Functional Analysis Princeton University MAT520 HW10, Assigned on Nov 23rd 2025

November 23, 2025

1. Provide an example for a non-normal operator $A \in \mathcal{B}(\mathcal{H})$ and a point in the resolvent set $z \in \rho(A)$ where

$$\left\| \left(A - z \mathbb{1} \right)^{-1} \right\| \le \frac{1}{\operatorname{dist} \left(z, \sigma \left(A \right) \right)}$$

does not hold.

- 2. Let \mathcal{H} be a separable Hilbert space. Prove that the *only* operator-norm-closed star-ideals in $\mathcal{B}(\mathcal{H})$ are $\{0\}$, $\mathcal{K}(\mathcal{H})$ (the compact operators) and $\mathcal{B}(\mathcal{H})$ itself.
- 3. Let K be compact.
 - (a) Show that $\ker (\mathbb{1} + K)$ is finite dimensional.
 - (b) Show that im (1 + K) is closed.
 - (c) Show that $\operatorname{coker}(\mathbb{1} + K)$ is finite dimensional.
 - (d) Show that $\ker (\mathbb{1} + K) \cong \ker (\mathbb{1} + K^*)$.
- 4. Show that for any Fredholm operator A, $\sigma_{\text{ess}}\left(|A|^2\right)$ and $\sigma_{\text{ess}}\left(|A^*|^2\right)$ are both bounded from below. Provide an example of A Fredholm where however $\sigma(A)$ contains the whole unit disc.
- 5. Define the Volterra operator $V: L^2([0,1]) \to L^2([0,1])$ as

$$(V\psi)(x) := \int_0^x \psi \qquad (x \in [0,1], \psi \in L^2([0,1])).$$

Show that 1 - V is Fredholm and calculate its index.

- 6. On $\ell^2(\mathbb{N})$, let \hat{R} be the *unilateral* right shift operator. Calculate $\ker \hat{R}$, $\ker \hat{R}^*$ and $\operatorname{im} \hat{R}$ and show that \hat{R} is a Fredholm operator. Calculate its Fredholm index.
- 7. Show that on $\ell^2(\mathbb{N})$, $\frac{1}{X}$ where X is the position operator, is *not* a Fredholm operator by calculating im $\frac{1}{X}$ and showing explicitly that it is not closed.
- 8. By finding an orthonormal Weyl sequence, show that

$$\sigma_{\rm ess}(X) = [0,1]$$

where X is the position operator on on $L^2([0,1] \to \mathbb{C})$. If you are curious, even though we haven't properly defined unbounded operators and their domain, think about a Weyl sequence to show that

$$\sigma_{\rm ess}(-\Delta) = [0, \infty)$$

where $-\Delta$ is the Laplacian on $L^2(\mathbb{R})$.

9. Provide an example of a diagonal Fredholm operator on $\ell^2(\mathbb{N})$ with non-zero index or prove it cannot exist.

10. [Krein-Widom-Davinatz] Let $f: \mathbb{S}^1 \to \mathbb{C} \setminus \{0\}$ be continuous. Define $M_f \in \mathcal{B}\left(L^2(\mathbb{S}^1)\right)$ as

$$(M_f\psi)(z) := f(z)\psi(z).$$

Let $\mathfrak{F}:L^{2}\left(\mathbb{S}^{1}\right)\to\ell^{2}\left(\mathbb{Z}\right)$ be the Fourier series. Show that:

- (a) The operator $\mathfrak{F}M_{f}\mathfrak{F}^{*}$ on $\ell^{2}\left(\mathbb{Z}\right)$ is bounded.
- (b) If $\Lambda: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$ is the self-adjoint projection defined on the standard basis by

$$\Lambda \delta_x := \begin{cases} 0 & x \le 0 \\ \delta_x & x > 0 \end{cases} \quad (x \in \mathbb{Z})$$

and extended linearly to the entirety of $\ell^2(\mathbb{Z})$, then

$$\Lambda \mathfrak{F} M_f \mathfrak{F}^* \Lambda + \mathbb{1} - \Lambda$$

is a Fredholm operator.

(c) Show that

$$\operatorname{index} (\Lambda \mathfrak{F} M_f \mathfrak{F}^* \Lambda + \mathbb{1} - \Lambda) = -\operatorname{Wind} (f) .$$

(d) If U is the polar part of $\mathfrak{F}M_f\mathfrak{F}^*$ in the polar decomposition, show that

index
$$(\Lambda \mathfrak{F} M_f \mathfrak{F}^* \Lambda + \mathbb{1} - \Lambda) = \operatorname{tr} (U^* [\Lambda, U])$$

by using Fedosov's formula.

11. [The Atiyah-Singer \mathbb{Z}_2 -index] Let \mathcal{H} be a separable Hilbert space. Assume further that there is a bounded anti- \mathbb{C} -linear operator $J: \mathcal{H} \to \mathcal{H}$ which is anti-unitary, i.e.,

$$\langle J\psi, J\varphi \rangle = \langle \varphi, \psi \rangle \qquad (\varphi, \psi \in \mathcal{H}) .$$

We assume $J^2 = -1$. Consider now the following class of operators

$$\mathcal{G}_{J}(\mathcal{H}) := \{ F \in \mathcal{F}(\mathcal{H}) \mid FJ = JF^* \} .$$

(a) Show that

index
$$(\mathcal{F}_{J}(\mathcal{H})) \subseteq \{0\}$$
.

(b) Show that index₂ : $\mathcal{F}_J(\mathcal{H}) \to \mathbb{Z}_2$ given by

$$index_2(F) := dim \ker F \mod 2$$

is norm-continuous.

(c) Show that if $K \in \mathcal{K}(\mathcal{H})$ and $F, F + K \in \mathcal{F}_J(\mathcal{H})$ then

$$index_2(F) = index_2(F + K)$$
.