Functional Analysis Princeton University MAT520 HW4, Due Oct 6th 2024

September 28, 2024

Here's a list of problems I thought were nice, solve as many as you like and as many as doesn't cause you sleep deprivation.

1 Weak stuff

- 1. Prove that any norm-closed convex bounded subset of a reflexive Banach space is weakly compact.
- 2. Define the Banach space $\ell^{\infty}(\mathbb{N}) := \{ a : \mathbb{N} \to \mathbb{C} \mid ||a||_{\infty} < \infty \}$ with the norm $||a||_{\infty} \equiv \sup_{n} |a_{n}|$. Also define

$$\ell^1(\mathbb{N}) := \{ a : \mathbb{N} \to \mathbb{C} \mid ||a||_1 < \infty \}$$

with the norm $||a||_1 := \sum_{n \in \mathbb{N}} |a_n|$. Our goal here is to use the Banach-Alaoglu theorem to exhibit an element of $(\ell^{\infty})^*$ which is not in ℓ^1 .

(a) Define $\{\mu_n\}_n \subseteq (\ell^{\infty})^*$ via

$$\mu_n\left(a\right) := \frac{1}{n} \sum_{j=1}^n a_j \qquad \left(a \in \ell^\infty, n \in \mathbb{N}\right) \,.$$

Show that $\mu_n \in (\ell^{\infty})^*$ indeed and $\|\mu_n\| \leq 1$.

- (b) Show there exists some $\mu \in (\ell^{\infty})^*$ that is the limit of $\{\mu_n\}_n$ (in the weak-star topology).
- (c) Show that $(\ell^1)^* = \ell^\infty$.
- (d) Hence we may think of $J(\ell^1) \subseteq (\ell^\infty)^*$ where J is the natural isometric injection. Show that the limit μ constructed above does *not* lie in $J(\ell^1)$. That is, show that for any $x \in \ell^1$, $J(x) \neq \mu$.
- 3. Let $\{f_n\}_n$ be given by

$$f_n(t) := e^{int} \qquad (t \in [-\pi, \pi])$$

Show that if $p \in [1, \infty)$ then $f_n \to 0$ weakly in $L^p([-\pi, \pi])$, but not in the norm topology of $L^p([-\pi, \pi])$.

- 4. Consider $L^{\infty}([0,1])$ with its norm topology (the essential supremum norm), and, since $(L^1([0,1]))^* = L^{\infty}([0,1])$, the weak-star topology on $(L^1([0,1]))^*$, which is a topology on $L^{\infty}([0,1])$. Show that C([0,1]) (the space of all continuous functions) is dense in L^{α} but not in L^{β} , for either $(\alpha, \beta) = (1, \infty)$ or $(\alpha, \beta) = (\infty, 1)$.
- 5. Let X be an infinite-dimensional Banach space and define

$$S := \{ x \in X \mid ||x|| = 1 \} .$$

Show that the weak-closure of S is

$$B := \{ x \in X \mid ||x|| \le 1 \} .$$

- 6. Let X be a Banach space, and $\{L_n\}_n \subseteq X^*$ be a sequence which converges to some $L \in X^*$ in the weak-star sense. Assume that $\{x_n\}_n \subseteq X$ converges to some $x \in X$ in norm. It is true that $L_n(x_n) \to L(x)$ in \mathbb{C} ?
- 7. Find an example of a Banach space X for which there does not exist a Banach space Y such that $Y^* = X$.

2 Banach algebras

Here \mathcal{A} is a Banach algebra and x, y, \ldots are elements in it; $\mathcal{G}_{\mathcal{A}}$ is the set of invertible elements and $r : \mathcal{A} \to [0, \infty)$ is the spectral radius.

- 8. Use $(xy)^n = x (yx)^{n-1} y$ to show that r(xy) = r(yx).
- 9. Show that if $x, xy \in \mathcal{G}_{\mathcal{A}}$ then $y \in \mathcal{G}_{\mathcal{A}}$.
- 10. Show that if $xy, yx \in \mathcal{G}_{\mathcal{A}}$ then $x, y \in \mathcal{G}_{\mathcal{A}}$.
- 11. On the Banach space $\ell^2 (\mathbb{N} \to \mathbb{C})$, define the right shift operator $R \in \mathcal{B} (\ell^2 (\mathbb{N} \to \mathbb{C}))$:

$$(Ra)_n := \begin{cases} a_{n-1} & n \ge 2\\ 0 & n = 1 \end{cases}$$

and the right shift operator

$$(La)_n := a_{n+1} \qquad (n \in \mathbb{N}) \ .$$

Calculate RL and LR. Conclude that one may have xy = 1 but $yx \neq 1$ in a Banach algebra.

- 12. Show that $xy \mathbb{1}$ is invertible iff $yx \mathbb{1}$ is invertible.
- 13. Show that if $z \in \mathbb{C} \setminus \{0\}$ then $z \in \sigma(xy)$ iff $z \in \sigma(yx)$. I.e.,

$$\sigma(xy) \cup \{ 0 \} = \sigma(yx) \cup \{ 0 \}$$

Find an example where $\sigma(xy) \neq \sigma(yx)$.

14. Define $\mathcal{A} := C^2([0,1] \to \mathbb{C})$, the space of functions with continuous second derivative. Define, for a, b > 0,

$$||f|| := ||f||_{\infty} + a||f'||_{\infty} + b||f''||_{\infty}.$$

Show that \mathcal{A} is a Banach space. Show that \mathcal{A} is a Banach algebra (with pointwise multiplication) iff $a^2 \ge 2b$. You may consider the functions $x \mapsto x$ and $x \mapsto x^2$.

- 15. Show that if $z \in \partial \sigma(x)$ then $x z\mathbb{1} \in \partial \mathcal{G}_{\mathcal{A}}$.
- 16. Let $x \in \partial \mathcal{G}_{\mathcal{A}}$. Show there exists some $\{y_n\}_n \subseteq \mathcal{A}$ with $||y_n|| = 1$ and

$$\lim_{n \to \infty} x y_n = \lim_{n \to \infty} y_n x = 0.$$

Try to characterize the type of Banach algebras in which there are such elements x (which are called *topological divisor of zero*).

17. On $\ell^2 (\mathbb{N} \to \mathbb{C})$ define $T \in \mathcal{B} \left(\ell^2 (\mathbb{N} \to \mathbb{C}) \right)$ via

$$T(a_1, a_2, a_3, a_4, \dots) := (-a_2, a_1, -a_4, a_3, \dots)$$
.

Calculate $\sigma(T)$.

- 18. Show that if $x \in \mathcal{A}$ is nilpotent (i.e. $\exists n \in \mathbb{N}$ with $x^n = 0$) then $\sigma(x) = \{0\}$.
- 19. Show that r is upper semicontinuous.