DEC 24 2024

MATS20 --- Functional Analysis ---

Final Sol-n

Legand: LN = Lecture notes

QI Kniper's Unm. is proven in LN in Thm. 10.27. Q2Let ZEB(H): ① 1-121<sup>2</sup>, 1-12<sup>\*</sup>1<sup>2</sup> ∈ H(H) (2)  $2 \in F(H)$ ; index (2)=0. Claim: J LEZL(H): Z-UEH(H).  $P_{\text{reof}} \cdot 1! - 12!^2 = (1 - 12!)(1 + 12!)$ inv. ⇒ 11-121 e fi too. Z=pol(2)121 => Z - pol(2) = pol(2)121 - pol(2) = pol(2)(121-11) EH.

Now, as index (2) = 0, dimber 2 = dim coker 2 = dim  $(im 2)^{\perp}$ . => ] Unitary finite matrix  $M: ker(2) \longrightarrow im(2)^{\perp}$ . But ker(Z) = ker(pol(Z)) by def. pol(2) @ M : kar(2) + @ kar(2) → im(2) @ in(2) is unitary, and 2 - pol(2) OM is opt. as Z-pol(Z) is and M is finite rank. Q3 Claim: If A is a C-slar alg,  $u \in U(A) : \sigma(u) \neq B'$ 

then I cont. path uno I

wilhin (l(A).

 $P_{\underline{roof}}$ : Let  $\log_{\mathcal{E}} : \mathbb{C} \to \mathbb{C}$  be the Single-portned log w/ branch  $Cut at E \in \mathbb{B}^{\prime}$ , where  $E \in \mathcal{O}(u)^{c}$ . Then on o(u), loge is analytic and hence cont.  $[0,1] \ni t \mapsto \mathscr{V}(t) := \exp(+i(1-t)\frac{1}{i}\log_{2}(u))$ defines a cont. path within l(A) w/ y(o) = uとい=少.  $\left[ \begin{array}{c} 0 \\ 4 \end{array} \right]$ Question has a mistakel Need to assume index NUN+N+=0. Othenwise false. Let  $\Lambda = \Lambda^* = \Lambda^2 \in J^2$  $\dim \ker \Lambda = \dim \operatorname{im} \Lambda = \infty$ .  $U \in U : [U, \Lambda] \in K.$ Let Note that then  $AU = AUA + AL \in \mathcal{F}$ .

Indeed, AU\* is a parametrix:  $1 - (AU^*) AU = A + A^+ - (AU^* A + A^+) (AUA + A^+)$  $= \bigwedge - \bigwedge \cup \bigstar \bigwedge \bigcup \bigwedge$  $= \Lambda(1 - U^* \Lambda U) \Lambda$  $= \Lambda(U^*U - U^*\Lambda U) \Lambda$  $= \Lambda U^{*}(1 - \Lambda) U \Lambda$ E X.  $\rightarrow$  AU has an index. Assume it is Zero. (laim: ∃ cont. [0,1]≥t→S(t)∈ It:  $\mathcal{T}(0) = \bigcup \quad \land \quad \mathcal{T}(1) = 1,$ Proof: Write  $U = \begin{bmatrix} U_{11} & U_{12} \end{bmatrix}$  in  $\begin{bmatrix} U_{21} & U_{22} \end{bmatrix}$ inc(A<sup>⊥</sup>) @ inc(A) de comp,  $\implies \Lambda = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$ 

$$\Rightarrow [U, \Lambda] \in \mathcal{H} \Leftrightarrow U_{12}, U_{21} \in \mathcal{H}.$$

$$AU = \begin{bmatrix} U_{11} & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow index (\Lambda U) = index (U_{11} \oplus 1)$$

$$= index (U_{11}) + index(1)$$

$$= index (U_{11}) + index(1)$$

$$= index (U_{11}).$$
But  $index (U) = index (U_{11} \oplus U_{22})$ 

$$U_{12}, U_{21} \in \mathcal{H}$$

$$Cand index is costs cost$$

By [Q2], Vii may be extended to Bis, an honest unitary: Vis-Bise K.  $\implies B := B_{11} \oplus B_{22}$  is a Unitary cpt. - ly away from U. Define A := UB\*. => A unitary and  $1 - A = BBx - UB^{*}$  $= (B - U) B^* \in \mathcal{K},$  $\implies \overline{\mathrm{Tess}}(A) = \overline{\mathrm{Tess}}(1) = \frac{1}{2}1\frac{1}{2}.$  $\Rightarrow$  A cannot have  $\sigma(A) = \mathbb{B}^{1}$ the cpl. op. 11-A can only have Accum. near zero (=> A has accum. near 1. So deform B diag. w.r.t. A and A roia [Q3]. Countor-example to show original phrasing of Q is wrong:

R bilat. right shift on  $l^2(72)$  $\Lambda \equiv \mathcal{H}_{N}(X)$  proj. to right on  $l^{2}(\mathbb{Z})$ .  $[R, \Lambda]_{xy} = (\Lambda(x) - \Lambda(y))R_{xy}$  $= (\Lambda(x) - \Lambda(y))\delta_{x,y+1}$ Ipen  $= -\delta_{x_{10}}\delta_{yr1}$ finite rank => cpt. But index  $AR = index \hat{R} = -1$ . Unilat. shift on l<sup>e</sup>(N) Now, R22 has empty her and Ono-dim coher, so it cannot be extended to a unitary ythey away! Indeed if that were possible its indax would be zero! Moreover, it is impossible to defirm R to Il within unitarius which essentially commute us A via Carey-Hurst-Obrien 182

FPA. SORRY 8 ( 0 (

## his is proven in

The Lemma MAT 595 3,11%

**Lemma 3.11.** Let P be local as in (1.2) and such that  $||P|| \leq 1$  and  $f \in \ell^{\infty}(\mathbb{Z}^2)$  be such that there exists some  $D<\infty$  with which

$$|f(x) - f(y)| \leq D \frac{\|x - y\|}{1 + \|x\|}.$$
(3.6)

Then [P, f(X)] is Schatten-3. In particular it is compact.

106

*Proof.* We have  $[P, f(X)]_{xy} = P_{xy}(f(x) - f(y))$  and using Lemma 3.12 just below, we have

$$\|[P, f(X)]\|_3 \leq \sum_{b \in \mathbb{Z}^2} \left( \sum_{x \in \mathbb{Z}^2} \|P_{x+b,x}\|^3 |f(x) - f(x+b)|^3 \right)^{1/3}.$$

Now we have

$$||P_{x+b,x}||^3 \le C^3 e^{-3\mu ||b||}$$

so that together with (3.6) we have the estimate

$$\begin{split} \|[P, f(X)]\|_{3} &\leq \sum_{b \in \mathbb{Z}^{2}} \left( \sum_{x \in \mathbb{Z}^{2}} C^{3} \mathrm{e}^{-3\mu \|b\|} D^{3} \frac{\|b\|^{3}}{(1+\|x\|)^{3}} \right)^{\frac{1}{3}} \\ &= CD \sum_{b \in \mathbb{Z}^{2}} \mathrm{e}^{-\mu \|b\|} \|b\| \left( \sum_{x \in \mathbb{Z}^{2}} \frac{1}{(1+\|x\|)^{3}} \right)^{\frac{1}{3}} \\ &< \infty \,. \end{split}$$



**Lemma 9.81.** For any operator  $A \in \mathcal{B}(\mathcal{H})$ , an ONB  $\{\delta_x\}_{x \in \mathbb{Z}}$  of  $\mathcal{H}$ , and

 $A_{xy} := \langle \delta_x, A \delta_y \rangle \qquad (x, y \in \mathbb{Z})$ 

we have the estimate

$$\left\|A\right\|_{p} \leq \sum_{k \in \mathbb{Z}} \left(\sum_{x \in \mathbb{Z}} \left|A_{x+k,x}\right|^{p}\right)^{\frac{1}{p}}.$$

where  $\left\|A\right\|_{p} \equiv \left(\operatorname{tr}\left(\left|A\right|^{p}\right)\right)^{\frac{1}{p}}$  is the Schatten-p norm.

*Proof.* Let us decompose A to its diagonals as

$$A = \sum_{k \in \mathbb{Z}} A^{(k)}$$

defined via  $(A^{(k)})_{xy} \equiv A_{xy}\delta_{x-y,k}$  for all  $k \in \mathbb{Z}$ . Since  $\|\cdot\|_p$  is a norm, applying the triangle inequality we find

$$\|A\|_p \leq \sum_{k \in \mathbb{Z}} \left\|A^{(k)}\right\|_p$$

But now,

$$\begin{split} \left\|A^{(k)}\right\|_{p} &= \left(\operatorname{tr}\left(\left|A^{(k)}\right|^{p}\right)\right)^{\frac{1}{p}} \\ &= \left(\operatorname{tr}\left(\left(\left|A^{(k)}\right|^{2}\right)^{\frac{p}{2}}\right)\right)^{\frac{1}{p}} \\ &= \left(\left\|\left|A^{(k)}\right|^{2}\right\|_{\frac{p}{2}}^{\frac{p}{2}}\right)^{\frac{1}{p}} \\ &= \sqrt{\left\|\left|A^{(k)}\right|^{2}\right\|_{\frac{p}{2}}} \,. \end{split}$$

But note that

$$\begin{aligned} \left|A^{(k)}\right|^{2} \Big)_{xy} &\equiv \left(\left(A^{(k)}\right)^{*}A^{(k)}\right)_{xy} \\ &= \sum_{z \in \mathbb{Z}} \left(\left(A^{(k)}\right)^{*}\right)_{xz} \left(A^{(k)}\right)_{zy} \\ &= \sum_{z \in \mathbb{Z}} \left(A_{zx}\delta_{z-x,k}\right)^{*}A_{zy}\delta_{z-y,k} \\ &= \delta_{x,y} \sum_{z \in \mathbb{Z}} \left(A_{zx}\delta_{z-x,k}\right)^{*}A_{zy}\delta_{z-y,k} \\ &= \delta_{x,y} \left|A_{x+k,x}\right|^{2}. \end{aligned}$$

Since  $|A^{(k)}|^2$  is a-posteriori a diagonal operator, it is easy to calculate its Schatten- $\frac{p}{2}$  norm, since it is easy to take

its powers. Indeed,

$$\left[\left(\left|A^{(k)}\right|^{2}\right)^{\frac{p}{2}}\right]_{xy} = \delta_{x,y} \left|A_{x+k,x}\right|^{p}$$

and so

$$\begin{split} \left| \left| A^{(k)} \right|^2 \right|_{\frac{p}{2}}^{\frac{p}{2}} &= \operatorname{tr} \left( \left( \left| A^{(k)} \right|^2 \right)^{\frac{p}{2}} \right) \\ &= \sum_{x \in \mathbb{Z}} \left[ \left( \left| A^{(k)} \right|^2 \right)^{\frac{p}{2}} \right]_x \\ &= \sum_{x \in \mathbb{Z}} \left| A_{x+k,x} \right|^p. \end{split}$$

Collecting everything together we find

$$\begin{split} \left|A\right|_{p} &\leq \sum_{k \in \mathbb{Z}} \left| \left( \sum_{x \in \mathbb{Z}} \left|A_{x+k,x}\right|^{p} \right)^{\frac{p}{p}} \right|^{2} \\ &\leq \sum_{k \in \mathbb{Z}} \left( \sum_{x \in \mathbb{Z}} \left|A_{x+k,x}\right|^{p} \right)^{\frac{1}{p}} . \end{split}$$

 $Q_6$ This is Thm, 10,7 in our own LN (which has been promoted now from a sketch to actual proof). Q7 Let  $-\Delta \equiv 21 - R - R^*$  on e<sup>2</sup>(72) w/ R the bilat right shift. Then W/F;  $\ell^2(\mathbb{Z}) \rightarrow L^2(\mathbb{B}')$ 2 → (km Jieikn Un) we get  $F(-\Delta) F^* = M_a w/$  $\Sigma(k) = 2 - 2\omega s(k)$   $k \in [-\pi, \pi].$ This diagonalizes the Laplacian as follows: lat f: R->C be bold. fr msrbl. Then F is unitary  $\langle \Psi, f(-\Delta) \Psi \rangle = \langle F\Psi, Ff(-\Delta) \Psi \rangle$ = < F4, Ff(-1) F\*F的

 $=\frac{1}{2\pi}\int dh \quad (F\varphi)(k) \quad f(Ech) \quad (F\varphi)(k)$  $k=-\pi$ 

But not quite as we'd like since we want a mult up, by  $E \mapsto E$ .



 $E := \varepsilon(k) \iff k = \varepsilon^{-1}(E) = \pm \operatorname{arccos}(1 - \frac{1}{2}E)$ Then  $dk = \frac{1}{\sqrt{E(4-E)}} dE$ .

We then have  $(\hat{\varphi} := \mathcal{F}\varphi, \hat{\mathcal{Y}} := \mathcal{F}\varphi)$ :

 $\hat{\varphi}(k) = \hat{\varphi}(k) + \hat{\varphi}_2(k)$  w/  $\Psi_{1,2}(k) \equiv \frac{1}{2} \left( \hat{\varphi}(k) \pm \hat{\varphi}(-k) \right).$ Since Rr-> Ech) is even, so is foE. => The cross terms chop out and we get  $\langle \Psi, f(-\Delta) \Psi \rangle = \sum_{i=1/2}^{1} \frac{1}{2\pi} \int_{k=-\pi}^{\pi} \hat{\varphi}(h) f(\varepsilon(h)) \hat{\Psi}(h)$ 

Now, since  $\widehat{\Psi_i}(h)$   $\widehat{\Psi_i}(h)$  is even, we may write  $\langle \Psi, f(-\Delta) \Psi \rangle = \sum_{i=1/2}^{1} \frac{1}{\pi} \int_{k=0}^{11} \frac{1}{\hat{\varphi}(h)} f(\varepsilon(h)) \hat{\Psi}(h)$ On  $[0, \overline{u}]$  The change of year.  $h \mapsto E$  makes sense so we get  $\langle \Psi, f(-\Delta) \Psi \rangle = \sum_{i=1,2}^{4} \int_{i}^{4} (\operatorname{arcos}(1-\frac{1}{2}E)) \widehat{\Psi}(\operatorname{arcos}(1-\frac{1}{2}E)) \frac{1}{\Pi \sqrt{E(4-E)}} dE$ We now identify  $E \mapsto \frac{1}{TT} \frac{1}{\int E(4-E)}$  is the (Radon-Nikodym dorivative w.r.2. the Leb. msr.) of the spectral msr. of  $-\Delta$  within each cyclic slsp. What are these slspaces? Well, F prescribes parity, so these are the even/odd wave  $f^{n}$ 's on  $l^{2}(\mathbb{Z})$ . So  $l^{2}(\mathbb{Z}) = \mathcal{H}_{e} \oplus \mathcal{H}_{o}$  w  $\mathcal{Y}_{e/o} \equiv \left\{ \mathcal{Y}_{e} \ell^{2}(\mathbb{Z}) \right\} \qquad \mathcal{Y}_{-n} = \pm \mathcal{Y}_{n} \quad \forall n \in \mathbb{Z} \right\}.$ 

Indeed, these are closed rels/sp. which are I. Then, let pr be the mor on R def. by  $\frac{d\mu}{dR}(E) := \frac{1}{TT} \frac{1}{\sqrt{E(4-E)^2}} \chi_{[0,4]}(E)$ R Leb. msr.  $L^{2}(\mathbb{R},\mu) \equiv \left\{ \mathcal{L}:\mathbb{R} \to \mathbb{C} \right\} \quad \mathbb{R} \quad |\mathcal{L}|^{2}d\mu < \infty \right\}$  $V_i:\mathcal{H}_i\longrightarrow L^2(\mathcal{R},\mu)$ 4 → 4 o arccos (1-2.). By the above this map is well-def. and Unitary.  $U_i(-\Delta)U_i^*$  is mult by  $E \mapsto E$ .  $\bigcup := \bigcup_{n} \oplus \bigcup_{2} .$ This may also be clone more systematically by showing that  $S_0$  and  $S_1 - S_1$ 

are cyclic for -D. In fact,  $\mathcal{H}_{i} = \operatorname{spanc} f(-\Delta)^{n} \delta_{o} (\operatorname{neN} f)$  $\mathcal{N}_{z} = \text{spane} \left\{ (-\Delta)^{n} (\delta_{1} - \delta_{-1}) \mid \text{neN}_{f} \right\}$ Then calc. The spec. msr. of these rectors. It will be re.



![](_page_16_Figure_0.jpeg)

![](_page_17_Figure_0.jpeg)

![](_page_18_Figure_0.jpeg)

![](_page_19_Figure_0.jpeg)

![](_page_20_Figure_0.jpeg)

I.e. we want to Rind YELE Soz  $12\lambda, \qquad KH = \lambda H \qquad \exists \qquad \lambda \in \mathbb{R} \setminus 504.$ Moreover, K=IVI2, 50 K70 and hence we may assume 270. Inthition: V2 = 5º4 is like the inverse of the momentum op. on L2 ([0,1]), 50 by Spectral mapping we expect Vi to have spec, which is

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

![](_page_25_Figure_0.jpeg)

This is Thm. 10,20 in LN. (D)Note: See the proof of the Krammers-Kronig relation in my MAT330 LN. (c) Claim: Let AEBCHD be normal and 4EIC be cyclic for A! £ An4 IneN≥0} = IV. Then 24 is cyclic for At. Proof: Let 4EBU and EZO, Then  $\| \varphi - \sum_{n=0}^{1} \alpha_n A^n \psi \| < \varepsilon/2$ 

![](_page_25_Picture_2.jpeg)

![](_page_26_Figure_0.jpeg)

![](_page_27_Figure_0.jpeg)

QIO Let  $A = A^* \in B(H)$  and  $\mathcal{X}_{a}(A)$  the proj. - real. Mer, QP A. Claim:  $O(A) = \left( \lambda \in \mathbb{R} \mid V \in \mathcal{H}, X_{\mathcal{B}_{\mathcal{E}}(\mathcal{H})} \right) = \left( \lambda \in \mathbb{R} \mid V \in \mathcal{H}, X_{\mathcal{B}_{\mathcal{E}}(\mathcal{H})} \right)$  $P_{roof}$ : We will show  $p(A) = \dots g^{c}$ . E For MA, 4 The Spec. msr. of (A, 2), we know  $\operatorname{Supp}(M_{A, 2}) \subseteq \sigma(A)$ .  $\int \sigma \quad \text{if} \quad \lambda \in p(A), \quad \mu_{A,2}(B_{\varepsilon}(\lambda)) = 0 \exists \varepsilon \gg 0.$ But 4 is arbit and  $\mathcal{M}_{A,\mathcal{A}}(\mathcal{B}_{\varepsilon}(\lambda)) = \langle \mathcal{A}, \mathcal{K}_{\mathcal{B}_{\varepsilon}(\lambda)}(A) \mathcal{A} \rangle = 0.$ Hence  $\mathcal{X}_{B_{\Sigma}(\lambda)}(A) = 0$  as this is a S.A. proj. Let  $\lambda \in \{\ldots, 3^{\circ}\}$ . Then  $\exists \in \{2, \ldots, 3^{\circ}\}$ .  $\forall \downarrow, \varphi \in \{2^{\circ}\}, \langle \downarrow, \chi_{B_{\varepsilon}(\lambda)}(A) \varphi \} = D.$  $[\underline{C}]$ 

J.e.,  $\langle \mathcal{Y}, \Psi \rangle = \langle \mathcal{Y}, (\mathcal{X}_{\mathcal{B}_{\varepsilon}(\lambda)}, (\Lambda) + [\mathcal{X}_{\mathcal{B}_{\varepsilon}(\lambda)}, (\Lambda)]^{\perp}) \Psi \rangle$ by hypo.  $\underline{\exists} \langle \mathcal{U}, \mathcal{X}_{B_{\varepsilon}(\lambda)}(\mathcal{A}) \perp \mathcal{P} \rangle$  $\equiv \langle \psi, \chi_{\mathcal{B}_{\mathcal{E}}(\lambda)^{e}}(A) \psi \rangle$ Now, if  $f(x) := \begin{cases} \frac{1}{x-x} & x \in B_{\varepsilon}(x)^c \\ 0 & else \end{cases}$ and  $q(x) := x - \lambda$  we get  $\langle \Psi, f(A) g(A) \Psi \rangle = \langle \Psi, (fg)(A) \Psi \rangle$  $= \int (fg)(\lambda) d\mu_{A,7,\varphi}(\lambda)$  $\lambda \in \mathbb{R}$  $= \int f(\lambda)g(\lambda) d\mu_{A,2}(\varphi(\lambda))$   $= \int f(\lambda)g(\lambda) d\mu_{A,2}(\varphi(\lambda))$   $= \int f(\lambda)g(\lambda) d\mu_{A,2}(\varphi(\lambda))$   $= \int f(\lambda)g(\lambda) d\mu_{A,2}(\varphi(\lambda))$ 

fg=1 g=1 g=1=  $\langle \Psi, \chi_{B_{\Sigma}(n)^{C}}(A) \Psi \rangle$  $=\langle 4, \varphi \rangle$ Since 4, 9 were arbitrary, J(A)=A-211 has an interse  $\Leftrightarrow \lambda \in \mathcal{P}(\mathcal{A}).$ [Q7] Let It be a sep. Hil. sp. Claim! The only op-norm-closed \*-ideals in B(H) are Loy, H(H), B(H). Proof: Let I = BCIL) be some non-briv. \*- closed ideal.  $|Claim! H(H) \subseteq I.$ 

Proof 1 Let P be a rank-1 proj.  
Then V ACI 
$$\sim$$
 505, PACI is  
a rank-1 op.  
PA = 4024\*  $\exists$  6,4624.  
By star-closedness, 4007\*C I too.  
From there by composing us/  
4+3  $\phi$   
We get to any other renk-1  
op., and by tim. comb. to  
any fin. rank.  
Norm closed  $\Rightarrow$  Cp2. op.  
Now, if ACI  $\sim$  P(30), W.T.S.  
1 C I.  
Since A is NoT opt., it is  
impossible that both RefAS, ImfAS  
Are cpt., so by  
Thm. 9.60,  $\sigma$ ess(B)  $\neq$  505

for some B=B\*EI. This implies that B is a Fredholm op., so by Atkinson's thm. (Thm. 9.51) Chat J Gre F S.E.  $1 - BG \in H(H)$ 1 - GBBut since I is an ideal, That means BG, GBE I, i.e., 1-K1, 1-K2 E I for some upt. Ki, K2. But HSI, so  $1 \in I \iff I = BCH$ .

![](_page_33_Picture_0.jpeg)

![](_page_34_Figure_0.jpeg)

Cauchy, so by completeness of C converges to some AWIEC. Claim: AEX\* Proof By linearity of limit, D:X->C is linear, It is bounded too, 12(x)1= lim 12ncx>1 But Shin is Cauchy, so it is bold => MONISC

![](_page_34_Picture_2.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_39_Figure_0.jpeg)

 $[dP_A, dP_B] = 0.$ This allows us to define a mor.  $Q_{AB}(S, x S_2) := P_A(S,) P_B(S_2) (S_1, S_2 \subseteq \mathbb{R})$ Oh "cylinder" sets from which we may extend to marble sets of IR<sup>2</sup>. Thus we now define, & Borel bdd.  $f:\mathbb{R}^2\to\mathbb{C}$ The operator  $f(A,B) := \int f(\lambda_1,\lambda_2) dQ_{AB}(\lambda_1,\lambda_2) .$   $(\lambda_1,\lambda_2) \in \mathbb{R}^2$ In particular, to get the unitary, define, & YESL  $\mathcal{H}_{\mathcal{H}} := \left\{ f(A,B) \not\in [f:\mathbb{R}^2 \to \mathbb{C} \text{ merbl. bild.} \right\}$ and  $U: \mathcal{H}_{\mathcal{Y}} \longrightarrow L^2(dQ_{AB}\mathcal{Y})$ 24 -> 1 AY IN AND X BY IN AND X

and if Sty = St, continue in this way. For more details, see Feldman e.g. (his notes are attached here, slightly different approach ....)

## Spectral Theorem for Commuting Normal Operators

Throughout these notes  $\mathcal{H}$  is a Hilbert space and  $\mathcal{L}(\mathcal{H})$  is the set of all bounded linear operators with domain  $\mathcal{H}$  and taking values in  $\mathcal{H}$ . First recall

**Definition 1** (Normal Operator) An operator  $A \in \mathcal{L}(\mathcal{H})$  is called *normal* if  $A^*A = AA^*$ . That is, if A commutes with its adjoint.

## Remark 2 (Normal Operators)

(a) A self-adjoint operator  $A \in \mathcal{L}(\mathcal{H})$  obeys  $A = A^*$  and hence is normal.

(b) A unitary operator  $U \in \mathcal{L}(\mathcal{H})$  obeys  $UU^* = U^*U = 1$  and hence is normal.

(c) Any operator  $A \in \mathcal{L}(\mathcal{H})$  can be written in the form  $A = \operatorname{Re} A + i \operatorname{Im} A$  with, by definition,  $\operatorname{Re} A = \frac{1}{2}(A + A^*)$  and  $\operatorname{Im} A = \frac{1}{2i}(A - A^*)$ . Both  $\operatorname{Re} A$  and  $\operatorname{Im} A$  are self-adjoint. The operator A is normal if and only if  $\operatorname{Re} A$  and  $\operatorname{Im} A$  commute.

In these notes we prove

**Theorem 3** (Spectral Theorem for Commuting Bounded Normal Operators) Let  $n \in \mathbb{N}$  and let  $\{A_1, A_2, \dots, A_n\} \subset \mathcal{L}(\mathcal{H})$  be a finite set of commuting, normal, bounded operators. Then there exist

- $\circ$  a measure space  $\langle \mathcal{M}, \Sigma, \mu \rangle$  and
- $\circ$  n bounded measurable functions  $a_i : \mathcal{M} \to \mathbb{C}, \ 1 \leq i \leq n$  and
- $\circ$  a unitary operator  $U: \mathcal{H} \to L^2(\mathcal{M}, \Sigma, \mu)$

 $such\ that$ 

$$(UA_iU^{-1}\varphi)(m) = a_i(m)\varphi(m)$$

for all  $\varphi \in L^2(M, \Sigma, \mu)$  and all  $1 \leq i \leq n$ . If  $\mathcal{H}$  is separable,  $\mu$  can be chosen to be a finite measure.

## **Proof:** Step 0 (Reduction to self-adjoint operators):

By Fuglede's theorem (proven below), if the normal operators  $\{A_1, A_2, \dots, A_n\}$  commute, then so do all of the operators  $\{A_1, A_2, \dots, A_n, A_1^*, A_2^*, \dots, A_n^*\}$ . Consequently we may restrict our attention to commuting, self-adjoint, bounded operators simply by replacing  $\{A_1, A_2, \dots, A_n\}$  with  $\{\operatorname{Re} A_1, \operatorname{Im} A_1, \operatorname{Re} A_2, \operatorname{Im} A_2, \dots, \operatorname{Re} A_n, \operatorname{Im} A_n\}$ . So from now on assume that  $\{A_1, A_2, \dots, A_n\} \subset \mathcal{L}(\mathcal{H})$  is a finite set of commuting, self-adjoint, bounded operators. Step 1 ( $f(A_1, \dots, A_n)$  for some simple functions f): Set, for  $1 \le i \le n$ ,  $I_i = [-||A_i||, ||A_i||]$  and then set  $I = I_1 \times I_2 \times \dots \times I_n \subset \mathbb{R}^n$ . Define the set of "rectangles" in I to be

$$\mathcal{R} = \left\{ B_1 \times B_2 \times \cdots \times B_n \subset I \mid B_i \subset I_i, \text{ Borel, for each } 1 \le i \le n \right\}$$

There are quotation marks around "rectangles" because the sides of the "rectangles" are Borel sets rather than intervals. We are about to define  $f(A_1, \dots, A_n)$  for all simple functions  $f: I \to \mathbb{C}$  that have the special form specified in

$$\mathcal{S} = \left\{ f(x) = \sum_{j=1}^{m} \alpha_j \, \chi_{R_j}(x) \ \middle| \ \alpha_j \in \mathbb{C}, \ R_j \in \mathcal{R}, \ 1 \le j \le m \right\}$$

We have already defined, in the functional calculus version of the spectral theorem (Theorem 27 in the notes [spectralReview.pdf]),  $\chi_{B_i}(A_i)$  for each Borel  $B_i \subset I_i$  and  $1 \leq i \leq n$ . We also already know the following.

- $\chi_{B_i}(A_i)$  is an orthogonal projection. (This is an immediate consequence of [spectral-Review.pdf, Theorem 27.a].)
- $\chi_{B_i}(A_i)$  and  $\chi_{B_j}(A_j)$  commute for all measurable  $B_i \subset I_i, B_j \subset I_j, 1 \leq i, j \leq n$ . (This is an immediate consequence of [spectralReview.pdf, Theorem 27.g].)
- If the measurable sets  $B_i, B'_i \subset I_i$  are disjoint, then  $\chi_{B_i}(A_i)\chi_{B'_i}(A_i) = 0$ . (This is an immediate consequence of [spectralReview.pdf, Theorem 27.a,b].)

We define, for each  $R = B_1 \times B_2 \times \cdots \times B_n \in \mathcal{R}$ 

$$\chi_R(A_1,\cdots,A_n) = \prod_{j=1}^n \chi_{B_i}(A_i)$$

and for each  $f = \sum_{j=1}^{m} \alpha_j \chi_{R_j}(x) \in \mathcal{S}$ 

$$f(A_1, \cdots, A_n) = \sum_{j=1}^m \alpha_j \, \chi_{R_j}(A_1, \cdots, A_n)$$

From the above bullets

•  $\chi_R(A_1, \dots, A_n)$  is an orthogonal projection for each rectangle  $R \in \mathcal{R}$ .

• If the rectangles  $R, R' \in \mathcal{R}$  are disjoint, then  $\chi_R(A_1, \dots, A_n) \chi_{R'}(A_1, \dots, A_n) = 0$ . Here is the main property that we need of the operators  $f(A_1, \dots, A_n), f \in \mathcal{S}$ .

**Lemma** 4 If  $f \in S$  then

$$\|f(A_1,\cdots,A_n)\| \le \sup_{x \in I} |f(x)|$$

**Proof.** Let  $f \in S$ . We may always write f in the form  $f = \sum_{j=1}^{m} \alpha_j \chi_{R_j}(x)$  with all of the  $R_j$ 's disjoint (by possibly subdividing some of the  $R_j$ 's) and with  $\bigcup_{j=1}^{n} R_j = I$  (by possibly having some of the  $\alpha_j$ 's zero). Then every  $x \in I$  is an element of exactly one  $R_j$  and the range of f is exactly  $\{ \alpha_j \mid 1 \leq j \leq m \}$ . So

$$\sup_{x \in I} |f(x)| = \max\{|\alpha_j| \mid 1 \le j \le m\}$$

Now the  $\chi_{R_j}(A_1, \dots, A_n)$ 's project onto mutually orthogonal subspaces of  $\mathcal{H}$  and, since  $\bigcup_{j=1}^n R_j = I$ , we have  $\sum_{j=1}^m \chi_{R_j}(A_1, \dots, A_n) = \mathbb{1}$ . So, for every  $\mathbf{v} \in \mathcal{H}$ ,

$$\mathbf{v} = \sum_{j=1}^{m} \chi_{R_j}(A_1, \cdots, A_n) \mathbf{v}$$
$$\implies \|\mathbf{v}\|^2 = \sum_{j=1}^{m} \|\chi_{R_j}(A_1, \cdots, A_n) \mathbf{v}\|^2$$

and

$$f(A_{1}, \dots, A_{n})\mathbf{v} = \sum_{j=1}^{m} \alpha_{j} \chi_{R_{j}}(A_{1}, \dots, A_{n})\mathbf{v}$$
  

$$\implies \|f(A_{1}, \dots, A_{n})\mathbf{v}\|^{2} = \sum_{j=1}^{m} |\alpha_{j}|^{2} \|\chi_{R_{j}}(A_{1}, \dots, A_{n})\mathbf{v}\|^{2}$$
  

$$\leq \max\{|\alpha_{j}| \mid 1 \leq j \leq m\}^{2} \sum_{j=1}^{m} \|\chi_{R_{j}}(A_{1}, \dots, A_{n})\mathbf{v}\|^{2}$$
  

$$= \max\{|\alpha_{j}| \mid 1 \leq j \leq m\}^{2} \|\mathbf{v}\|^{2}$$

The rest of the proof is identical to the corresponding parts of the proof of the multiplication operator version of the spectral theorem. Here is a very coarse outline of the remaining steps in the proof.

Step 2  $(f(A_1, \dots, A_n)$  for continuous functions f):

By the Stone–Weierstrass Theorem, every continuous function  $f : I \to \mathbb{C}$ , is a uniform limit of a sequence  $\{f_\ell\}_{\ell \in \mathbb{N}}$  of simple functions in S. So we can define

$$f(A_1, \cdots, A_n) = \lim_{\ell \to \infty} f_\ell(A_1, \cdots, A_n) \in \mathcal{L}(\mathcal{H})$$

By Lemma 4 in Step 1, the right hand side converges in norm. Consequently the map  $f \in C(I) \mapsto f(A_1, \dots, A_n) \in \mathcal{L}(\mathcal{H})$  is

 $\circ$  continuous and

- linear and obeys
- $\circ (fg)(A_1, \cdots, A_n) = f(A_1, \cdots, A_n) g(A_1, \cdots, A_n)$ and  $\circ f(A_1, \cdots, A_n)^* = (\overline{f})(A_1, \cdots, A_n).$

Step 3 (Construction of  $\mu_{\mathbf{v}}$ ): Let  $\mathbf{0} \neq \mathbf{v} \in \mathcal{H}$ . Then

$$\ell_{\mathbf{v}}(f) = \langle \mathbf{v}, f(A_1, \cdots, A_n) \mathbf{v} \rangle_{\mathcal{H}}$$

is a positive linear functional on C(I). So, by the Riesz-Markov Theorem, there is a unique, fnite, regular Borel measure  $\mu_{\mathbf{v}}$  on I such that

$$\langle \mathbf{v}, f(A_1, \cdots, A_n) \mathbf{v} \rangle_{\mathcal{H}} = \int_I f(x) d\mu_{\mathbf{v}}(x)$$

for all  $f \in C(I)$ .

Step 4 (Construction of  $\mathcal{H}_{\mathbf{v}}$  and  $U_{\mathbf{v}}$ ): Let  $\mathbf{0} \neq \mathbf{v} \in \mathcal{H}$  and set

$$\mathcal{H}_{\mathbf{v}} = \overline{\left\{ f(A_1, \cdots, A_n) \, \mathbf{v} \mid f \in C(I) \right\}}$$

**Lemma** 5 There is a unique unitary operator  $U_{\mathbf{v}} : \mathcal{H}_{\mathbf{v}} \to L^2(\mu_{\mathbf{v}})$  such that

$$U_{\mathbf{v}}\mathbf{v} = 1$$
  
$$(U_{\mathbf{v}}A_iU_{\mathbf{v}}^{-1})f(x) = x_i f(x) \qquad 1 \le i \le n$$

**Proof.** Set

$$\mathcal{D}_{\mathbf{v}} = \left\{ f(A_1, \cdots, A_n) \mathbf{v} \mid f \in C(I) \right\}$$

and define  $\tilde{U}_{\mathbf{v}}: \mathcal{D}_{\mathbf{v}} \to L^2(\mu_{\mathbf{v}})$  by

$$(\tilde{U}_{\mathbf{v}}f(A_1,\cdots,A_n)\mathbf{v})(x) = f(x)$$

This operator is

 $\circ$  well-defined

 $\circ$  linear

• inner product preserving

As  $\mathcal{D}_{\mathbf{v}}$  is dense in  $\mathcal{H}_{\mathbf{v}}$ , we can use the BLT theorem to define  $U_{\mathbf{v}}$  as the continuous extension of  $\tilde{U}_{\mathbf{v}}$  to  $\mathcal{H}_{\mathbf{v}}$ . Then  $U_{\mathbf{v}}$  has the required properties and is indeed uniquely determined by those properties.

Step 5 (Completion of the proof by Zornification): If  $\mathcal{H}_{\mathbf{v}} = \mathcal{H}$ , we are done. If not Zornify. **Theorem 6** Let  $A, T \in \mathcal{L}(\mathcal{H})$ . If A is normal and T commutes with A, then T commutes with  $A^*$ .

**Proof:** By induction  $A^n T = TA^n$  for all  $0 \le n \in \mathbb{Z}$ . As the exponential series  $e^{\bar{\lambda}A} = \sum_{n=0}^{\infty} \frac{1}{n!} (\bar{\lambda}A)^n$  converges in norm, we have

$$e^{\bar{\lambda}A}T = Te^{\bar{\lambda}A} \implies e^{\bar{\lambda}A}Te^{-\bar{\lambda}A} = T \implies e^{-\lambda A^*}e^{\bar{\lambda}A}Te^{-\bar{\lambda}A}e^{\lambda A^*} = e^{-\lambda A^*}Te^{\lambda A^*}$$

for all  $\lambda \in \mathbb{C}$ . As A is normal, we have that  $e^{-\lambda A^*}e^{\bar{\lambda}A} = e^{-\lambda A^* + \bar{\lambda}A}$  and furthermore that  $U(\lambda) = e^{-\lambda A^* + \bar{\lambda}A}$  obeys  $U(\lambda)^* = U(-\lambda) = U(\lambda)^{-1}$ . Thus  $U(\lambda)$  is unitary and is hence of norm 1. So

$$\|e^{-\lambda A^*}Te^{\lambda A^*}\| = \|U(\lambda)TU(-\lambda)\| \le \|T\|$$

This shows that the analytic operator valued function  $e^{-\lambda A^*}Te^{\lambda A^*}$  is bounded uniformly on all of  $\mathbb{C}$ . So  $e^{-\lambda A^*}Te^{\lambda A^*}$  has to be independent of  $\lambda$  and

$$e^{-\lambda A^*}Te^{\lambda A^*} = e^{-\lambda A^*}Te^{\lambda A^*}\Big|_{\lambda=0} = T$$

for all  $\lambda$ . Differentiating with respect to  $\lambda$  and then setting  $\lambda = 0$  gives

$$-A^*T + TA^* = 0$$

as desired.