is bounded by the uniform boundedness
principle. Thus

|Ln(2n) — Ln(2)| < || Lal[|2n — 2| — 0

Use the Gelfand’s formula for spectral radius.

N (zy) =y €.

One can construct left and right inverses for x and y.
LR =1 and RL projects onto n > 2.

If A # 0, then A — 2y is invertible if and only if A —yz is invertible. This follows exactly
the same as Problem 11. Take R and L from Problem 10. Then LR is invertible while
RL is not.

If z is on the boundary of o(z), then there is a sequence z, — z such that x — z, is

invertible. In particular, any neighborhood balls of x — z intersects x — z,, for some n.

1

Take x, — = where x,, € G. We have ||z,!|| = oco. Indeed, xz! is not invertible and

hence 1 < ||1 — xz;'||. Thus

1< 1 — a2, = (@ — zp)a, | < [l — xl]|2, "]
and ||z || = 1/||xz — z,|| = oo. Let y, = x,,;'/||z}||. Then
Jzx M| [(x = @)z, + 1]

1
< ||zt —zp|| + —— — 0
|zl

If A is a Banach algebra whose nonzero elements are invertible, then by Gelfand-Mazur

[yl = = =
T all [Eanl

A = C, and 0 is the only topological divisor of 0.

Here ¢*(N) is a Hilbert space, and we can talk about the adjoint of T'. It is not hard to
find that T is unitary and 7% = —1, which implies o(T") belongs to the unit circle and
o(T) C {i,—i}, respectively. Thus o(T") = {i,—i} since T is not identically i or —i.

r(z) = inf, ||z"|Y/™ = 0.

We need to show that {x € A : r(z) < a} is open for any o > 0. If r(z9) < «, then
o(xg) C B(0,a —€). We use Theorem 10.20 in Rudin’s Functional Analysis to find
d > 0 such that for all ||z — xo|| < d, we have o(z) C B(0,a — €). Thus r(z) < a.
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See Proposition 3.1, Chapter 1 in Stein and Shakarchi’s Complex Analysis, and the

discussion there for the invariance of reparametrization.
See Lemma 6.13 in LN.
See Rudin Theorem 3.31.

If f is strongly holomorphic, then it is clearly weakly holormohpci, i.e., ¢p o f(-) is a
complex-valued holomorphic function. Using Goursat’s theorem (Theorem 1.1 in Stein
and Shakarchi’s Complex Analysis), we conclude that |, an @0 f =0 for every triangle.
Then we apply Problem 20 in this PSet to conclude.

See Chapter 3.5 in Stein and Shakarchi’s Complex Analysis.

See Theorem 5.1, Chapter 2 in Stein and Shakarchi’s Complex Analysis.
See Theorem 6.18 in LN.

See Theorem 6.20 in LN.

See Theorem 4.5, Chapter 3 in Stein and Shakarchi’s Complex Analysis.

See Theorem 5.3, Chapter 2 in Stein and Shakarchi’s Complex Analysis.



