Functional Analysis Princeton University MAT520 HW6, Due Nov 3rd 2024

November 3, 2024

Solve the maximal number of exercises which doesn't cause you misery.

1 Hilbert spaces

In the following exercises, \mathcal{H} is a Hilbert space and φ, ψ, \ldots are vectors in it.

- 1. Show that $\ell^2(\mathbb{N} \to \mathbb{C})$ is a Hilbert space: define an inner product on it and show that the induced metric is complete.
- 2. Show that $L^2(\mathbb{R})$ (with the Lebesgue measure) is a Hilbert space. Define an inner product and show that the induced metric is complete.
- 3. Let $\mathcal{B}(\mathcal{H})$ be the Banach algebra of bounded linear operators on \mathcal{H} . Show (in a concrete example, e.g., $\mathcal{H} = \mathbb{C}^2$) that $\mathcal{B}(\mathcal{H})$ is *not* a Hilbert space by showing the operator norm violates the parallelogram law.
- 4. Show that when dim $(\mathcal{H}) = \infty$ then

$$\mathcal{H}\otimes\mathcal{H}^{*}\subsetneq\mathcal{B}\left(\mathcal{H}
ight)$$
.

Note: this may be hard.

- 5. Show that if $M \subseteq \mathcal{H}$ is a closed vector subspace of it then $(M^{\perp})^{\perp} = M$.
- 6. Show that if $\{\varphi_n\}_{n\in\mathbb{N}}$ is a sequence of *pairwise orthogonal* vectors in \mathcal{H} , then the following are equivalent:
 - (a) $\sum_{n \in \mathbb{N}} \varphi_n$ exists in $\|\cdot\|_{\mathcal{H}}$.
 - (b) $\sum_{n \in \mathbb{N}} \|\varphi_n\|_{\mathcal{H}}^2 < \infty.$
 - (c) For any $\psi \in \mathcal{H}$, $\sum_{n \in \mathbb{N}} \langle \psi, \varphi_n \rangle_{\mathcal{H}}$ exists.
- 7. Show that if $\{\varphi_n\}_{n\in\mathbb{N}}$ is a sequence of vectors in \mathcal{H} , then item (a) above implies item (c) above. Find an example where item (c) does *not* imply item (a).
- 8. Let $N \in \mathbb{N}$, $\alpha \in \mathbb{C}$ with $\alpha^N = 1$ and $\alpha^2 \neq 1$. Show that in \mathcal{H} , for any $\varphi, \psi \in \mathcal{H}$:

$$\langle \varphi, \psi \rangle_{\mathcal{H}} = \frac{1}{N} \sum_{n=1}^{N} \alpha^n \|\psi + \alpha^n \varphi\|^2.$$

Show also that

$$\langle \varphi, \psi \rangle_{\mathcal{H}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}\theta} \left\| \psi + \mathrm{e}^{\mathrm{i}\theta} \varphi \right\|^2 \mathrm{d}\theta.$$

 $9. \ Let$

$$\{\varphi_n\}_{n\in\mathbb{N}}, \{\psi_n\}_{n\in\mathbb{N}}\subseteq\{\xi\in\mathcal{H}\mid \|\xi\|\leq 1\}.$$

Assume further that $\lim_{n \in \mathbb{N}} \langle \varphi_n, \psi_n \rangle \to 1$. Show that

$$\lim_{n\in\mathbb{N}}\|\varphi_n-\psi_n\|=0$$

10. Let $\{\varphi_n\}_n \subseteq \mathcal{H}$ converge to some $\varphi \in \mathcal{H}$ weakly (i.e., for any $\xi \in \mathcal{H}$, $\langle \xi, \varphi_n \rangle \to \langle \xi, \varphi \rangle$ in \mathbb{C}). Assume further that $\|\varphi_n\| \to \|\varphi\|$ in \mathbb{R} . Show that

$$\lim_{n \to \infty} \|\varphi_n - \varphi\| = 0.$$

11. Let V be an inner product space and $\{\varphi_n\}_{n=1}^N \subseteq V$ be an orthonormal set. Show that, for fixed ψ , the functional

$$F(\alpha_1,\ldots,\alpha_N) := \left\| \psi - \sum_{n=1}^N \alpha_n \varphi_n \right\|$$

of the N numbers $\alpha_1, \ldots, \alpha_N \in \mathbb{C}$ is minimized with the choice $\alpha_n := \langle \varphi_n, \psi \rangle$.

12. Prove that if A and B are two disjoint measure spaces then

$$L^{2}(A \sqcup B) \cong L^{2}(A) \oplus L^{2}(B)$$
.

13. Prove that if A and B are two measure spaces then

$$L^{2}(A \times B) \cong L^{2}(A) \otimes L^{2}(B)$$
.

14. Show that

$$\mathcal{H} := \ell^{2}(\mathbb{R}) \equiv \left\{ f: \mathbb{R} \to \mathbb{C} \mid f^{-1}(\mathbb{C} \setminus \{0\}) \text{ is a countable set and } \sum_{x \in \mathbb{R}} \left| f(x) \right|^{2} < \infty \right\}$$

is a non-separable Hilbert space.

2 C-star algebras

In the following exercises, \mathcal{A} is a C-star algebra with involution $* : \mathcal{A} \to \mathcal{A}$ and norm $\|\cdot\|$. $a, b, \dots \in \mathcal{A}$. Please see the corresponding section in the lecture notes for the definitions of algebraic conditions on elements in a C-star algebra.

When solving these exercises please don't forget that $\mathcal{B}(\mathcal{H})$ is a c-star algebra so everything you prove here will be useful for operators on Hilbert space.

15. Show that if a is a partial isometry (i.e. $|a|^2$ is an idempotent) then $a = aa^*a = aa^*aa^*a$.

- 16. Show that a is a partial isometry iff a^* is a partial isometry.
- 17. Show that if p, q are self-adjoint projections then $||p q|| \le 1$.
- 18. Show that if u, v are unitary then $||u v|| \le 2$.
- 19. Show that if a is self-adjoint with $||a|| \leq 1$ then

$$a + i\sqrt{1 - a^2}, \qquad a - i\sqrt{1 - a^2}$$

are unitary. Conclude that any $b \in \mathcal{A}$ is the linear combination of four unitaries.

- 20. Two self-adjoint projections p, q are said to be orthogonal (written $p \perp q$) iff pq = 0. Show that the following are equivalent:
 - (a) $p \perp q$.
 - (b) p + q is a self-adjoint projection.
 - (c) $p + q \le 1$.
- 21. Let v_1, \ldots, v_n be partial isometries and suppose that

$$\sum_{j=1}^{n} |v_j|^2 = \sum_{j=1}^{n} |v_j^*|^2 = \mathbb{1}.$$

Show that $\sum_{j=1}^{n} v_j$ is unitary.

22. Show that for any $\varepsilon > 0$ there exists a $\delta_{\varepsilon} > 0$ such that if a obeys

$$\max\left(\left\{ \|a - a^*\|, \|a^2 - a\| \right\}\right) \le \delta_{\varepsilon}$$

then there exists a self-adjoint projection p with $||a - p|| \le \varepsilon$.

23. Show that for any $\varepsilon > 0$ there exists a $\delta_{\varepsilon} > 0$ such that if a obeys

$$\max\left(\left\{\left\||a|^{2}-\mathbb{1}\right\|,\left\||a^{*}|^{2}-\mathbb{1}\right\|\right\}\right)\leq\delta_{\varepsilon}$$

then there exists a unitary u with $||a - u|| \le \varepsilon$.

- 24. Show that $\sigma\left(p\right)\subseteq\left\{ \,0,1\left.\right\}$ for an idempotent p.
- 25. Show that ||p|| = 1 for a non-zero self-adjoint projection p.
- 26. Show that the spectral radius r(a) of a self-adjoint a equals its norm ||a||.
- 27. Show that $\sigma(u) \subseteq \mathbb{S}^1$ if u is unitary (i.e. $|u|^2 = |u^*|^2 = \mathbb{1}$).
- 28. Show that $\sigma(a) \subseteq [0,\infty)$ if a is positive (i.e. $a = |b|^2 \exists b$).
- 29. Show that $\sigma(a) \subseteq \mathbb{R}$ if $a = a^*$.
- 30. Show that a is invertible if $|a|^2 \ge \varepsilon 1$ for some $\varepsilon > 0$ and $|a^*|^2 \ge \delta 1$ for some $\delta > 0$; (recall $a \ge b$ iff $a b \ge 0$ iff $a b = |c|^2$ for some c).