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1. Recall the Cantor set is C =
⋂∞

k=0Ck where C0 = [0, 1] and C1 = [0, 1/3]∪ [2/3, 1] and

so on. If the interior of C is nonempty, then there is an interval I ⊂ C, which is not

possible. Indeed, for any two points x, y in the Cantor set such that |x − y| ≥ 1/3k,

then x, y belongs to two different Ck and hence there is some point not in C but lies

between x and y.

2. We show that W ∩
⋂

Vj is nonempty for any nonempty open set W . Since V1 is dense,

it follows that W ∩V1 is nonempty. Since X is a locally compact Hausdorff space, there

exists an open set U1 such that U1 ⊂ U1 ⊂ W ∩V1, and that U1 is compact. Similarly,

choose and open set U2 with U2 compact such that U2 ⊂ U2 ⊂ U1 ∩ V1, and so on. We

obtain a nested sequence of nonempty compact sets U1 ⊃ U2 ⊃ · · · , and hence
⋂

U j

is nonempty.

4. Let Y be a finite-dimensional subspace of X. We know that Y is closed in a TVS.

Suppose Y contains some open set U . Pick u ∈ U . Since U − u is absorbing, for any

x ∈ X, we have tx + u ∈ U for sufficiently small t > 0. It follows that x ∈ Y and

X ⊂ Y , which is a contradiction, since X is assumed to be infinite-dimensional. Thus

Y is nowhere dense in X. In particular, X is of Baire’s first category. For the second

part, let X be an infinite-dimensional Banach space that has a countable Hamel basis

{fj}∞j=1. Let Yn be the span of {fj}nj=1. Then X =
⋃

n Yn. However, Yn is finite-

dimensional and hence nowhere dense in X, implying that X is of first category, which

contradicts the Baire’s category theorem.

5. Let En be a Cantor-like set where at kth stage we remove 2k−1 centrally situated open

intervals each of length lnk such that
∑∞

k=1 2
k−1lnk = 2−n. This can be achieved with

lnk = 2−2k−n+1. Then m(En) = 1 − 2−n where m is the Lebesgue measure. We have

E1 ⊂ E2 ⊂ · · · and let E =
⋃
En. Then m(E) = limnm(En) = 1. In particular, each

En is nowhere dense.

6. If f is twice continuously differentiable, then f̂(n) = O(1/|n|2) as |n| → ∞, and hence

limn Λnf exists. This space is dense in L2(S1). For the second part, denote E to be the

1



set of f ∈ L2(S1) such that limn Λnf exists, and let EN be the set of f ∈ L2(S1) such

that |Λnf | ≤ N . It is clear that E ⊂
⋃

N EN since convergent sequence is bounded.

The set EN is closed since Λn is linear and bounded |Λnf | ≤
√
2n+ 1∥f∥2. It remains

to show that EN has no interior. Suppose EN contains a ball B around f of radius

r > 0. Let g ∈ L2(S1) corresponds to the Fourier coefficients {1/k}∞k=−∞ ∈ ℓ2(Z). Now
f + ϵg /∈ EN for all ϵ > 0, since |

∑n
k=−n(f̂(k) + ϵ/k)| ≥ ϵ|

∑n
k=−n 1/k| − N can be

made arbitrarily large. However, f + ϵg ∈ B for ϵ sufficiently small.

7. If Y intersects with Y + x for all x ∈ X, then we are done, using the fact that Y is

a subspace. If Y does not intersect Y + x, then Y + x ⊂ Y c is of first category. This

cannot be true since X = Y ∪ Y c will then be of first category.

8. Let xn → x. Since K is compact, then there is a subsequence xnk
for which f(xnk

) → y

converges. Since the graph of f is closed, it follows that y = f(x).

11. See Corollary 3.3 in LN.

14. Using open mapping theorem, we have A(BX(0, 1)) ⊃ BY (0, 2c) for some c > 0. For

y ∈ Y , there is z ∈ X with ∥z∥ < 1 such that Az = cy/∥y∥. Let x = z∥y∥/c; then for

any y ∈ Y , there is x ∈ X with ∥x∥ ≤ ∥y∥/c such that Ax = y. Let B be any bounded

operator such that ∥A−B∥ < c. We show that B is surjective. Let y be arbitrary. Let

y0 = y and Ax0 = y0 with ∥x0∥ ≤ ∥y0∥/c and y1 = y0 −Bx0 and so on. Let x =
∑

xn.

Then

∥yn∥ ≤ (∥A−B∥/c)n

and ∑
∥xn∥ ≤

∑
∥yn∥/c ≤ (∥A−B∥/c)n/c

which converges. One verifies that A
∑

xn = y.
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