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MATS20- Functional Analysis-

Final Sol-n

Lond : LNE Lecture notes

M Uniper's thm. is
propon

in LN in

Thm
.

10 .27.

D Let ZEBIH) :

① 1-1712 , 1-1
* 12 EST/6)

& ZE J(20) : index (2)= 0
.

Claim : - Her12) : Z-HEHH).

Proof : 1-17R = (1-121) (1 + IED
~

into
.

=> 1-121 et foo .

z = pol(z)1Z1
=> z-pol(z) = pol(z) 121-pol(z)

= polizi (121-1) EN .



Now , as index(zi =0,

dimber z = dim Coker z

= dim (imz)t
=>- unitary linite matrix

M : kor(z) -> im (z) +.

But ker(z) = Kerlpolcell by def
=>

polcz)M : keriz++ber(z+imizleimizi

is unitary, and

Z-poliziem is opt. as

2-pol(z) is and M is

finite rank. T

E Claim : If A is a Estaralg,

neH(A) : 0(m) + $

then 7 cont path not
within &(A).



Prof: Let loge ! C+ I be the

single-orted log of branch

and at EE$, whore EE(2)?

Then onC) , loge is

analytic andhence cont.

[0 ,1] + + ((t) : = exp(+ i(1-y)tlog(u))
defines a conte path within

(A) w/ (10) = u

8(1) =1.

M4 Question has a mistake !
Need to assume index NUNN =0.

Otherwise false.
Let 1 =N

*
=28

dimkern = dimima = D.

Let Hell : CH,JEH.

Note that then AU = NUNNEF.



Indeed
, NU* is a paramotrix :

1-(r*)AU = n+ n+ - (0*A + N+Cua+N+)

=N-ar*UN

= N1- r*)N

= Nueu-u*nu) d

= Nu* (1-NUN

=

areatur ath
= Nr* N+ [0 ,n]

EX.

=> NU has an index,

Assume it is Zero.

Claim : - cont
.

10 ,17 48 I :

f(0) =Waf()) = 1
,

Proof : Write U= Un Viz in

[
Vas Uzz I

incateimca) decomp,

=> n = [i].



=> (v ,] EU En Viz
,
Unle H

.

Au =

[ ]
=> index (AU) = index (1)

= index (Un) + Index(11)

= index (Ui) .

But index (v) = index (VigUzz)

= index (U) + index/Vez).
Viz

,UzieK
and index is

Cpt . Stable

Since U is unitary ,
index (v) = 0.

=> O= index(Vi) + index(Uzz)
-

~

by hypo.

=> index(U22 =0 too
,

Moreover
,
IVR = I* 12 = 1.>

1-iil
,
1-Wi*keU

for i = 1
,
2 as Viz

,UzEK.



By D ,
Vis may be extended

to Bii
, an honest unitary : Vii-BiitK.

=> B := Bud Bez is a

unitary cpt-ly away from U.

Deline A := UB* = A unitary

and 1-A = BBY- UBA

= (B -r)B* EX,

=> Foss(A) = Oss(1) = 513 ,

=> A cannot have OCA)= $1

the cpt . op. 1-A can only have

accum . near zero A has accum,

near 1
.

So deform B diag . WritN

and A via B-

Counter-example to show original phrasing
of Q is wrong :



R bilat
. right shift on eCT2)

n = X(X) proj ,
to right on (T).

than LMINJxy=MGM
=
- Ex

, Sy, 1

finite rank=> opt .

But indoxAR-index = -1.

unilat , shift on

e(N)

Now
, R2z has empty her and

one-dim coker
, so it cannot be extended

to a unitarycptty away !
Indeed if that were possible its

index would be zero !
Moreover

,
it is impossible to deform R

to 1 within unitaries which essentially
commute of N via Carey -Hurst-Obviou 182



JFA .

SORRY :



1 This is prozen in the

MATSGS LN Lemma 3
.

11 :

Lemma 3 .
12 referenced here is

Lomma 9
.81 in our own LN ?





# this is thm
. 10.7 in our own

LN (which has been promoted now from
a shetch to actual proof).

# Let - D = 21-R-R* on

ECT) / R the bitat
· right

shift ,

Thou / F : (7)-+ 2:($)

↑) ↳>Chrin
wo get FLAI

*
= Ma w/

Elk) = 2- 2csf) ke[T]
·

This diagonalizes the Laplacian as

follows : LetFiRtK be bod
. &

msrbe .
Then F is unitary

<4
, f(-a4* F3,(4)

= <FY
, Ff(D) F*(4)



=>h (Fuck Fach (Eh s

But not quite as we'd like since

we want a mme . up , by ErsE
.

One concrete possibility is a change

ofpar bree
.

E : = <(k) Ek = E-(E)=arcos(1-tE)

Then drede
No ken have ( : = FG

,
4 :=54) :

Y(k) = Elk +Eche) of
4
,
2(k) = ((k) = Y(- (1).

Since Greech is even, so is for
=> The crossterms dropout and we got
44

, fla)4)= flech



Now
,
sinceh Y Ch) is even

, we may
write

<4
, (4)=Eih Fisch Each

i = 1,2

On 10, the change of year.

Gree makes

sense so we get

<4
, f()4)=arcade

We now identify Eras
to

(Radon-Nikodym derivative wind
.
The Leb,

msr. ) of the spectral mor. of - A within

each cyclic slsp .
What are those sispaces ?

Woll
,I preserves parity ,

so these are the

ever/old wavefris onTL)·

So e2(7) = Ne 10 o

Go% = (4E())4-n = 14n net).



Indeed
,
these are closed vls/sp ,

which are to

Then
,
let

yu
be the man. on R def.

by := Foug(E)
↑
Leb . Mar.

LCR
,m) = [4 :R- C/Sid

U : th
;
-> ↳(1

,pul
4 - Poarcos (1-0) ·

By the above this map is well-def, and

unitary ,

ViC-AU
*

is mul , by ErsE.

V : = U, U .

This may also be done more systematically

by showing that do and G-5,



are cyclic for -A . In fact,

12
,

= spanch(-9(do IneN3

The = spanch GAR (5-E .
) /HENG)·

Then calc,
the spec , mor. of these

pectors. It will be
yu.



⑰
#

E

















M











Let A =A* E(H) and X
.

(A) the

proj .
-real. msr, of A.

Claim : UCA) = Gxem /Vaio , XB(A) +O]
Preof : No will show PCA) = E ... 3?

E for /A,4
the spec , mor . ef

(A ,4) , wo know supply,
4) [OCA)

So if XePCA) , MA ,
4 (Ba(X) = 0 Esso,

ButIt is arbit and

MA ,4 (Ba(x) = (4
,Y
Ba

(A) 4) = 0
.

Hence XB(A) =O as this is

a S
.A . proj.

# Let xed...? Then Jero :

-4,4628 ,
14, XB(A)4) = 0 .



T
. e,

(4, 47= (4
, (XB

,
(x)(A) +[ XB((x) (A)]

+) 4)
by hypo .

( (4
, XB()(A) + 4)

= (4
, XBa(A)4) .

Now
, if f(x := [ * XeBa

o olse

and g(x) = X-X we get

(4, f(A) g(A)4) = 54, (fg(CA) 3)

=S (fg(x data

GERfde



SebaA
=

<4
,XB(A) 4)

=
(4
, 4)

Since 4, 4 were arbitrary,

gCAT = A-11 has an inverse.

#Xe P(A) .

D

I Let If be a sep . Hil , spo

Claim : The only opnorm-closed - ideals

in P(C) are Gob
,
(14)

,
81101.

Prof : Let IBMI be some nonfrie.

*- closed ideal.

(Claim ! ((1)E I .



Proof 1 Let p be a rank- proj.
then FACILSoS , PAtI is

a rank-1
op

PA = 404* 74,4th .

By star-closeness
,
4& Y* I too ,

from there by composing w/

44
42 I

we get to any oher rankt

op ,
and by fin .

comb ,
to

anyhin . rank.

Norm closed -> Cpt up
to

Now
, if A I< <(12) , W

.T. S.

1 I.

Since A is NOT et , it is

impossible that both RoSAS, FmdAS

are cpt ., so by
Thm

,
9

. 60 , Jess (BItho]



for some B =BH I.

This impties that B is a Fredholm

op ., so by Atkinson's &m.

(thm .
1 . 51) that I GeF

Sit .

1-BG
EH(l)

1-GB

But since I is an ideal,

that means BG ,
GBE I

, i . 0.,

1- Ki
,

1- k2 = I

for somecpt . Kiska .
But HEF,

So LEI # I = B() ·



El









/Lot A = UIAI be the polar decomp.

G xzh(xx0)
Xt

Claim : V = Shim AfuCIA

Prof : # U-Slim UIAUCA

E UStim (1-1AIfuCAD)=

↳ U (SINCIAl))



w/gn(x):= 1- Xfu(x) - X30.

I
. 0

., gn(x = E
⑧ Xih

1-uX0XXh

On is Borot inside . & bod
. W/

llfully = 1
. Moreover

, qued
the limit being -equie ,

to to

zero en .

Hense byThm ,
10 . 16 in L

.
N.

Stim InCIAl = XGoSCIAl .

But by
o
a

polar decomp , im(XSoSCA))= korr=

# Clim ! If AE8(10) is normal then

WCA) = /All
.

Proof : By the functional calculus
,

llAll = 11 S I daI↑
proj-tal. Mor . of A



Let A,B-BA) be S
.
A: (A ,B] =O.

Then [Ralz , Rg(wl] =0 for

RA(z) = (A -z1) zek-R
.

Via Stone'sSom , we may recover the

projection-reached measures &PA as

E)Xcaiby(Al +Xcabs (A)) =StuMERlEtisblE
Moreover

,
this formula shows



[dPA , diB] = 0 .

This allows us to deline a mor.

PABIS ,
XS2) : = PalSi) PBISz) (GSzER)

on "cylinder" sets from which we

may extend toisrbe, Sets of IR2,

Thus we now delne,
↓ Borot bod,

f : R2- C

the operator

f(A ,B) = G
(1

,
12/Re

f(x2) dQAB (xix2)

In particular, to get the unitary

deline, o Het

He := [FCA,B141 f :Re morbe, body

and : Sp-> L2(dRAB4)

4 - 1

At 2 Xrx

B44 XHA2



and if 1475,
continue in this way,

For more details
, see Feldman e. g.

This notes are attacked here, slightly

different approach...
(



Spectral Theorem for Commuting Normal Operators

Throughout these notes H is a Hilbert space and L(H) is the set of all bounded linear

operators with domain H and taking values in H. First recall

Definition 1 (Normal Operator) An operatorA → L(H) is called normal if A→A = AA→.

That is, if A commutes with its adjoint.

Remark 2 (Normal Operators)

(a) A self–adjoint operator A → L(H) obeys A = A→ and hence is normal.

(b) A unitary operator U → L(H) obeys UU→ = U→U = 1l and hence is normal.

(c) Any operatorA → L(H) can be written in the form A = ReA+i ImA with, by definition,

ReA = 1
2 (A + A→) and ImA = 1

2i (A − A→). Both ReA and ImA are self–adjoint. The

operator A is normal if and only if ReA and ImA commute.

In these notes we prove

Theorem 3 (Spectral Theorem for Commuting Bounded Normal Operators)

Let n → IN and let {A1, A2, · · · , An} ⊂ L(H) be a finite set of commuting, normal, bounded

operators. Then there exist

◦ a measure space 〈M,Σ, µ〉 and

◦ n bounded measurable functions ai : M → C, 1 ≤ i ≤ n and

◦ a unitary operator U : H → L2(M,Σ, µ)

such that
(

UAiU
−1ϕ

)

(m) = ai(m)ϕ(m)

for all ϕ → L2(M,Σ, µ) and all 1 ≤ i ≤ n. If H is separable, µ can be chosen to be a finite

measure.

Proof: Step 0 (Reduction to self–adjoint operators):

By Fuglede’s theorem (proven below), if the normal operators {A1, A2, · · · , An} commute,

then so do all of the operators {A1, A2, · · · , An, A
→
1, A

→
2, · · · , A

→
n}. Consequently we may

restrict our attention to commuting, self–adjoint, bounded operators simply by replacing

{A1, A2, · · · , An} with {ReA1, ImA1,ReA2, ImA2, · · · ,ReAn, ImAn}. So from now on

assume that {A1, A2, · · · , An} ⊂ L(H) is a finite set of commuting, self–adjoint, bounded

operators.
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https://personal.math.ubc.ca/~feldman/m511/
commutingNormalSpThm.pdf



Step 1 (f(A1, · · · , An) for some simple functions f):

Set, for 1 ≤ i ≤ n, Ii = [−⇒Ai⇒, ⇒Ai⇒] and then set I = I1 × I2 × · · ·× In ⊂ IRn. Define

the set of “rectangles” in I to be

R =
{

B1 ×B2 × · · ·×Bn ⊂ I
∣

∣ Bi ⊂ Ii, Borel, for each 1 ≤ i ≤ n
}

There are quotation marks around “rectangles” because the sides of the “rectangles” are

Borel sets rather than intervals. We are about to define f(A1, · · · , An) for all simple

functions f : I → C that have the special form specified in

S =
{

f(x) =
m
∑

j=1

αj χRj
(x)

∣

∣

∣
αj → C, Rj → R, 1 ≤ j ≤ m

}

We have already defined, in the functional calculus version of the spectral theorem (The-

orem 27 in the notes [spectralReview.pdf]), χBi
(Ai) for each Borel Bi ⊂ Ii and 1 ≤ i ≤ n.

We also already know the following.

◦ χBi
(Ai) is an orthogonal projection. (This is an immediate consequence of [spectral-

Review.pdf, Theorem 27.a].)

◦ χBi
(Ai) and χBj

(Aj) commute for all measurable Bi ⊂ Ii, Bj ⊂ Ij, 1 ≤ i, j ≤ n.

(This is an immediate consequence of [spectralReview.pdf, Theorem 27.g].)

◦ If the measurable sets Bi, B
′
i ⊂ Ii are disjoint, then χBi

(Ai)χB′

i
(Ai) = 0. (This is an

immediate consequence of [spectralReview.pdf, Theorem 27.a,b].)

We define, for each R = B1 ×B2 × · · ·×Bn → R

χR(A1, · · · , An) =
n
∏

j=1

χBi
(Ai)

and for each f =
∑m

j=1 αj χRj
(x) → S

f(A1, · · · , An) =
m
∑

j=1

αj χRj
(A1, · · · , An)

From the above bullets

◦ χR(A1, · · · , An) is an orthogonal projection for each rectangle R → R.

◦ If the rectangles R,R′ → R are disjoint, then χR(A1, · · · , An)χR′(A1, · · · , An) = 0.

Here is the main property that we need of the operators f(A1, · · · , An), f → S.

Lemma 4 If f → S then

⇒f(A1, · · · , An)⇒ ≤ sup
x∈I

|f(x)|
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Proof. Let f → S. We may always write f in the form f =
∑m

j=1 αj χRj
(x) with all

of the Rj’s disjoint (by possibly subdividing some of the Rj’s) and with
⋃n

j=1 Rj = I

(by possibly having some of the αj ’s zero). Then every x → I is an element of exactly

one Rj and the range of f is exactly
{

αj

∣

∣ 1 ≤ j ≤ m
}

. So

sup
x∈I

|f(x)| = max{|αj | | 1 ≤ j ≤ m}

Now the χRj
(A1, · · · , An)’s project onto mutually orthogonal subspaces of H and,

since
⋃n

j=1 Rj = I, we have
∑m

j=1 χRj
(A1, · · · , An) = 1l. So, for every v → H,

v =
m
∑

j=1

χRj
(A1, · · · , An)v

=⇒ ⇒v⇒2 =
m
∑

j=1

⇒χRj
(A1, · · · , An)v⇒

2

and

f(A1, · · · , An)v =
m
∑

j=1

αj χRj
(A1, · · · , An)v

=⇒ ⇒f(A1, · · · , An)v⇒
2 =

m
∑

j=1

|αj|
2 ⇒χRj

(A1, · · · , An)v⇒
2

≤ max{|αj| | 1 ≤ j ≤ m}2
m
∑

j=1

⇒χRj
(A1, · · · , An)v⇒

2

= max{|αj| | 1 ≤ j ≤ m}2⇒v⇒2

The rest of the proof is identical to the corresponding parts of the proof of the multiplication

operator version of the spectral theorem. Here is a very coarse outline of the remaining

steps in the proof.

Step 2 (f(A1, · · · , An) for continuous functions f):

By the Stone–Weierstrass Theorem, every continuous function f : I → C, is a uniform

limit of a sequence
{

f!
}

!∈IN
of simple functions in S. So we can define

f(A1, · · · , An) = lim
!→∞

f!(A1, · · · , An) → L(H)

By Lemma 4 in Step 1, the right hand side converges in norm. Consequently the map

f → C(I) ,→ f(A1, · · · , An) → L(H) is
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◦ continuous and

◦ linear and obeys

◦ (fg)(A1, · · · , An) = f(A1, · · · , An) g(A1, · · · , An) and

◦ f(A1, · · · , An)→ = (f̄)(A1, · · · , An).

Step 3 (Construction of µv):

Let 0 -= v → H. Then

$v(f) = 〈v , f(A1, · · · , An)v〉H

is a positive linear functional on C(I). So, by the Riesz–Markov Theorem, there is a

unique, fnite, regular Borel measure µv on I such that

〈v , f(A1, · · · , An)v〉H =

∫

I

f(x) dµv(x)

for all f → C(I).

Step 4 (Construction of Hv and Uv):

Let 0 -= v → H and set

Hv =
{

f(A1, · · · , An)v
∣

∣ f → C(I)
}

Lemma 5 There is a unique unitary operator Uv : Hv → L2(µv) such that

Uvv = 1

(UvAiU
−1
v

)f(x) = xi f(x) 1 ≤ i ≤ n

Proof. Set

Dv =
{

f(A1, · · · , An)v
∣

∣ f → C(I)
}

and define Ũv : Dv → L2(µv) by

(

Ũvf(A1, · · · , An)v
)

(x) = f(x)

This operator is

◦ well–defined

◦ linear

◦ inner product preserving

As Dv is dense in Hv, we can use the BLT theorem to define Uv as the continuous

extension of Ũv to Hv. Then Uv has the required properties and is indeed uniquely

determined by those properties.

Step 5 (Completion of the proof by Zornification):

If Hv = H, we are done. If not Zornify.
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Theorem 6 Let A, T → L(H). If A is normal and T commutes with A, then T commutes

with A→.

Proof: By induction AnT = TAn for all 0 ≤ n → ZZ. As the exponential series eλ̄A =
∑∞

n=0
1
n! (λ̄A)n converges in norm, we have

eλ̄AT = Teλ̄A =⇒ eλ̄ATe−λ̄A = T =⇒ e−λA∗

eλ̄ATe−λ̄AeλA
∗

= e−λA∗

TeλA
∗

for all λ → C. As A is normal, we have that e−λA∗

eλ̄A = e−λA∗+λ̄A and furthermore that

U(λ) = e−λA∗+λ̄A obeys U(λ)→ = U(−λ) = U(λ)−1. Thus U(λ) is unitary and is hence of

norm 1. So

⇒e−λA∗

TeλA
∗

⇒ = ⇒U(λ)T U(−λ)⇒ ≤ ⇒T⇒

This shows that the analytic operator valued function e−λA∗

TeλA
∗

is bounded uniformly

on all of C. So e−λA∗

TeλA
∗

has to be independent of λ and

e−λA∗

TeλA
∗

= e−λA∗

TeλA
∗

∣

∣

∣

λ=0
= T

for all λ. Differentiating with respect to λ and then setting λ = 0 gives

−A→T + TA→ = 0

as desired.
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