
Functional Analysis
Princeton University MAT520

HW4, Assigned on Sep 26th 2025

September 27, 2025

Here’s a list of problems I thought were nice, solve as many as you like and as many as doesn’t cause you sleep
deprivation.

1 Weak stuff
1. Prove that any norm-closed convex bounded subset of a reflexive Banach space is weakly compact.

2. Define the Banach space ℓ∞ (N) := { a : N → C | ∥a∥∞ < ∞} with the norm ∥a∥∞ ≡ supn |an|. Also define

ℓ1 (N) := { a : N → C | ∥a∥1 < ∞}

with the norm ∥a∥1 :=
∑

n∈N |an|.
Our goal here is to use the Banach-Alaoglu theorem to exhibit an element of (ℓ∞)

∗ which is not in ℓ1.

(a) Define { µn }n ⊆ (ℓ∞)
∗ via

µn (a) :=
1

n

n∑
j=1

aj (a ∈ ℓ∞, n ∈ N) .

Show that µn ∈ (ℓ∞)
∗ indeed and ∥µn∥ ≤ 1.

(b) Show there exists some µ ∈ (ℓ∞)
∗ that is the limit of { µn }n (in the weak-star topology).

(c) Show that
(
ℓ1
)∗

= ℓ∞.

(d) Hence we may think of J
(
ℓ1
)
⊆ (ℓ∞)

∗ where J is the natural isometric injection. Show that the limit µ

constructed above does not lie in J
(
ℓ1
)
. That is, show that for any x ∈ ℓ1, J (x) ̸= µ.

3. Let { fn }n be given by
fn (t) := eint (t ∈ [−π, π]) .

Show that if p ∈ [1,∞) then fn → 0 weakly in Lp ([−π, π]), but not in the norm topology of Lp ([−π, π]).

4. Consider L∞ ([0, 1]) with its norm topology (the essential supremum norm), and, since
(
L1 ([0, 1])

)∗
= L∞ ([0, 1]),

the weak-star topology on
(
L1 ([0, 1])

)∗, which is a topology on L∞ ([0, 1]). Show that C ([0, 1]) (the space of all
continuous functions) is dense in Lα but not in Lβ , for either (α, β) = (1,∞) or (α, β) = (∞, 1).

5. Let X be an infinite-dimensional Banach space and define

S := { x ∈ X | ∥x∥ = 1 } .

Show that the weak-closure of S is
B := { x ∈ X | ∥x∥ ≤ 1 } .

6. Let X be a Banach space, and { Ln }n ⊆ X∗ be a sequence which converges to some L ∈ X∗ in the weak-star sense.
Assume that { xn }n ⊆ X converges to some x ∈ X in norm. It is true that Ln (xn) → L (x) in C?

7. Find an example of a Banach space X for which there does not exist a Banach space Y such that Y ∗ = X.
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2 Banach algebras
Here A is a Banach algebra and x, y, . . . are elements in it; GA is the set of invertible elements and r : A → [0,∞) is the
spectral radius.

8. Use (xy)
n
= x (yx)

n−1
y to show that r (xy) = r (yx).

9. Show that if x, xy ∈ GA then y ∈ GA .

10. Show that if xy, yx ∈ GA then x, y ∈ GA .

11. On the Banach space ℓ2 (N → C), define the right shift operator R ∈ B
(
ℓ2 (N → C)

)
:

(Ra)n :=

{
an−1 n ≥ 2

0 n = 1

and the right shift operator
(La)n := an+1 (n ∈ N) .

Calculate RL and LR. Conclude that one may have xy = 1 but yx ̸= 1 in a Banach algebra.

12. Show that if z ∈ C \ { 0 } then z ∈ σ (xy) iff z ∈ σ (yx). I.e.,

σ (xy) ∪ { 0 } = σ (yx) ∪ { 0 } .

Find an example where σ (xy) ̸= σ (yx).

13. Define A := C2 ([0, 1] → C), the space of functions with continuous second derivative. Define, for a, b > 0,

∥f∥ := ∥f∥∞ + a∥f ′∥∞ + b∥f ′′∥∞ .

Show that A is a Banach space. Show that A is a Banach algebra (with pointwise multiplication) iff a2 ≥ 2b. You
may consider the functions x 7→ x and x 7→ x2.

14. Show that if z ∈ ∂σ (x) then x− z1 ∈ ∂GA .

15. Let x ∈ ∂GA . Show there exists some { yn }n ⊆ A with ∥yn∥ = 1 and

lim
n→∞

xyn = lim
n→∞

ynx = 0 .

Try to characterize the type of Banach algebras in which there are such elements x (which are called topological
divisor of zero).

16. On ℓ2 (N → C) define T ∈ B
(
ℓ2 (N → C)

)
via

T (a1, a2, a3, a4, . . . ) := (−a2, a1,−a4, a3, . . . ) .

Calculate σ (T ).

17. Show that if x ∈ A is nilpotent (i.e. ∃n ∈ N with xn = 0) then σ (x) = { 0 }.

18. Show that r is upper semicontinuous.

3 Banach-space-valued holomorphic functions and Cauchy integrals
Throughout, let X be a complex Banach space, Ω ⊂ C open, and curves piecewise C1. For γ : [a, b] → Ω and continuous
f : Ω → X, define the (Bochner) contour integral∫

γ

f(z) dz :=

∫ b

a

f(γ(t)) γ′(t) dt,

whenever the Bochner integral exists (it does for continuous integrands).

19. Bochner contour basics.
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(a) Show that
∫
γ
(αf + βg) dz = α

∫
γ
f dz + β

∫
γ
g dz and that

∥∥∥∥∫
γ

f dz

∥∥∥∥ ≤ len(γ) sup
z∈γ

∥f(z)∥.

(b) Prove invariance under C1 reparametrization and orientation reversal.

(c) If γ and η are composable, show
∫
γ∗η

f dz =

∫
γ

f dz +

∫
η

f dz.

20. Scalarization principle. Let f : Ω → X be continuous. Prove that for every ϕ ∈ X∗,

ϕ

(∫
γ

f(z) dz

)
=

∫
γ

ϕ(f(z)) dz.

Deduce: if
∫
γ
ϕ(f) = 0 for all ϕ ∈ X∗, then

∫
γ
f = 0.

21. Weak vs. strong holomorphy. Define f : Ω → X to be holomorphic if it is Fréchet differentiable at each point.

(a) Show: if ϕ ◦ f is scalar holomorphic for every ϕ ∈ X∗ and f is locally bounded, then f is holomorphic.

(b) Give an example showing local boundedness is necessary in (a).

22. Cauchy’s theorem (vector-valued). Suppose f : Ω → X is holomorphic. Show that for every triangle ∆ ⊂ Ω,∫
∂∆

f(z) dz = 0. Hint: Apply (2) to ϕ ◦ f and use the scalar Cauchy theorem.

23. Path independence and primitives.

(a) Prove: if Ω is simply connected and f holomorphic, then
∫
γ
f depends only on the endpoints of γ.

(b) Show: if
∫
γ
f = 0 for every closed γ in Ω, then there exists F : Ω → X with F ′ = f .

(c) Conversely, if F ′ ≡ f , prove
∫
γ

f = F (γ(b))− F (γ(a)).

24. Morera’s theorem (vector-valued). Let f : Ω → X be continuous and assume
∫
∂∆

f = 0 for every triangle
∆ ⊂ Ω. Show that f is holomorphic. Hint: Combine scalar Morera with (3a).

25. Cauchy integral formula. Let D(a, r) be the open disc with D(a, r) ⊂ Ω and set Γ = ∂D(a, r) with positive
orientation. For holomorphic f , prove

f(a) =
1

2πi

∫
Γ

f(ζ)

ζ − a
dζ, f (n)(a) =

n!

2πi

∫
Γ

f(ζ)

(ζ − a)n+1
dζ.

Hint: Test against ϕ ∈ X∗ and use scalar Cauchy, then invoke (2).

26. Cauchy estimates and Liouville. With the notation of (7), show

∥f (n)(a)∥ ≤ n!

rn
max

|ζ−a|=r
∥f(ζ)∥.

Deduce: if f : C → X is entire and bounded, then f is constant.

27. Maximum modulus principle (norm version). Suppose f : Ω → X is holomorphic and ∥f∥ attains a local
maximum at a ∈ Ω. Show that f is locally constant (hence constant on the component of Ω containing a). Hint:
Use Hahn–Banach to find ϕ with ∥ϕ∥ = 1 and ϕ(f(a)) = ∥f(a)∥, then apply the scalar maximum modulus principle
to ϕ ◦ f .

28. Uniform limits. Let fn : Ω → X be holomorphic and fn → f uniformly on compact subsets of Ω.

(a) Prove that f is holomorphic.

(b) Show f
(k)
n → f (k) uniformly on compact subsets for every k ≥ 0. Hint: Use Cauchy’s formula on small circles

and pass to the limit.
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