Functional Analysis Princeton University MAT520 HW5, Due Oct 27th 2024

October 20, 2024

1 Banach algebras and the spectra of elements in it

In the following, \mathcal{A} is a \mathbb{C} -Banach algebra.

- 1. Prove Fekete's lemma: If $\{a_n\}_n \subseteq \mathbb{R}$ is sub-additive then $\lim_{n\to\infty} \frac{1}{n}a_n$ exists and equals $\inf \frac{1}{n}a_n$.
- 2. Let $R : \mathbb{C} \to \mathbb{C}$ be a rational function, i.e.,

$$R(z) = p(z) + \sum_{k=1}^{n} \sum_{l=1}^{q} c_{k,l} (z - z_k)^{-l}$$

where p is a polynomial, $n \in \mathbb{N}$, and $\{z_k\}_k, \{c_{k,l}\}_{k,l} \subseteq \mathbb{C}$. Let now $a \in \mathcal{A}$ such that $\{z_k\}_{k=1}^n \subseteq \rho(a)$. Assume further that we choose some $\sigma(a) \subseteq \Omega \in \text{Open}(\mathbb{C})$ such that R is holomorphic on Ω , and $\gamma_j : [a, b] \to \Omega$, $j = 1, \ldots, m$ a collection of m oriented loops which surround $\sigma(a)$ within Ω , such that

$$\frac{1}{2\pi i} \sum_{j=1}^{m} \oint_{\gamma_j} \frac{1}{z-\lambda} dz = \begin{cases} 1 & \lambda \in \sigma(a) \\ 0 & \lambda \notin \Omega \end{cases}$$

Using Lemma 6.26 in the lecture notes (= Lemma 10.24 in Rudin) show that R(a) obeys the Cauchy integral formula, in the sense that

$$p(a) + \sum_{k=1}^{n} \sum_{l=1}^{q} c_{k,l} (a - z_k)^{-l} = \frac{1}{2\pi i} \sum_{j=1}^{m} \oint_{\gamma_j} R(z) (z\mathbb{1} - a)^{-1} dz.$$

- 3. Let \mathcal{A} be such that there exists some $a \in \mathcal{A}$ with $\sigma(a)$ not connected. Show that then \mathcal{A} contains some non-trivial idempotent (an element $b \in \mathcal{A}$ with $b^2 = b \notin \{0, 1\}$).
- 4. Assume that $\{a_n\}_n \subseteq \mathcal{A}$ is a sequence such that $\exists \lim_n a_n =: a \in \mathcal{A}$. Let $\Omega \in \text{Open}(\mathbb{C})$ contains a component of $\sigma(a)$. Show that $\sigma(a_n) \cap \Omega \neq \emptyset$ for all sufficiently large n. Hint: If $\sigma(a) \subseteq \Omega \sqcup \tilde{\Omega}$ where $\tilde{\Omega} \in \text{Open}(\mathbb{C})$ (in particular this means $\Omega \cap \tilde{\Omega} = \emptyset$), define $f : \mathbb{C} \to [0, 1]$ such that $f|_{\Omega} = 1$ and $f|_{\tilde{\Omega}} = 1$.
- 5. Let X, Y be two Banach spaces and A, B be two bounded linear operators on X, Y respectively. Let $T \in \mathcal{B}(X \to Y)$. Show that the following two assertions are equivalent:
 - (a) TA = BT.
 - (b) Tf(A) = f(B)T for any $f: \mathbb{C} \to \mathbb{C}$ holomorphic in some open set U which contains $\sigma(A) \cup \sigma(B)$.