## Functional Analysis Princeton University MAT520 HW4, Assigned on Sep 26th 2025

September 27, 2025

Here's a list of problems I thought were nice, solve as many as you like and as many as doesn't cause you sleep deprivation.

## Weak stuff 1

- 1. Prove that any norm-closed convex bounded subset of a reflexive Banach space is weakly compact.
- 2. Define the Banach space  $\ell^{\infty}\left(\mathbb{N}\right):=\left\{\left.a:\mathbb{N}\to\mathbb{C}\mid\left\|a\right\|_{\infty}<\infty\right.\right\}$  with the norm  $\left\|a\right\|_{\infty}\equiv\sup_{n}\left|a_{n}\right|$ . Also define

$$\ell^1(\mathbb{N}) := \{ a : \mathbb{N} \to \mathbb{C} \mid ||a||_1 < \infty \}$$

with the norm  $||a||_1 := \sum_{n \in \mathbb{N}} |a_n|$ . Our goal here is to use the Banach-Alaoglu theorem to exhibit an element of  $(\ell^{\infty})^*$  which is not in  $\ell^1$ .

(a) Define  $\{\mu_n\}_n \subseteq (\ell^{\infty})^*$  via

$$\mu_n(a) := \frac{1}{n} \sum_{j=1}^n a_j \qquad (a \in \ell^\infty, n \in \mathbb{N}) .$$

Show that  $\mu_n \in (\ell^{\infty})^*$  indeed and  $\|\mu_n\| \leq 1$ .

- (b) Show there exists some  $\mu \in (\ell^{\infty})^*$  that is the limit of  $\{\mu_n\}_n$  (in the weak-star topology).
- (c) Show that  $(\ell^1)^* = \ell^{\infty}$ .
- (d) Hence we may think of  $J(\ell^1) \subseteq (\ell^{\infty})^*$  where J is the natural isometric injection. Show that the limit  $\mu$ constructed above does not lie in  $J(\ell^1)$ . That is, show that for any  $x \in \ell^1$ ,  $J(x) \neq \mu$ .
- 3. Let  $\{f_n\}_n$  be given by

$$f_n(t) := e^{int}$$
  $(t \in [-\pi, \pi])$ .

Show that if  $p \in [1, \infty)$  then  $f_n \to 0$  weakly in  $L^p([-\pi, \pi])$ , but not in the norm topology of  $L^p([-\pi, \pi])$ .

- 4. Consider  $L^{\infty}([0,1])$  with its norm topology (the essential supremum norm), and, since  $(L^{1}([0,1]))^{*} = L^{\infty}([0,1])$ , the weak-star topology on  $(L^1([0,1]))^*$ , which is a topology on  $L^{\infty}([0,1])$ . Show that C([0,1]) (the space of all continuous functions) is dense in  $L^{\alpha}$  but not in  $L^{\beta}$ , for either  $(\alpha, \beta) = (1, \infty)$  or  $(\alpha, \beta) = (\infty, 1)$ .
- 5. Let X be an infinite-dimensional Banach space and define

$$S := \{ \ x \in X \mid \|x\| = 1 \ \} \ .$$

Show that the weak-closure of S is

$$B := \{ x \in X \mid ||x|| < 1 \}.$$

- 6. Let X be a Banach space, and  $\{L_n\}_n \subseteq X^*$  be a sequence which converges to some  $L \in X^*$  in the weak-star sense. Assume that  $\{x_n\}_n \subseteq X$  converges to some  $x \in X$  in norm. It is true that  $L_n(x_n) \to L(x)$  in  $\mathbb{C}$ ?
- 7. Find an example of a Banach space X for which there does not exist a Banach space Y such that  $Y^* = X$ .

## 2 Banach algebras

Here  $\mathcal{A}$  is a Banach algebra and  $x, y, \ldots$  are elements in it;  $\mathcal{G}_{\mathcal{A}}$  is the set of invertible elements and  $r : \mathcal{A} \to [0, \infty)$  is the spectral radius.

- 8. Use  $(xy)^n = x(yx)^{n-1}y$  to show that r(xy) = r(yx).
- 9. Show that if  $x, xy \in \mathcal{G}_{\mathcal{A}}$  then  $y \in \mathcal{G}_{\mathcal{A}}$ .
- 10. Show that if  $xy, yx \in \mathcal{G}_{\mathcal{A}}$  then  $x, y \in \mathcal{G}_{\mathcal{A}}$ .
- 11. On the Banach space  $\ell^2(\mathbb{N} \to \mathbb{C})$ , define the right shift operator  $R \in \mathcal{B}(\ell^2(\mathbb{N} \to \mathbb{C}))$ :

$$(Ra)_n := \begin{cases} a_{n-1} & n \ge 2\\ 0 & n = 1 \end{cases}$$

and the right shift operator

$$(La)_n := a_{n+1} \qquad (n \in \mathbb{N}) .$$

Calculate RL and LR. Conclude that one may have xy = 1 but  $yx \neq 1$  in a Banach algebra.

12. Show that if  $z \in \mathbb{C} \setminus \{0\}$  then  $z \in \sigma(xy)$  iff  $z \in \sigma(yx)$ . I.e.,

$$\sigma(xy) \cup \{0\} = \sigma(yx) \cup \{0\}.$$

Find an example where  $\sigma(xy) \neq \sigma(yx)$ .

13. Define  $\mathcal{A} := C^2([0,1] \to \mathbb{C})$ , the space of functions with continuous second derivative. Define, for a, b > 0,

$$||f|| := ||f||_{\infty} + a||f'||_{\infty} + b||f''||_{\infty}.$$

Show that  $\mathcal{A}$  is a Banach space. Show that  $\mathcal{A}$  is a Banach algebra (with pointwise multiplication) iff  $a^2 \geq 2b$ . You may consider the functions  $x \mapsto x$  and  $x \mapsto x^2$ .

- 14. Show that if  $z \in \partial \sigma(x)$  then  $x z\mathbb{1} \in \partial \mathcal{G}_{\mathcal{A}}$ .
- 15. Let  $x \in \partial \mathcal{G}_{\mathcal{A}}$ . Show there exists some  $\{y_n\}_n \subseteq \mathcal{A}$  with  $||y_n|| = 1$  and

$$\lim_{n \to \infty} x y_n = \lim_{n \to \infty} y_n x = 0.$$

Try to characterize the type of Banach algebras in which there are such elements x (which are called *topological divisor of zero*).

16. On  $\ell^2(\mathbb{N}\to\mathbb{C})$  define  $T\in\mathcal{B}\left(\ell^2(\mathbb{N}\to\mathbb{C})\right)$  via

$$T(a_1, a_2, a_3, a_4, \dots) := (-a_2, a_1, -a_4, a_3, \dots)$$
.

Calculate  $\sigma(T)$ .

- 17. Show that if  $x \in \mathcal{A}$  is nilpotent (i.e.  $\exists n \in \mathbb{N}$  with  $x^n = 0$ ) then  $\sigma(x) = \{0\}$ .
- 18. Show that r is upper semicontinuous.

## 3 Banach-space-valued holomorphic functions and Cauchy integrals

Throughout, let X be a complex Banach space,  $\Omega \subset \mathbb{C}$  open, and curves piecewise  $C^1$ . For  $\gamma : [a,b] \to \Omega$  and continuous  $f : \Omega \to X$ , define the (Bochner) contour integral

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt,$$

whenever the Bochner integral exists (it does for continuous integrands).

19. Bochner contour basics.

- (a) Show that  $\int_{\gamma} (\alpha f + \beta g) dz = \alpha \int_{\gamma} f dz + \beta \int_{\gamma} g dz$  and that  $\left\| \int_{\gamma} f dz \right\| \leq \operatorname{len}(\gamma) \sup_{z \in \gamma} \|f(z)\|$ .
- (b) Prove invariance under  $C^1$  reparametrization and orientation reversal.
- (c) If  $\gamma$  and  $\eta$  are composable, show  $\int_{\gamma*\eta} f dz = \int_{\gamma} f dz + \int_{\eta} f dz$ .
- 20. Scalarization principle. Let  $f: \Omega \to X$  be continuous. Prove that for every  $\phi \in X^*$ ,

$$\phi\bigg(\int_{\gamma} f(z) \, dz\bigg) = \int_{\gamma} \phi(f(z)) \, dz.$$

Deduce: if  $\int_{\gamma} \phi(f) = 0$  for all  $\phi \in X^*$ , then  $\int_{\gamma} f = 0$ .

- 21. Weak vs. strong holomorphy. Define  $f:\Omega\to X$  to be holomorphic if it is Fréchet differentiable at each point.
  - (a) Show: if  $\phi \circ f$  is scalar holomorphic for every  $\phi \in X^*$  and f is locally bounded, then f is holomorphic.
  - (b) Give an example showing local boundedness is necessary in (a).
- 22. Cauchy's theorem (vector-valued). Suppose  $f: \Omega \to X$  is holomorphic. Show that for every triangle  $\Delta \subset \Omega$ ,  $\int_{\partial \Delta} f(z) dz = 0$ . Hint: Apply (2) to  $\phi \circ f$  and use the scalar Cauchy theorem.
- 23. Path independence and primitives.
  - (a) Prove: if  $\Omega$  is simply connected and f holomorphic, then  $\int_{\gamma} f$  depends only on the endpoints of  $\gamma$ .
  - (b) Show: if  $\int_{\gamma} f = 0$  for every closed  $\gamma$  in  $\Omega$ , then there exists  $F: \Omega \to X$  with F' = f.
  - (c) Conversely, if  $F' \equiv f$ , prove  $\int_{\gamma} f = F(\gamma(b)) F(\gamma(a))$ .
- 24. Morera's theorem (vector-valued). Let  $f: \Omega \to X$  be continuous and assume  $\int_{\partial \Delta} f = 0$  for every triangle  $\Delta \subset \Omega$ . Show that f is holomorphic. *Hint:* Combine scalar Morera with (3a).
- 25. Cauchy integral formula. Let D(a,r) be the open disc with  $\overline{D(a,r)} \subset \Omega$  and set  $\Gamma = \partial D(a,r)$  with positive orientation. For holomorphic f, prove

$$f(a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - a} d\zeta, \qquad f^{(n)}(a) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - a)^{n+1}} d\zeta.$$

*Hint:* Test against  $\phi \in X^*$  and use scalar Cauchy, then invoke (2).

26. Cauchy estimates and Liouville. With the notation of (7), show

$$||f^{(n)}(a)|| \le \frac{n!}{r^n} \max_{|\zeta - a| = r} ||f(\zeta)||.$$

Deduce: if  $f: \mathbb{C} \to X$  is entire and bounded, then f is constant.

- 27. Maximum modulus principle (norm version). Suppose  $f: \Omega \to X$  is holomorphic and ||f|| attains a local maximum at  $a \in \Omega$ . Show that f is locally constant (hence constant on the component of  $\Omega$  containing a). Hint: Use Hahn–Banach to find  $\phi$  with  $||\phi|| = 1$  and  $\phi(f(a)) = ||f(a)||$ , then apply the scalar maximum modulus principle to  $\phi \circ f$ .
- 28. Uniform limits. Let  $f_n: \Omega \to X$  be holomorphic and  $f_n \to f$  uniformly on compact subsets of  $\Omega$ .
  - (a) Prove that f is holomorphic.
  - (b) Show  $f_n^{(k)} \to f^{(k)}$  uniformly on compact subsets for every  $k \ge 0$ . Hint: Use Cauchy's formula on small circles and pass to the limit.

3