Functional Analysis Princeton University MAT520 HW7, Due Nov 11th 2024

November 5, 2024

1 Hilbert spaces

In this section $\mathcal H$ is a Hilbert space.

1. Let R be the unilateral right shift operator on $\ell^2(\mathbb{N})$:

$$Re_j := e_{j+1} \qquad (j \in \mathbb{N})$$

where $\{e_j\}_{j\in\mathbb{N}}$ is the standard basis of $\ell^2(\mathbb{N})$ and extend linearly.

- (a) Calculate R^* .
- (b) Calculate $|R|^2$ and $|R^*|^2$.
- (c) Show that R is a partial isometry.
- (d) Calculate $\sigma(R)$, $\sigma(R^*)$, $\sigma(|R|^2)$ and $\sigma(|R^*|^2)$.
- 2. Let \hat{R} be the bilateral right shift operator on $\ell^2(\mathbb{Z})$:

$$\hat{R}e_j := e_{j+1} \qquad (j \in \mathbb{Z})$$

where $\{e_j\}_{j\in\mathbb{Z}}$ is the standard basis of $\ell^2(\mathbb{Z})$ and extend linearly.

- (a) Calculate \hat{R}^* .
- (b) Calculate $\left| \hat{R} \right|^2$ and $\left| \hat{R}^* \right|$.
- (c) Show that \hat{R} is a unitary.
- (d) Calculate $\sigma\left(\hat{R}\right), \sigma\left(\hat{R}^*\right), \sigma\left(\left|\hat{R}\right|^2\right)$ and $\sigma\left(\left|\hat{R}^*\right|^2\right)$.
- 3. Let $\frac{1}{X} \in \mathcal{B}\left(\ell^2\left(\mathbb{N}\right)\right)$ be given by

$$\frac{1}{X}e_j := \frac{1}{j}e_j \qquad (j \in \mathbb{N})$$

and extend linearly.

- (a) Calculate $\left(\frac{1}{X}\right)^*$.
- (b) Calculate $\sigma\left(\frac{1}{X}\right)$.
- (c) Show that $\frac{1}{X}$ does not have closed range.
- 4. Show that if M is a closed linear subspace and $P_M : \mathcal{H} \to \mathcal{H}$ is given by

$$P_M \psi$$
 := a

where $\psi = a + b$ in the unique decomposition $\mathcal{H} = M \oplus M^{\perp}$, then P_M is a *self-adjoint projection*, i.e., show that $P_M = P_M^* = P_M^2$. Conversely, given any self-adjoint projection $P \in \mathcal{B}(\mathcal{H})$, find a closed linear subspace M such that $P = P_M$.

5. Let $\{A_n\}_n \subseteq \mathcal{B}(\mathcal{H})$ such that for any $\varphi, \psi \in \mathcal{H}$,

$$\exists \lim_{n} \left\langle \varphi, A_{n} \psi \right\rangle$$

Show there exists $A \in \mathcal{B}(\mathcal{H})$ such that $A_n \to A$ weakly.

6. For any t > 0, let $T_t \in \mathcal{B}(L^2(\mathbb{R}))$ be given by

$$T_t \varphi := \varphi(\cdot + t) \qquad (\varphi \in L^2) .$$

- (a) Calculate $||T_t||$.
- (b) Find a limit to which T_t converges as $t \to \infty$ (in which operator topology?).
- 7. Show that multiplication is not jointly continuous as a map

$$\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$$

if $\mathcal{B}(\mathcal{H})$ is given the strong operator topology.

- 8. Let $A_n \to A, B_n \to B$ in the strong operator topology. Show that $A_n B_n \to AB$ in the strong operator topology.
- 9. Let $A_n \to A, B_n \to B$ in the weak operator topology. Find a counter example for $A_n B_n \to AB$ in the weak operator topology.
- 10. Show that for $A \in \mathcal{B}(\mathcal{H})$,

$$\|A\|_{\text{op}} = \sup\left(\{\left|\langle\varphi, A\psi\rangle\right| \mid \|\varphi\| = \|\psi\| = 1\}\right)$$

and if $A = A^*$ then

$$\|A\|_{\rm op} = \sup\left(\{ |\langle \varphi, A\varphi \rangle| \mid \|\varphi\| = 1 \}\right).$$

- 11. Show that if $A_n \ge 0$, $A_n \to A$ in norm (resp. strongly) then $\sqrt{A_n} \to \sqrt{A}$ in norm (resp. strongly).
- 12. Show that if $A_n \to A$ in norm then $|A_n| \to |A|$ in norm.
- 13. Show that if $A_n \to A$ and $A_n^* \to A^*$ strongly then $|A_n| \to |A|$ strongly.
- 14. Find a counter example to

$$|||A| - |B||| \le ||A - B||$$