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These lecture notes are an expanded version of the lectures | gave in the Summer School
on Open Quantum Systems, held in Grenoble June 16—July 4, 2003. Shortly afterwards, |
also lectured in the Summer School on Large Coulomb Systems—QED, held in Nordfjordeid
August 11—18, 2003 [JKP]. The Nordfjordeid lectures were a natural continuation of the
material covered in Grenoble, and [JKP] can be read as Section 6 of these lecture notes.

The subject of these lecture notes is spectral theory of self-adjoint operators and some of
its applications to mathematical physics. This topic has been covered in many places in the
literature, and in particular in [Da, RS1, RS2, RS3, RS4, Ka]. Given the clarity and precision
of these references, there appears to be little need for additional lecture notes on the subject.
On the other hand, the point of view adopted in these lecture notes, which has its roots in the
developments in mathematical physics which primarily happened over the last decade, makes
the notes different from most expositions and | hope that the reader will learn something new
from them.

The main theme of the lecture notes is the interplay between spectral theory of self-adjoint
operators and classical harmonic analysis. In a nutshell, this interplay can be described as
follows. Consider a self-adjoint operatdron a Hilbert spacé{ and a vectorp € H. The
function

F(z) = (¢l(A = 2)"'o)
is analytic in the upper half-planen > > 0 and satisfies the bound’(z)| < |¢||*/Im 2.

By a well-known result in harmonic analysis (see Theorem 2.11) there exists a positive Borel
measureg., onR such that fodm z > 0,

i = [ 2

r—z

The measure., is the spectral measurtor A and . Starting with this definition we will
develop the spectral theory df. In particular, we will see that many properties of the spectral
measure can be characterized by the boundary vélugs, F'(z + iy) of the corresponding
function F'. The resulting theory is mathematically beautiful and has found many important
applications in mathematical physics. In Section 4 we will discuss a simple and important
application to the spectral theory of rank one perturbations. A related application concerns the
spectral theory of the Wigner-Weisskopf atom and is discussed in the lecture notes [JKP].



Although we are mainly interested in applications of harmonic analysis to spectral theory,
it is sometimes possible to turn things around and use the spectral theory to prove results in
harmonic analysis. To illustrate this point, in Section 4 we will prove Boole’s equality and the
celebrated Poltoratskii theorem using spectral theory of rank one perturbations.

The lecture notes are organized as follows. In Section 1 we will review the results of the
measure theory we will need. The proofs of less standard results are given in detail. In partic-
ular, we present detailed discussion of the differentiation of measures based on the Besicovitch
covering lemma. The results of harmonic analysis we will need are discussed in Section 2.
They primarily concern Poisson and Borel transforms of measures and most of them can be
found in the classical references [Kat, Ko]. However, these references are not concerned with
applications of harmonic analysis to spectral theory, and the reader would often need to go
through a substantial body of material to extract the needed results. To aid the reader, we have
provided proofs of all results discussed in Section 2. Spectral theory of self-adjoint operators
is discussed in Section 3. Although this section is essentially self-contained, many proofs are
omitted and the reader with no previous exposition to spectral theory would benefit by reading
it in parallel with Chapters VII-VIII of [RS1] and Chapters I-Il of [Da]. Spectral theory of rank
one perturbations is discussed in Section 4.

Concerning the prerequisites, it is assumed that the reader is familiar with basic notions of
real, functional and complex analysis. Familiarity with [RS1] or the first ten Chapters of [Ru]
should suffice.

Acknowledgment. | wish to thank Stephane Attal, Alain Joye and Claude-Alain Pillet for the
invitation to lecture in the Grenoble summer school. | am also grateful to Jonathan Boyer,
Eugene Kritchevski, and in particular Philippe Poulin for many useful comments about the
lecture notes. The material in the lecture notes is based upon work supported by NSERC.

1 Preliminaries: measure theory

1.1 Basic notions

Let M be a set andF ao-algebra inM. The pair(M, F) is called a measure space. We denote
by x 4 the characteristic function of a subsétc M.

Let 1 be a measure of)/, F). We say thaj is concentrated on the sdte F if u(E) =
wENA) forall E € F.If u(M) =1, thenu is called a probability measure.

Assume thatV/ is a metric space. The minimalalgebra in)M that contains all open sets
is called the Boreb-algebra. A measure on the Boreklgebra is called a Borel measure ulf
is Borel, the complement of the largest open@etuch that.(O) = 0 is called the support of
1 and is denoted byupp .

Assume thatV/ is a locally compact metric space. A Borel measuris calledregular if



foreveryE € F,
w(E) =inf{u(V) : ECV, Vopen
=sup{u(K) : K C E, K compact.

Theorem 1.1 Let M be a locally compact metric space in which every open setdempact
(that is, a countably union of compact setket ;. be a Borel measure finite on compact sets.
Theny is regular.

The measure space we will most often encounteR iwith the usual Borel-algebra.
Throughout the lecture notes we will denote bthe constant functiofi(xz) = 1 Vz € R.

1.2 Complex measures

Let (M, F) be a measure space. Lietc F. A countable collection of setsZ;} in F is called
a partition of E' if £, N E; = O fori # jandE = U,E;. A complex measuren (M, F) is a
functiony : F — C such that

wE) =3 n(Ey) (1.1)

for every E € F andeverypartition {£;} of E. In particular, the series (1.1) is absolutely
convergent.

Note that complex measures take only finite values. The usual positive measures, however,
are allowed to take the valus. In the sequel, the termositive measurevill refer to the
standard definition of a measure on-@algebra which takes values ity co.

The set functionu| on F defined by

ul(E) = Supz lu(E3),

where the supremum is taken over all partitiqis } of F, is called the total variation of the
measure.

Theorem 1.2 Letu be a complex measure. Then:
(1) The total variation|| is a positive measure o/, F).

(2) (M) < oo.
(3) There exists a measurable functibn M — C such thath(z)| = 1 for all z € M and

W(E) = / h(z)dlul(2)

forall E € F. The last relation is abbreviatedj, = hd|u|.



A complex measurg is called regular if | is a regular measure. Note thatifs a positive
measuref € L'(M,dv) and

uw(E) = | fdv,
E

Hl(E) = [E fldv,

The integral with respect to a complex measure is defined in the obvioug way, = [ fhd|u|.
Notation. Let u be a complex or positive measure ahe L'(M,d|u|). In the sequel we
will often denote byf . the complex measure

() = [ san

then

Note that| f | = | f][ul-

Every complex measure can be written as a linear combination of four finite positive mea-
sures. Leh, (z) = Re h(x), ho(x) = Im h(z), b (x) = max(h;(x),0), h; (z) = — min(h,;(z),0),
andu’ = h|ul,i = 1,2. Then

p=(uf —pp) +i(u3 — pg)
A complex measur@ which takes values iR is called asignedmeasure. Such a measure
can be decomposed as
p=pt—p,
whereu™ = (|pu| + p)/2, p~ = (Jpu| —p)/2. TA={zx e M :h(zx) =1}, B={z € M :
h(z) = —1}, thenforE € F,
p(E)=p(ENA),  p(E)=-u(ENDB).
This fact is known as the Hahn decomposition theorem.

1.3 Riesz representation theorem

In this subsection we assume thdtis a locally compact metric space.

A continuous functioryf : M — C vanishes at infinityf Ve > 0 there exists a compact set
K. suchthalf(z)| < eforz ¢ K.. LetCy(M) be the vector space of all continuous functions
that vanish at infinity, endowed with the supremum nadiff = sup,c,, |f(x)]. Co(M) is a
Banach space and we denote®y(/)* its dual. The following result is known as the Riesz
representation theorem.

Theorem 1.3 Let¢ € Cy(M)*. Then there exists a unique regular complex Borel meagure
such that

ot = [ sau
forall f € Co(M). Moreover)||¢|| = |u|(M).



1.4 Radon-Nikodym theorem

Let (M, F) be a measure space. Lgtandy, be complex measures concentrated on disjoint
sets. Then we say that andv, are mutually singular (or orthogonal), and writg | v,. If
vy L v, then|V1| 1 |V2’.

Letr be a complex measure ané positive measure. We say that absolutely continuous
w.r.t. u, and writev < u, if u(F) = 0 = v(E) = 0. The following result is known as the
Lebesgue-Radon-Nikodym theorem.

Theorem 1.4 Letr be a complex measure apdh positives-finite measure oM, F). Then
there exists a unique pair of complex measureand v, such thatv, | v, v, < u, vs L p,
and

V=1V, + Us.

Moreover, there exists a uniqyec L'(R,du) such thatVE € F,

() = [ o

The Radon-Nikodym decomposition is abbreviated as f . + v, (or dv = fdu + duy).

If M = R andpu is the Lebesgue measure, we will use special symbols for the Radon-
Nikodym decomposition. We will denote by, the part ofv which is absolutely continuous
(abbreviated ac) w.r.t. the Lebesgue measure ang,ythe part which is singular with respect
to the Lebesgue measure. A point R is called an atom of if v({z}) # 0. Let A, be the
set of all atoms of. The set4, is countable and _,_, |v({x})| < cc. The pure point part of
v is defined by

v(E)= ) v({z})

zcENA,
The measure,. = v, — Vpp IS Called the singular continuous part:of

1.5 Fourier transform of measures

Let 1 be a complex Borel measure @& Its Fourier transform is defined by
(0 = [ o duta).
R
[i(t) is also called the characteristic function of the meagurdote that
e+ 1) = @) < [ e = 1|l
R

and so the functioR > ¢ — [i(t) € C is uniformly continuous.
The following result is known as the Riemann-Lebesgue lemma.



Theorem 1.5 Assume that is absolutely continuous w.r.t. the Lebesgue measure. Then
hm la(t)] = 0. (1.2)

[t|—

The relation (1.2) may hold evenyifis singular w.r.t. the Lebesgue measure. The measures
for which (1.2) holds are called Rajchman measures. A geometric characterization of such
measures can be found in [Ly].

Recall thatA, denotes the set of atoms pf In this subsection we will prove the Wiener
theorem:

Theorem 1.6 Lety be a signed Borel measure. Then

Jim = [l = 3wt

CEGAI/

Proof: Note first that

AOF = R0 = [ e dua)du(y)

Let
T . _ a—iT(z—y) . i .
Kr(z,y) = l/ e—itl@T—y) gt — (1—e )/ (T (x —y)) !f x4,
T 0 1 if = 1.
Then
1 [T )
Obviously,
0 ifx+#uy,
lim K
T r(z,y) = {1 it o=y

Since|Kr(z,y)| < 1, by the dominated convergence theorem we have that fer all

lim | Ko (e,y)dn(y) = p({a}).

T—o00

By Fubini’s theorem,

[ Krteduiant) = [ | [ Keto.aut] auta)

and by the dominated convergence theorem,

Jim 7 [ 1aOF = [ uteauta)
= 7 ul{ah)®

€A,



1.6 Differentiation of measures

We will discuss only the differentiation of Borel measuresinThe differentiation of Borel
measures oR” is discussed in the problem set.

We start by collecting some preliminary results. The first result we will need is the Besicov-
itch covering lemma.

Theorem 1.7 Let A be a bounded set IR and, for eachr € A, let I, be an open interval with
center at.

(1) There is a countable subcollectidd; } of {I,},c4 such thatd C UI; and that each point
in R belongs to at most two intervals {ii; }, i.e. Vy € R,

Z X (y) < 2.

(2) There is a countable subcollectidd; ;}, i = 1,2, of {I,},c4 such thatA C UI; and

In the sequel we will refer t§/;} and{; ;} as theBesicovitch subcollections
Proof. || denotes the length of the interval We will use the shorthand

I(x,r)=(x—r,z+T).

Settingr, = |I,.|/2, we havel, = I(x,r,).

Letd, = sup{r, : © € A}. Choosel; = I(z1,r;) from the family{I,}.ca such that
ry > 3d, /4. Assume thaf,, ..., I, ; are chosen foj > 1 and that4d; = A\ U_/I; is non-
empty. Letd; = sup{r, : z € A;}. Then choosé; = I(z;,r;) from the family{I,}.c4, such
thatr; > 3d;/4. In this way be obtain a countable (possibly finite) subcollectioa I(z;,r;)
of {Im}a:GA-

Suppose that > i. Thenz,; € A; and

37"j

ri > Zsup{rx rr € Ay} > (1.3)
This observation yields that the intervdige;, r;/3) are disjoint. Indeed, if > ¢, thenz; ¢
I(x;,r;), and (1.3) yields
T3 3 T30 3
SinceA is a bounded set and € A, the disjointness of; = I(x;,7,/3) implies that if the
family {1,} is infinite, then

lim r; = 0. (1.4)

J—00



The relation (1.4) yields that C U;I(z;,r;). Indeed, this is obvious if there are only
finitely many;’s. Assume that there are infinitely marfilys and letr € A. By (1.4), there ig
such that-; < 3r,/4, and by the definition of;, z € U]_, [

Notice that if three intervals iR have a common p0|nt then one of the intervals is contained
in the union of the other two. Hence, by dropping superfluous intervals from the coll¢¢tipn
we derive thatd C U;/; and that each point iR belongs to no more than two intervdls This
proves (1).

To prove (2), we enumerate’s as follows. Tol; is associated the number The intervals
to right of I; are enumerated in succession by positive integers, and the intervals to the left by
negative integers. (The "succession" is well-defined, since no point belongs simultaneously to
three intervals). The intervals associated to even integers are mutually disjoint, and so are the
intervals associated to odd integers. Finally, denote the interval associatetiyd; ,,, and the
interval associated t&n + 1 by /5 ,,. This construction yields (2)J

Let 1 be a positive Borel measure dh finite on compact sets and letbe a complex
measure. The corresponding maximal function is defined by

M, (x) = 87,213 %7 x € supp p.

If + ¢ suppp we setM, ,(r) = oo. Itis not hard (Problem 1) to show that the function
R>2+— M,,(z) € 0,o00] is Borel measurable.

Theorem 1.8 For anyt > 0,

pl s Moy(o) > 1} < SI(R).

Proof. Let [a, b] be a bounded interval. Every poinin [a,b] N {z : M, ,(x) > t} is the center
of an open interval,, such that

W|(Le) = tu(Ly).
Let /; ; be the Besicovitch subcollection ¢f,}. Then,

[a,b] N {z : M, ,(x) >t} C UL,
and
p( 00 e M) > 1) < Yl

1
§Z§ |V|<u = § |V|UIZJ —_|V|( ).
,J i

The statement follows by taking— —oo andb — +o0. O
In Problem 3 you are asked to prove:

10



Proposition 1.9 Let A be a bounded Borel set. Then for ahy: p < 1,

/AMl,,#(m)pdu(x) < 00.

We will also need:

Proposition 1.10 Letv; be a sequence of Borel complex measures suchithat . |v;|(R) =
0. Then there is a subsequengg such that

lim M, .(r)=0 for 1 —a.e.x.

k—o0 J

Proof. By Theorem 1.8, foreach= 1,2, ..., we can findj, so that

1 {x : My, u(T) > 2"“} <27k

Hence,
Z,u {x : My, u(T) > 2"“} < 00,

and so fou-a.e.z, there isk, such that fokk > k., M,, u(x) < 27F This yields the statement.
O

We are now ready to prove the main theorem of this subsection.

Theorem 1.11 Let v be a complex Borel measure apda positive Borel measure finite on
compact sets. Let = fu + v, be the Radon-Nikodym decomposition. Then:

(1) (L(z,7))
lgglm = f(z), for u—a.e. x.

In particular, v L p iff

) _
10 p(I(z,7)) ’

(2) Let in additionr be positive. Then

for p—a.e. x.

lim v(I(x,r))
e uT(e,r)

= 00, for vy — a.e. x.

11



Proof. (1) We will split the proof into two steps.
Step 1. Assume that < u, namely that = fu. Letg, be a continuous function with compact
support such thaf, | f — g,|du < 1/n. Seth,, = f — g,. Then, forz € supp p andr > 0,

ful(z,r)) || (1 (2, 7))
pl (7)) pl(z,r))

Sinceyg,, is continuous, we obviously have

- gn($) + ‘gn(m) - f(m)‘

—f@ﬂs

lim

I UL B

pl (2, 7))

and so for alln andx € supp p,

full(z,r))
p(I(z,r))
Letn; be a subsequence such that — f(z) for y-a.e.x. Since/ |h,,|du — 0asj — oo,

Proposition 1.10 yields that there is a subsequeneg @ivhich we denote by the same letter)
such thatVly,, ,..(z) — 0 for y-a.e.z. Hence, foru-a.e.x,

lim sup
rl0

— f(z)

< My, p(2) + |gn(z) — f(2)].

full(z,r)) o | _
) f(ﬁ .

lim sup
rl0

and (1) holds itV < p.
Step 2. To finish the proof of (1), it suffices to show that iis a complex measure such that

v 1 p,then
()

rlo p(I(z,r))
Let S be a Borel set such that,S) = 0 and|v|(R \ S) = 0. Then

W) xs(el+ wI(e )
G DU ~ Gt D) (1.6)

=0, for p—a.e. x. (1.5)

By Step 1,
xs(vl+w)(z,r))
o (] + ) ((z, 7))
Sinceys(z) = 0 for p-a.e.x, (1.6) and (1.7) yield (1.5).
(2) Sincev is positive,v(I(x,r)) > vs(I(x,r)), and we may assume thatl u. By (1.6)
and (1.7),

= xs(2), for |v|+p—a.e. z. 1.7)

i vir) or v—a.e. T
R PR Ty k. € T

12



and so ;
lim M =0, for v —a.e. z.
rl0 v(I(x,r))

This yields (2).0

We finish this subsection with several remarks. i§ the Lebesgue measure, then the results
of this section reduce to the standard differentiation results discussed, for example, in Chapter 7
of [Ru]. The arguments in [Ru] are based on the Vitali covering lemma which is specific to the
Lebesgue measure. The proofs of this subsection are based on the Besicovitch covering lemma
and they apply to an arbitrary positive measurén fact, the proofs directly extend ®" (one
only needs to replace the intervdlge, ) with the ballsB(z, ) centered at and of radius-)
if one uses the following version of the Besicovitch covering lemma.

Theorem 1.12 Let A be a bounded set iR” and, for eachr € A, let B, be an open ball with
center atz. Then there is an intege¥, which depends only om, such that:

(1) There is a countable subcollectid®, } of { B, }.c4 such thatd ¢ UB; and each point in
R" belongs to at mosV balls in{B;}, i.e.Vy € R,

ZXBj<ZJ) < N.

(2) There is a countable subcollectig®; ;}, 7 = 1,--- , N, of { B, }.eca Such thatd C UB; ;
andBM N Bi,k =0 |f] 7é k.

Unfortunately, unlike the proof of the Vitali covering lemma, the proof of Theorem 1.12 is
somewhat long and complicated.

1.7 Problems

[1] Prove that the maximal functiak/, ,(x) is Borel measurable.
[2] Letu be a positiver-finite measure oM, F) and letf be a measurable function. Let
my(t) = p{z o |f(2)] >t}
Prove that forp > 1, .
0

[ @Pan) =p [ om0

13



This result can be generalized as follows. ket [0,00] — [0, 0] be monotonic and
absolutely continuous of), 7'] for everyT' < co. Assume that(0) = 0 and a(co) = oo.
Prove that

[ @on@ante) = [~ awmstor
M 0
Hint: See Theorem 8.16 [iRul].

[3] Prove Proposition 1.9. Hint: Use Problem 2.
[4] Prove the Riemann-Lebesgue lemma (Theorem 1.5).
[5] Letu be a complex Borel measure &n Prove that|jusing| = |£t]sing-

[6] Let u be a positive measure qi/, F). A sequence of measurable functighsconverges
in measure to zero if

Tim p({ [ fule)] > €}) =0

for all e > 0. The sequencg, converges almost uniformly to zero if for alt> 0 there is a set
M, € F, such thatu(M,) < e and f,, converges uniformly to zero aif \ M..

Prove that if f,, converges to zero in measure, then there is a subseqygneehich con-
verges to zero almost uniformly.

[7] Prove Theorem 1.1ZThe proof can be found [fEG]).
[8] State and prove the analog of Theorem 1.1Rfn

[9] Let i be a positive Borel measure dfinite on compact sets anfle L'(R,du). Prove

that
) 1
17}{51 PIER)) /I(m) |f(t) — f(z)|du(t) =0, for p—a.e. x.

Hint: You may follow the proof of Theorem 7.7[Rul].

[10] Letp > 1 and f € LP(R, dx). The maximal function of, M}, is defined by

M) =swp— [ [f@)lat

>0 2r I(x,r)

(1) If p > 1, prove thatM; € LP(R, dx). Hint: See Theorem 8.18 [Rul].
(2) Prove that iff and M, are in L' (R, dz), thenf = 0.

[11] Denote byB,,(R) the algebra of the bounded Borel functions®n Prove thatB,(R) is
the smallest algebra of functions which includégR) and is closed under pointwise limits of
uniformly bounded sequences.

14



2 Preliminaries: harmonic analysis

In this section we will deal only with Borel measures Bn We will use the shorthan@, =
{z :Im z > 0}. We denote the Lebesgue measurerbgnd writedm = dz.
Let 1 be a complex measure or a positive measure such that

/d!ul(t) .
r 1+ [t]

The Borel transform of: is defined by

_ [ du(®)

The functionF),(z) is analytic inC..
Let 1 be a complex measure or positive measure such that

LA S . .
/ 152 < 00 (2.9)
I'he Poisson transform (]JﬂciS defined by
) du(t)
P x 4+ — P —— > O
/J( 1y) y/ (I t)Q y27 y

The functionP,(z) is harmonic inC... If ;1 is the Lebesgue measure, thé(z) = 7 forall z €
C.. If pis a positive or signed measure, themF,, = P,. Note also that’, and P, are linear
functions ofy, i.e. forA;, As € C, F) 4200 = MFu + Ao F, Pryjtrops = NPy + APy,

Our goal in this section is to study the boundary value®gdfr + iy) and F,(z + iy) as
y | 0. More precisely, we wish to study how these boundary values reflect the properties of the
measureu.

Although we will restrict ourselves to the radial limits, all the results discussed in this section
hold for the non-tangential limits (see the problem set). The non-tangential limits will not be
needed for our applications.

2.1 Poisson transforms and Radon-Nikodym derivatives
This subsection is based on [JL1]. Recall that, r) = (x — r,x + r).

Lemma 2.1 Let . be a positive measure. Then for ale R andy > 0,

1 1/y?
LPuain) = [ I T =) du
0

15



Proof. Note that

/Ol/y2 p(I(x, \/u=t —y?))du = /01/y2 {/R XI(%M)(t)dM(t)} du

_ /R [ /O w Yo ul_yQ)(t)du] du(t).

(2.10)

Since |:1: B t| - /_u,l 2 — 0<u< ((a: . t)2 + y2)—1’
we have

X o/ () = X0, (@@t~ (W),
and

1/y?
/0 X (o famiogy (Ddu = ((z = )2 +4) "L

Hence, the result follows from (2.10Q

Lemma 2.2 Letv be a complex ang a positive measure. Then for alle R andy > 0,

Byl
P,(x +1y)

Proof. Since|P,| < P,|, w.l.o.g. we may assume thais positive. Also, we may assume that
x € supp 4 (otherwiselV/, ,(z) = oo and there is nothing to prove). Since

1/y° 1/y? u( fu—1 —
/0 v(I(z,\/u™t —y?))du = /0 (e \/7_3 (1 u~!l —y?))du

1/y
< M, (x) / w1 (/T = ))du,
0

the result follows from Lemma 2.11

Lemma 2.3 Letx be a positive measure. Then fora.e. z,

dp(t) _
/R(a:—t)Q_ . (2.11)

16



The proof of this lemma is left for the problem set.
Lemma 2.4 Letu be a positive measure anfde Cy(R). Then foru-a.e.x,

i ) " F(x). (2.12)

Remark. The relation (2.12) holds for alt for which (2.11) holds. For example, jf is the
Lebesgue measure, then (2.12) holds forall
Proof. Note that

Pl 19) _ ) o Hrsonle +i)
Bu(z +1y) — Pu(r+iy)
Fix e > 0 and leto > 0 be such thatr — t| < 6 = |f(z) — f(t)| < e. LetM =sup|f(¢)| and

C=2M dut) -
o—t|>s (T — 1)
Then
Py_ sz +iy) < ePu(z +iy) + Cy,
and P ) .
Lrule +1y) < vy
’fmx+w> fo)| < et 5y

Let x be such that (2.11) holds. The monotone convergence theorem yields that

it~ () o

Pfu(l' + ly)
P,(z + iy)

and so for alk > 0,

lim sup
yl0

—f(x)‘ﬁe-

This yields the statement]
The main result of this subsection is:

Theorem 2.5 Letv be a complex measure apda positive measure. Let= fu + v, be the
Radon-Nikodym decomposition. Then:
1) By )
. T+ iy
lim ——= fi —a.e. T.
yllo P (I+ly) = f@), or pmae

In particular, v | p iff

B (z +iy)

lim
u0 P (T + iy)

=0, for p—a.e. x.

17



(2) Assume in addition that is positive. Then

_ P(z+1y)
lim ——— = oo, for vy —a.e. x.
ylo P,(x +iy)

Proof. The proof is very similar to the proof of Theorem 1.11 in Section 1.

(1) We will split the proof into two steps.
Step 1. Assume that < u, namely that = fu. Letg, be a continuous function with compact
support such thaf, | f — g,|du < 1/n. Seth,, = f — g,,. Then,

Pru(x + iy) P ju(® +1iy) | Pyulz +iy)
— < - - .
Pu(z +1y) flo)| < P,(z +iy) P,(x +1iy) 9n(@)| + lgn(w) = f()]
It follows from Lemmas 2.2 and 2.4 that fpra.e.z,
! Sy T < My, + |ga(2) — f(2)].
1rry1lsoup P,(z +1y)) f@) ol (T) + 19n(@) — [ ()]

As in the proof of Theorem 1.11, there is a subsequence oo such thay,, (z) — f(x) and
M, jppu(x) — 0 for p-a.e.z, and (1) holds iy < p.
Step 2. To finish the proof of (1), it suffices to show that is a finite positive measure such
thaty L u, then '

limw =0, for p— a.e. x. (2.13)

ylo P,(x +iy)
Let S be a Borel set such tha(S) = 0 andv(R \ S) = 0. Then

P, (z +iy) Pysw+n) (z +1iy)

— . 2.14
P,(x +1iy) + P,(x +iy) P,yu(z +iy) ( )

By Step 1,
- Proww (T +1y)
Jim —xs ) = f —ae. . 2.15
T Xs(z), or v+ pu—ae x (2.15)
Sincexs(z) = 0 for p-a.e.x,
. P, (x +iy)
lim - -
W0 B(w+ iy) + B + iy)
and (2.13) follows.
(2) Sincev is positive,v(I(x,r)) > vs({(x,r)), and we may assume thatl ;. By (2.14)
and (2.15),

=0, for u—a.e. x,

: by(z +1y)
lim - — =1, for v —a.e. x,
ylo P,(x +1iy) + P,(x +1y)
and so . .
lim M =0, for v —a.e. x.

yl0 P, (x + iy)
This yields part (2) 3

18



2.2 LocalL? norms,0 < p < 1.

In this subsection we prove Theorem 3.1 of [Sil].is a complex measurg, is a positive
measure and = fu + 14 is the Radon-Nikodym decomposition.

Theorem 2.6 Let A be a bounded Borel set afid< p < 1. Then

0= [ If@Pinta

(Both sides are allowed to be). In particular,v [ A L u [ Aiff for somep € (0, 1),

P(x+1y

i
10 J,| P P,(z +iy)

yl0

_ P,(z +iy)|"
1 ——1d =0.
ylfgl A Pu(w‘l'iy) H<J7>
Proof. By Theorem 2.5,
| P +iy) 7
lim | ———2| = P fi — a.e.x.
| B+ i) |f ()] or p— a.e.x
By Lemma 2.2,
P,(x+1iy)|"
— <M, P
‘P“(x—i—iy) N u(m)

Hence, Proposition 1.9 and the dominated convergence theorem yield the statément.

2.3 Weak convergence

Let v be a complex or positive measure and
1
dyy(z) = =P, (z +iy)dz. (2.16)
s

Theorem 2.7 For any f € C.(R) (continuous functions of compact suppert

lim / F(z)dvy(z / f(2)dv(z (2.17)

yl0

In particular, P,, = P,, = v, = vs.

[ o= [ [ DT,

Proof. Note that
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and so

L )|d|v|(
o [ Uttt 21

[ f@an @) - [ s

Ly(t) = (1+1t7) (f(t)_g/(f(&).

7 Jr (x —1)% + y?

Clearly,sup, - scr |Ly(t)| < co. By Lemma 2.4 and Remark after itm, o L, (¢) = 0 for all
t € R (see also Problem 2). Hence, the statement follows from the estimate (2.18) and the
dominated convergence theorem.

where

2.4 Local LP-norms,p > 1

In this subsection we will prove Theorem 2.1 of [Sil].
Let v be a complex or positive measure andiet= fm + v, be its Radon-Nikodym
decomposition w.r.t. the Lebesgue measure.

Theorem 2.8 Let A C R be openp > 1, and assume that

sup /|Py(x+iy)|pdm < 00.

O<y<lJA

Then:

(1) Vsing f A=0.

2) [, |f(@)[Pdx < oo

(3) Forany(a,b] C A, 7~ 'P,(z +iy) — f(z)in L?([a,b],dx) asy | 0.

Proof. We will prove (1) and (2); (3) is left to the problems.
Let g be a continuous function with compact support contained and letq be the index
dual top, p~* + ¢~ = 1. Then, by Theorem 2.7,

/gdy—hmﬁ 1/g(x)P,,(x+iy)dx,
A A

yl0

([ toras) " ([ 1 smpas)”
o [ utaras)"

and

/Ag< VB, (x + ig)da

| /\
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Hence, the map — [, g(z)dv(x) is a continuous linear functional di¥ (A, dz), and there is
afunctionf € LP(A, du) such that

/A g(@)dvle) = [ g(o)fa)d.

A

This relation implies that | A is absolutely continuous w.r.t. the Lebesgue measure and that
f(z) = f(z) for Lebesgue a.e:. (1) and (2) follow.O

Theorem 2.8 has a partial converse which we will discuss in the problem set.

2.5 Local version of the Wiener theorem

In this subsection we prove Theorem 2.2 of [Si1].

Theorem 2.9 Letv be a signed measure amt], be the set of atoms of Then for any finite
interval [a, b],

lﬁgy/a P,(z + iy)*dx :g (V({g}) + V({s}) + Z V({J]})Q) ,

z€(a,b)NA,

Proof. , (aj N iy)2 _ yQ/ dl/(t)dl/(t/)
) e (2 =12 +y?)((x =) +y?)
and ,
y/ P,(z +iy)*dr = /R2 g, (¢, t)dv(t)dv(t'),
where

: ’ y*dx
Wt~ | e
Notice now that:
(1) 0 < gy(t,t') <.
(2) limy o g,(t,t") =0if t ¢/, 0rt & [a,b], Oort’ & [a,b].
B)Ift =t € (a,b), then

lim g, (¢,t) = lim 3/d—x_7r
yio o o @22 2

(compute the integral using the residue calculus).
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@Ift=t=aort =1t =b,then

lim g,(¢,t) = lim 3/00 de 7T
1 = _— = —
yio v w10 o (249422 4

The result follows from these observations and the dominated convergence theborem.

Corollary 2.10 A signed measure has no atoms itfu, b iff

b
limy/ P,(x +iy)*dx = 0.
yl0 a

2.6 Poisson representation of harmonic functions

Theorem 2.11 LetV/(z) be a positive harmonic function {@i.. Then there is a constant> 0
and a positive measugeon R such that

V(zx +1iy) = cy + P,(z + iy).
Thec andy are uniquely determined By .

Remark 1. The constant is unique since: = lim, .., V(iy)/y. By Theorem 2.7, is also
unique.

Remark 2. Theorems 2.5 and 2.11 yield thatlif is a positive harmonic function i€, and
dp = f(z)dz + psing is the associated measure, then for Lebesguera.e.

lim7 'V (z +1iy) = f(z).
y10

LetD ={z:|z| <1}andl’ = {z: |z| = 1}. Forz € D andw € T let

1_ 2
pz(w):Rew+z— 2|

w—z  |w—z2

We shall first prove:

Theorem 2.12 LetU be a positive harmonic function iR. Then there exists a finite positive
Borel measures on T such that for allz € D,

U(z) = /sz(w)du(w).
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Proof. By the mean value property of harmonic functions, for any r < 1,

U(0) = — /W U (rei®)do.

:% B

In particular,
1 [7 :
sup — U(re?)do = U(0) < oo.

0<r<1 27 -

For f € C(T') set _
a,(/f) 1/‘WM%ﬂwma

:% »

Each®, is a continuous linear functional on the Banach spa¢g) and||®,|| = U(0). The
standard diagonal argument yields that there is a sequeneel and a bounded linear func-
tional ® on C(T') such that®,, — @ weakly, that is, for allf € C(T'), ®,,(f) — ®(f).
Obviously,||®|| = U(0). By the Riesz representation theorem there exists a complex measure
vonTI such thaty|(I") = U(0) and

Wﬂ—ﬂjwmww.

Since®, (f) > 0if f > 0, the measure is positive. Finally, let: € D. If r; > |z|, then

1 [ . .

UGers) = o [ Ul pa(e)d0 = &, (). (2.19)
T™J—x

(the proof of this relation is left for the problems—see Theorem 11.8 in [Ru]). Takirgoo

we derive

U@:¢@»=Amwmmw
O

Before proving Theorem 2.11, | would like to make a remark about change of variables in
measure theory. LétV/;, F;) and(M,, F») be measure spaces. A map M; — M, is called
a measurable tranformation if for ail € F,, T-'(F) € F,. Let u be a positive measure on
(M, Fy), and letur be a positive measure @iV/,, F,) defined byur(F) = u(T1(F)). If f
is a measurable function qi/f,, %), thenfr = f o T is a measurable function did/;, 7).
Moreover,f € L'(M,, dur) iff fr € L'(M;,du), and in this case

fdur = [ frdp.

Mo My

This relation is easy to check ffis a characteristic function. The general case follows by the
usual approximation argument through simple functions.
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If T'is a bijection, they € L' (M, dp) iff gy € LY(Ms, dur), and in this case

/gduz/ gr-rdpr.
M1 M2

Proof of Theorem 2.11.We defineamap : C, — D by

S(z) = Ez (2.20)

This is the well-known conformal map between the upper half-plane and the unit disc. The map
S extends to a homeomorphisth: C, — D \ {—1}. Note thatS(R) =T\ {—1}. If

K.(t) = z=x+iy € Cy,

(x —t)2 +y?
then
(1 + tQ)KZ<t) = pS(z)(S(t))
LetT = S—L. Explicitly,

_1
7o = i§§+i'

LetU(¢) = V(T'(€)). Then there exists a positive finite Borel measumn I" such that

(2.21)

U(e) = / pe(w)dv (w).

The mapl': I'\ {—1} — R is a homeomorphism. Let be the induced Borel measure Bn
By the previous change of variables,

/ pe(w)dv(w) = /(1 + tQ)KT(g)(t)dl/T(t).
M{-1}

Hence, forz € C,,

V(2) = psey(=)v({—1}) + /(1 + ) K, (t)dvp(t).

R

Sinceps(»)(—1) = y, settinge = v({—1}) anddpu(t) = (1+¢*)dvr(t), we derive the statement.
O
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2.7 The Hardy classH>(C,)

The Hardy clasg7*>°(C, ) is the vector space of all functiosanalytic inC such that

IV = sup |[V(2)] < oc. (2.22)

ZG(C+

H*>(C,) with norm (2.22) is a Banach space. In this subsection we will prove two basic
properties off>(C..).

Theorem 2.13LetV € H>*(C,). Then for Lebesgue a.e.€ R, the limit
V(z) = li?ol V(z +1y) (2.23)
Y

exists. Obviouslyy € L>*(R, dx).

Theorem 2.14LetV € H*(C, ),V # 0, and letV(x) be given by (2.23). Then

1
log V@)l _
R 1+$2

In particular, if & € C, then eithed/(z) = aorthe set{x € R : V(z) = a} has zero Lebesgue
measure.

A simple and important consequence of Theorems 2.13 and 2.14 is:

Theorem 2.15 Let F' be an analytic function o€, with positive imaginary part. Then:
(1) For Lebesgue a.e: € R the limit

F(z) = lim F(z + iy),
yl0

exists and is finite.
(2) If o € C, then eitherF'(z) = a or the set{x € R : F'(z) = o} has zero Lebesgue measure.

Proof. To prove (1), apply Theorem 2.13 to the functiofi(z) + i)~!. To prove (2), apply
Theorem 2.14 to the functioff'(z) +1i)™' — (e« +1)~*. O

Proof of Theorem 2.13.Letdv,(¢t) = V(¢ + iy)dt. Then, forf € L*(R, d¢),

I}L,f(t)<1uy(t)‘ < H‘/”(/L £ (2)]dt.

The mapd,(f) = [, fdv, is alinear functional od.' (R, d¢) and||®, || < ||V||. By the Banach-
Alaoglu theorem, there a bounded linear functiobadnd a sequencg, | 0 such that for all
f e LY(R,dt),

lim @, (f) =®(f).

n—oo
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LetV € L>(R,d¢) be such tha®(f) = [, V() f(t)dt. Let f(t) = 7 'y((z — )2 + y*) . A
simple residue calculation yields

®,,(f) = le/R % =V(z+1i(y +yn))-

Takingn — oo, we get

V(z+iy) = le/ Vit)dt

R (@24

and Theorem 2.5 yields the statement.

Remark 1. Theorem 2.13 can be also proven using Theorem 2.11. The above argument has the
advantage that it extends to any Hardy cl&a®$C ).

Remark 2. In the proof we have also established the Poisson representatioiitié relation
(2.24)).

Proposition 2.16 (Jensen’s formulajAssume thal/(z) is analytic for|z| < 1 and thatU(0) #
0. Letr € (0,1) and assume thdf has no zeros on the circle| = r. Letay, as, ..., «, be
the zeros ot/ (z) in the region|z| < r, listed with multiplicities. Then

T = {5 [ osltreyiar}. (2.25)

Remark. The Jensen formula holds evenlifhas zeros onz| = . We will only need the
above elementary version.

Proof. Set
r? — ajz

V(z)=U(=) ]

srle—2)

Then for some > 0 V(z) has no zeros in the disk| < r + ¢ and the functioriog |V ()|
is harmonic in the same disk (see Theorem 13.12 in [Ru]). By the mean value theorem for
harmonic functions,

1 & )
log |V (0)] = %/ 10g|V(7"e‘9)|d9.

—Tr

The substitution yields the statement.
Proof of Theorem 2.14.SettingU (") = V (tan(¢/2)), we have that

log |V (« 1 [ ;
/R| 1L3§2)H 2/ | log |U (e')]|dt. (2.26)

Hence, it suffices to show that the integral on the r.h.s. is finite.
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In the rest of the proof we will use the same notation as in the proof of Theorem 2.11. Recall
thatS and7" are defined by (2.20) and (2.21). Uéfz) = V(7'(z)). Then,U is holomorphic in
D andsup,.p |U(z)| < co. Moreover, a change of variables and the formula (2.24) yield that

U(re?) ! /W ki U(e)dt
re’) = — :
21 J_, 14+ 1r2—2rcos(6 —t)

(The change of variables exercise is done in detail in [Ko], pages 106-107.) The analog of
Theorem 2.5 for the circle yields that for Lebesgue é.e.

lim U (re) = U(e"). (2.27)

r—1

The proof is outlined in the problem set.

We will now make use of the Jensen formulallfo) = 0, letm be suchl,,,(z) = z7"U(z)
satisfied/,,(0) # 0 (if U(0) # 0, thenm = 0). Letr; — 1 be a sequence such thathas no
zeros orjz| = r;. Set

1 ™ . 1 u .
1= o [ 1ottt = —mtogrs + - [ rog e

The Jensen formula (applied®,) yields that/,, < .J,, if r; < r;. Writelog® = = max(log z,0),
log™ 2 = —min(log z,0). Note that

sup log™ |U(e')| < sup |U(e')] < 0.
t t
Fatou’'s lemma, the dominated convergence theorem and (2.27) yield that

[ 1 (7 .
1 < + it .
JT1+—27T/ log™ [U(e")]dt < o /Wlog U (e)]dt < oo

Hence,
/ [ log [T(e)]d < oo,

—Tr

and the identity (2.26) yields the statement.

2.8 The Borel tranform of measures
Recall that the Borel transforti, (z) is defined by (2.8).

Theorem 2.17 Let . be a complex or positive measure. Then:
(1) For Lebesgue a.ex the limit

F,(z) = lyig)l F(z +iy)
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exists and is finite.
(2)If F,, # 0, then

Hog[Fu@)ll . o (2.28)
g 1+ a2
(3) If F,, # 0, then for any complex numbaerthe set
{r eR: F,(x)=a} (2.29)
has zero Lebesgue measure.
Remark. It is possible that
w#0 and F,=0. (2.30)

For example, this is the casedfi = (x — 2i)~!(x — i)~'dz. By the theorem of R M. Riesz
(see, e.g., [Ka)), if (2.30) holds, thet, = h(x)dz, whereh(z) # 0 for Lebesgue a.ex. We
will prove the F.& M. Riesz theorem in Section 4.

Proof. We will first show that
R(z)

whereR, G € H*(C,) andG has no zeros i, . If x4 is positive, set

(2.31)

1
i+ Fu(z)

Then,G(z) is holomorphic inC, |G(z)| < 1 (sincelm F,(z) > 0), and

G(z) =

_ 1 —iG(z)

F“(z) G(z)

If 1 is a complex measure, we first decomppse (u; — p2) +i(ps — pa), Where they;’s are
positive measures, and then decompose

Fu(2) = (Fu (2) = Flp(2)) +1(Fs(2) = Fu(2)).

Hence, (2.31) follows from the corresponding result for positive measures.
Proof of (1): By Theorems 2.13 and 2.14, the limitéz) = lim, o R(z + iy) andG(z) =
lim, o G(x + iy) exist andG(z) is non-zero for Lebesgue a.e. Hence, for Lebesgue a.e,

R(x)
G(x)

F.(x) = IZHBIFM(x +1iy) =

Proof of (2): F,(z) is zero on a set of positive measurefifx) is, and if this is the case,
R = 0 and thenF), = 0. Hence, ifF), # 0, thenR # 0. Obviously,

| log [Fu(2)]| < [log [R(x)]] + [log |G ()],
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and (2.28) follows from Theorem 2.14.

Proof of (3): The set§z : F,(x) = a} and{z : R(z) — aG(z) = 0} have the same
Lebesgue measure. If the second set has positive Lebesgue measure, then by Theorem 2.14,
R(z) = aG(z) for all z € C,, andF,(z) = «. Sincelim,_., |F,(z + iy)| = 0, « = 0, and
soF, = 0. Hence, if the sefx : F,,(z) = o} has positive Lebesgue measure, ther 0 and
pw=0.0

The final result we would like to mention is the theorem of Poltoratskii [Po1].

Theorem 2.18 Letr be a complex ang a positive measure. Let= fu + v, be the Radon-

Nikodym decomposition. Lgt;,, be the part ofu singular with respect to the Lebesgue mea-

sure. Then _
Fy(z +iy)

ylﬁ)l P+ 1) = f(x) for piging — a.e.x. (2.32)

This theorem has played an important role in the recent study of the spectral structure of
Anderson type Hamiltonians [JL2, JL3].

Poltoratskii's proof of Theorem 2.18 is somewhat complicated, partly since it is done in the
framework of a theory that is also concerned with other questions. A relatively simple proof of
Poltoratskii's theorem has recently been found in [JL1]. This new proof is based on the spectral
theorem for self-adjoint operators and rank one perturbation theory, and will be discussed in
Section 4.

2.9 Problems

[1] (1) Prove Lemma 2.3.
(2) Assume that satifies (2.9). Prove that the set.ofor which (2.11) holds i7s (countable
intersection of open setg supp .

[2] (1) Let Cy(R) be the usual Banach space of continuous functiofRoranishing at infinity
with norm|| f|| = sup | f(z)|. For f € Cy(R) let

Y f(t)
fy(l') - ;/]R (x_t)g_i_ygdt'

Prove thatlim, o || f, — f]| = 0.

(2) Prove that the linear span of the set of functidiiér —a)? +v*)~' : a € R,b > 0} is dense
in CQ(R)

(3) Prove that the linear span of the set of functidiis — z) ! : = € C\ R} is dense irCy(R).
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Hint: To prove (1), you may argue as follows. Fix- 0. Letd > 0 be such thatt — z| < 6 =
|f(t) — f(z)| < e. The estimates

) — ) < 2 [ LIS,

R (T —1)* +y?

Y 1
§6+2HfH—/ ———dt
T Jji—a)>s (@ —1)? + 4

< e+ 4m | flly/o,

yield thatlimsup, |, || f, — f|| < e. Sincee is arbitrary, (1) follows. Approximating, by
Riemann sums deduce that &)(2). Obviously, (2= (3).

[3] Prove Part (3) of Theorem 2.8.

[4] Prove the following converse of Theorem 2.8: If (1) and (2) hold, thefufér C A
b

sup |P,(x +1iy)|Pdz < 0.

[5] The following extension of Theorem 2.9 holds: Ldte a finite positive measure. Then for
anyp > 1,

limyp_l/ P,(x +iy)Pdz = C ( <{;}) {b} + Z v({z}) )

0
vl z€(a,b)

Prove this and comput€, in terms of gamma functions. Hint: See Remark 1 after Theorem 2.2
in [Si1].

[6] Prove the formula (2.19).

[7] Let 1 be a complex measure. Prove thgt = 0 = p = 0 if either one of the following
holds:

(a) i is real-valued.

(b) |x|(S) = 0 for some open sed.

(©) Jg exp(p|z|)d|p| < co for somep > 0.

[8] Let .« be a complex or positive measure Rrand

H(2) =GR (:) — B = [ 00,
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By Theorems 2.5 and 2.17, for Lebesgue athe limit
H,(x) =1lim H,(z + iy)
yl0

exists and is finite. Il = fdz, we will denoteH,(z) and H,(z) by H(z) and H(x).
The functionH ,(z) is called the Hilbert transform of the measyrgH; is called the Hilbert
transform of the functiorf).

(1) Prove that for Lebesgue a.e.the limit

1 du(t)

lim —
=0T [t—z|>€ x—t

exists and is equal tél, ().
(2) Assume thaf € LP(R, dx) for somel < p < oo. Prove that

Sup/ |Hf(x +1y)[Pdz < 00
R

y>0

and deduce that/; € L?(R, dx).
(3)If f € L*(R,dx), prove thatH;, = — f and deduce that

[it@Pas = [ (1)

[9] Let1 < p < oco. The Hardy clasg1?(C. ) is the vector space of all analytic functioyison
C, such that

17]l2 = sup / F(z + ig)Pdz < oo,
y>0 JR

(1) Prove that|| - ||, is a norm and that{?(C, ) is a Banach space.
(2) Let f € HP(C, ). Prove that the limit

f(z) = 1;%1 f(z +1iy)

exists for Lebesgue a.e.and thatf € LP(R, dx). Prove that

flz+iy) = %A@_%—ZL#dt.

(3) Prove thatH?(C, ) is a Hilbert space and that

sup [ |fe+ip)de = [ |fe)Fa.

y>0
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Hence,H?(C. ) can be identified with a subspace bf(R, dz) which we denote by the same
letter. LetF " (C.) = {f € L3R, dz) : f € H*(C,)}. Prove that

L*(R,dz) = HX(C,) & H(C,).

[10] In this problem we will study the Poisson transform on the circle.ILet {z : |z| = 1}
and lety be a complex measure @h The Poisson transform of the measyris

1— |2

Rie) = | o pget)

If we parametrizd® by w = €', t € (—x, 7] and denote the induced complex measureg (@Y,

then _ L
P,(re') = — du(t).
u(re”) /_W1+7"2—27“cos(9—t) ut)

Note also that ifdu(t) = dt, thenP,(z) = 27. For w € I" we denote by (w, r) the arc of
length2r centered atv. Letr be a complex measure apda finite positive measure dn The
corresponding maximal function is defined by

v|(L(w,r))
M, (w) =sup ———=
w0 = (T (w, )
if z € supp p, otherwiseM,, ,(w) = oo.
(1) Formulate and prove the Besicovitch covering lemma for the circle.
(2) Prove the following bound: For alt € [0,1) andf € (—m, 7],

|PV(Tew)|

By (re'%)

You may either mimic the proof of Lemma 2.2, or follow the proof of Theorem 11[R0]in
(3) State and prove the analog of Theorem 2.5 for the circle.
(4) State and prove the analogs of Theorems 2.7 and 2.13 for the circle.

< My ().

[11] In Part (4) of the previous problem you were asked to prove the relation (2.27). This
relation could be also proved like follows: show first that

, , I 1—r? - ,
li 0y i0 <1 - ity i0 dt
1I:1_S)111p|U(Te )—U(e”)| < 1I?jllp27r ,W1+r2—2rcos(9—t)|U(e ) —U(e”)]
: 1 ity _ 77(nif
< lim sup |U (") — U(e”)|dt,

€lo € JI(6,¢)

and then use Problem 9 of Section 1.

32



[12] The goal of this problem is to extend all the results of this section to non-tangential limits.
Our description of non-tangential limits follow®ol] Let againl' = {z : |z| = 1} and
D ={z:|z| < 1}. Letw € I'. We say that tends tow non-tangentially, and write

z — W

/
if z tends tow inside the region
A? ={ze D : |Arg(1 — zw)| < ¢}

for all ¢ € (0,7/2) (draw a picture). Arg(z) is the principal branch of the argument with
values in(—m, 7]. In the sectorA¥ inscribe a circle centered at the origin (we denote itlhy.
The two points o', N {z : Arg(1 — zw) = %} divide the circle into two arcs. The open
region bounded by the shorter arc and the rayg (1 — zw) = +p is denoted"¢. Letr and
be as in Problem 10.

(1) Lety € (0,7/2) be given. Then there is a constanisuch that

[P, (2)]

zeC¥ PM('Z)

This is the key result which extends the radial estimate of Part (2) of Problem 10. The passage
from the radial estimate to (2.33) is similar to the proof of Harnack’s lemma. Write the detailed

proof following Lemma 1.2 ¢Po1l].
(2) Letrv = fu + v, be the Radon-Nikodym decomposition. Prove that

lim h(z)
z—w P,(z)

< CM,,,(w) for p — a.e.w. (2.33)

= f(w) for p — a.e.w.

If v is a positive measure, prove that

P,
lim /(2)
Z—w P,(z)

=00 for v, — a.e.w.

(3) Extend Parts (3) and (4) of Problem 10 to non-tangential limits.

(4) Consider nowC,.. We say that tends tor non-tangentially if for allp € (0,7/2) = tends
to x inside the condz : |Arg(z — x) — /2| < }. LetT be the conformal mapping (2.21).
Prove that: — w non-tangentially inD iff T'(z) — T'(w) non-tangentially inC. . Using this
observation extend all the results of this section to non-tangential limits.

3 Self-adjoint operators, spectral theory

3.1 Basic notions

Let H be a Hilbert space. We denote the inner product:py (the inner product is linear w.r.t.
the second variable).
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A linear operator ort{ is a pair(A, Dom (A)), whereDom (A) C 'H is a vector subspace
andA : Dom (A) — H is a linear map. We set

Ker A = {¢p € Dom (A) : Ay =0}, Ran A = {Ay : ¢ € Dom (A)}.

An operatorA is densely defined iDom (A) is dense irH. If A and B are linear operators,
then A + B is defined orDom (A + B) = Dom (A) N Dom (B) in the obvious way. For any
z € C we denote byA + z the operatord + 21, wherel is the identity operator. Similarly,
Dom (AB) = {¢ : ¢ € Dom(B),By € Dom(A)}, and(AB)y = A(By). A = B if
Dom (A) = Dom (B) and Ay = B. The operatoiB is called an extension o (one writes
A C B)if Dom (A) C Dom (B) andAy = B for ¢ € Dom (A).

The operatoi is called bounded iDom (A) = H and

|All = sug1 |AY]| < 0. (3.34)

We denote by3(H) the vector space of all bounded operators?on B(H) with the norm
(3.34) is a Banach space. if is densely defined and there is a const@rguch that for all
¥ € Dom (A), ||Ay|| < C||v], thenA has a unique extension to a bounded operatdt oAn
operatorP € B(H) is called a projection if”> = P. An operator/ € B(H) is called unitary
if UisontoandU¢|Uvy) = (¢|y) forall ¢, ¢ € H.

The graph of a linear operater is defined by

T(A) = {(¢, A¥) : ¢ € Dom (A)} C H&H.

Note thatA C B if I'(A) C I'(B). A linear operatotA is calledclosedif I'(A) is a closed
subset ofH © H.

Alis called closable if it has a closed extension4 I closable, its smallest closed extension
is called the closure aofl and is denoted byl. It is not difficult to show thatA is closable iff
I'(A) is the graph of a linear operator and in this cBgd) = I'(A).

Let A be closed. A subséd C Dom (A) is called acorefor Aif A | D = A.

Let A be a densely defined linear operator. Its adjaitit,is defined as followsDom (A*)

is the set of ally € H for which there exists & € H such that

(Agl¢) = (¢lv)  forall p € Dom (A).

Obviously, suchy is uniqgue anddom (A*) is a vector subspace. We séto = . It may
happen thabDom (A*) = {0}. If Dom (A*) is dense, thed** = (A*)*, etc.

Theorem 3.1 Let A be a densely defined linear operator. Then:
(1) A*is closed.

(2) Ais closable iffDom (A*) is dense, and in this casé = A**.
(3) If Ais closable, theml ™ = A*.
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Let A be a closed densely defined operator. We denotg(Hy the set of all: € C such
that
A—2z:Dom(A) - H

is a bijection. By the closed graph theoren; i€ p(A), then(A — 2)~! € B(H). The sefp(A)
is called the resolvent set af. The spectrum ofi, sp(A), is defined by

sp(4) = C\ p(A).

A point z € C is called an eigenvalue ol if there is ayp € Dom (A), ¥ # 0, such that
Ay = zp. The set of all eigenvalues is called the point spectrun aind is denoted by
sp,(A). Obviously,sp,(A) C sp(A). Itis possible thatp(A) = sp,(A) = C. Itis also

possible thatp(A) = (). (For simple examples see [RS1], Example 5 in Chapter VIII).

Theorem 3.2 Assume thap(A) is non-empty. Thep(A) is an open subset & and the map
p(A) 3z (A—2)" € B(H),
is (norm) analytic. Moreover, iy, 2, € p(A), then
(A—z) ' —(A—2) = (21 — ) (A —2) YA —2)"".

The last relation is called the resolvent identity.

3.2 Digression: The notions of analyticity

Let 2 ¢ C be an open set andl a Banach space. A functiofi: €2 — X is called norm
analytic if for all z € ) the limit
o Jw) = f(2)

w—z w—z

exists in the norm ofX. f is called weakly analytic ift* o f : 0 — C is analytic for all
x* € X*. Obviously, if f is norm analytic, therf is weakly analytic. The converse also holds
and we have:

Theorem 3.3 f is norm analytic ifff is weakly analytic.

For the proof, see [RS1].

The mathematical theory of Banach space valued analytic functions parallels the classical
theory of analytic functions. For examplejifis a closed path in a simply connected domain
Q, then

]{f(Z)dz = 0. (3.35)
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(The integral is defined in the usual way by the norm convergent Riemann sums.) To prove
(3.35), note that for* € X*,

. <£f(z)dz) _ j{x*(f(z))dz 0.

SinceX™* separates points i, (3.35) holds. Starting with (3.35) one obtains in the usual way
the Cauchy integral formula,

1 f(w)

w—z

dw = f(z).

27

|lw—z|=r

Starting with the Cauchy integral formula one proves thatfar 2,

f(z)= Z an(z —w)", (3.36)

n=0

wherea,, € X. The power series converges and the representation (3.36) holds in the largest
open disk centered at and contained i, etc.

3.3 Elementary properties of self-adjoint operators

Let A be a densely defined operator on a Hilbert spgceA is called symmetric if/p, v €
Dom (A),
(Aglv) = (¢|AY).

In other words A is symmetric ifA C A*. Obviously, any symmetric operator is closable.
A densely defined operatot is calledself-adjointif A = A*. A is self-adjoint iff A is
symmetric andom (A) = Dom (A*).

Theorem 3.4 Let A be a symmetric operator 6H. Then the following statements are equiv-
alent:

() A is self-adjoint.

(2) Ais closed and{er (A* +1) = {0}.

(3)Ran(A+£1i) ="H.

A symmetric operato# is called essentially self-adjoint i is self-adjoint.

Theorem 3.5 Let A be a symmetric operator 6H. Then the following statements are equiv-
alent:

(1) A is essentially self-adjoint.

(2) Ker (A* £1) = {0}.

(3) Ran (A £ i) are dense irH.
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Remark. In Parts (2) and (3) of Theorems 3.4 and 3bcan be replaced by, z, for any
z € C\R.

Theorem 3.6 Let A be self-adjoint. Then:
(1) If z = z + iy, then fory € Dom (A),

I(A = 2)9]1* = (A = 2)9” + y* [l ]

(2)sp(A) cRandforz € C\R, [[(A—2)7! < |[Imz|~%
(3) Foranyzx € Randy € H,

lim iy(A — x —iy) ' = .

(8)If A, A2 € sp,(A), AL # A2, andyyy, ¢, are corresponding eigenvectors, then L «,.
Proof. (1) follows from a simple computation:
I(A =2 —iy)y|* = (A -z — iy)¥|(A -z — iy)y)
= [[(A = 2)0l* + [ ]|* + iy ((A — 2)¥lv) — iy((A — 2)¢lv)
= [[(A = 2)olI* + y? [l [|*.

(2) Letz € C\ R. By (1), if (A —2)y = 0, theny = 0, and S0A — z : Dom (4A) — H

is one-one.Ran (A — z) = H by Theorem 3.4. Let us prove this fact directly. We will show
first thatRan (A — 2) is dense. Let) € H such that((A — z)¢|) = 0 for all € Dom (A).
Thenty € Dom (A) and(¢|Ay) = Z||¢||>. Since(y|Ay) € R andIm z # 0, ¢» = 0. Hence,
Ran (A — z) is dense. Let),, = (A — 2)¢, be a Cauchy sequence. Then, by (,),is also a
Cauchy sequence, and sindes closedRan (A — z) is closed. Henc&an (A — z) = ‘H and

z € p(A). Finally, the estimaté(A — 2)~!|| < |Im z|~! is an immediate consequence of (1).

(3) By replacingA with A — =, w.l.0.g. we may assume that= 0. We consider first the case
1 € Dom (A). The identity

iy(A—iy) W+ =(A—iy) Ay

and (2) yield that|iy(A — iy) ' + ¢|| < ||A¢||/y, and so (3) holds. If) ¢ Dom (A), let
1, € Dom (A) be a sequence such that, — || < 1/n. We estimate

liy(A —iy) ™' + || < iy(A —iy) 7' (W = )| + [ — ¥l
+ (| iy (A — iy) ™ e +
< 2[|tb — | + [[(y(A = 1) ™ 4+ n|
< 2/n+ || An||/y.
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Hence,
limsup [[iy(A — iy) "y + || < 2/n.

Yy—00
Sincen is arbitary, (3) follows.
(A M (P1]he) = (AYi|ih2) = (V1| A2) = Aa(¢n]the). Sincelr # Ag, (Y1[the) = 0. O

A self-adjoint operator is called positive if(1)| Ay) > 0 for all » € Dom (A). If A and
B are bounded and self-adjoint, then obviougdly- B are also self-adjoint; we writd > B if
A—B>0.

A self-adjoint projectionP is called an orthogonal projection. In this cdge= Ker P &
Ran P. We writedim P = dim Ran P.

Let A be a bounded operator G#. The real and the imaginary part dfare defined by

ReA = %(A+ A%, ImA= %(A — A",
1

Clearly,ReA andImA are self-adjoint operators antl= ReA + ilmA.

3.4 Direct sums and invariant subspaces

Let H,, H, be Hilbert spaces and,, A, self-adjoint operators o, H,. Then, the operator
A = A; @ A, with the domainDom (A) = Dom (A;) @ Dom (A,) is self-adjoint. Obviously,
(A—2)t=(A4;— 21 (A — 2)L.

This elementary construction has a partial converse. A be a self-adjoint operator on a
Hilbert spaceH and letH; be a closed subspace Bt The subspace{; is invariantunderA
ifforall 2 € C\R, (A—2)"'H, C H,. Obviously, ifH, is invariant under, so isH, = H; .
SetDom (4;) = Dom (A) NH;, Ap = Ay, i = 1,2. A; is a self-adjoint operator oK, and
A = A; & Ay, We will call A; the restriction ofA to the invariant subspack; and write
A=A H,.

LetI" be a countable set arid,,, n € I, a collection of Hilbert spaces. The direct sum of

this collection,
"= DM,

is the set of all sequencés), }..r such that),, € H,, and

D Ml < oo
nel’
‘H is a Hilbert space with the inner product

(@1) = (bultn)r,-

nel’

Let B, € B(H,) and assume thatip,, || B,|| < oco. ThenB{{y}ner = {Bu¥n}ner is a
bounded operator 6K and|| B|| = sup,, || Bx||-
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Proposition 3.7 Let A,, be self-adjoint operators oK,,. Set

Dom (A) = {¢) = {¢n} € H : ¥, € Dom (4,), Y [[Asthall3, < oo},

Ay = {An,}. ThenA is a self-adjoint operator oft{. We writeA = @, A,,. Moreover:
(D)Forze C\R, (A—2)"' =@, (A, —2)" "
(2) sp(A) = Unsp(An).

The proof of Proposition 3.7 is easy and is left to the problems.

3.5 Cyclic spaces and the decomposition theorem

Let H be a separable Hilbert space ac self-adjoint operator of. A collection of vectors
C = {¢n }ner, Wherel is a countable set, is calleyclic for A if the closure of the linear span
of the set of vectors

{(A=2)"", : nel,ze C\R}

is equal toH. A cyclic set for A always exists (take an orthonormal basis¥ If C = {v'},
thenv is called a cyclic vector foA.

Theorem 3.8 (The decomposition theorem)et’H be a separable Hilbert space antla self-
adjoint operator orf{. Then there exists a countable $gia collection of mutually orthogonal
closed subspacedt,, },er of H (H, L H,, if n # m), and self-adjoint operatorsl,, on H,
such that:

(1) For all n € T" there is av,, € H,, cyclic for A,,.

RQH=e,H,andA =3, A,.

Proof. Let{¢, : n = 1,2,---} be a given cyclic set forl. Sety, = ¢, and letH; be the
cyclic space generated by andv; (H; is the closure of the linear span of the set of vectors
{(A—2)""; : z € C\ R}). By Theorem 3.6¢); € H;. Obviously,H, is invariant underd
andwe sed; = A | H;.

We definey,,, H,, and A,, inductively as follows. IfH; # H, let ¢,,, be the first element of
the sequencégp,, ¢, - - - } which is not in,. Decompose,, = ¢, + ¢.,, where¢, € H,;
and¢! € Hi. Sety, = ¢! and letH, be the cyclic space generated Byand,. It follows
from the resolvent identity thak{; | H,. SetA, = A | H,. In this way we inductively
definey,,, H,, A,, n € T, wherel is a finite set{1,--- , N} orI" = N. By the construction,
{bn}ner C UnerH,. Hence, (1) holds ant{ = &, H,,.

To prove the second part of (2), note first that by the constructioty,pf

(A-2)"' =P, —2)7".

n

®A,, then by Proposition 3.7 is self-adjointand A — 2)~! = @,(4,, — z)~'. Hence
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3.6 The spectral theorem
We start with:

Theorem 3.9 Let (M, F) be a measure space anda finite positive measure i/, F). Let
f: M — R be a measurable function and lét be a linear operator ori.?(M, du:) defined by

Dom (A7) = {v € L*(M.dp) : fo € *(M.dw)},  App = fob.

Then:

(1) Ay is self-adjoint.

(2) Ay is bounded ifff € L>(M,du), and in this casél A¢|| = || f]|o-
(3)sp(Ay) is equal to the essential range ff

sp(A) ={ANeR : u(f '(A—eX+¢€) >0 forall e > 0}.

The proof of this theorem is left to the problems.

The content of the spectral theorem for self-adjoint operators iatiyaelf-adjoint operator
is unitarily equivalent tod ; for somef.

Let H; and’H, be two Hilbert spaces. A linear bijectidn : ‘H; — H is called unitary
if for all ¢,v € Hy, (Up|U¥)y, = (6]10)s,. Let Ay, A be linear operators ok, H,. The
operatorsA;, A, are unitarily equivalent if there exists a unitaly : H; — H, such that
UDom (Al) = Dom (AQ) andUAlU_l = AQ.

Theorem 3.10 (Spectral theorem for self-adjoint operators).et A be a self-adjoint opera-
tor on a Hilbert space/{. Then there is a measure spadd, F), a finite positive measure
and measurable functiofi: M/ — R such that4 is unitarily equivalent to the operatot ; on
LA(M,du).

We will prove the spectral theorem only for separable Hilbert spaces.

In the literature one can find many different proofs of Theorem 3.10. The proof below is
constructive and allows to explicitly identify/ and f while the measurg is directly related to
(A—2z)"L

3.7 Proof of the spectral theorem—the cyclic case
Let A be a self-adjoint operator on a Hilbert spa¢endy € H.

Theorem 3.11 There exists a unique finite positive Borel meagyr®nR such thafu,,(R) =
l[]* and

(P[(A—2)" 1) = / iy (1) z€C\R. (3.37)

t—=z’
R
The measurg,, is called the spectral measure fdrand).
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Proof. Since(A —z)™! = (A — z)~'*, we need only to consider € C,. SetU(z) =
(Y|(A —2)"")andV (z) = Im U(z), z € C,.. It follows from the resolvent identity that

V(z+iy) = yll(A -z —iy) [, (3.38)

and soV is harmonic and strictly positive i@, . Theorem 2.11 yields that there is a constant
¢ > 0 and a unique positive Borel measurgonR such that fory > 0,

, : dpy(t)
1% = P, = —_— 3.39
(z +iy) = cy + P, (v +iy) cy+y/R<x_t)2+y2 (3.39)
By Theorem 3.6,

Ve +iy) <[[I*/y  and  lim yV(e+iy) = o]
The first relation yields that= 0. The second relation and the dominated convergence theorem

yield thatyi, (R) = ||
The functions Qi (8)
o Hop
Fﬂzp (Z) - /]R t— »

andU(z) are analytic inC, and have equal imaginary parts. The Cauchy-Riemann equations
imply thatF, (2) — U(z) is a constant. Sincg),, (z) andU(z) vanish adm z — oo, F),, (z) =
U(z) for z € C, and (3.37) holdsd

Corollary 3.12 Lety, € ‘H. Then there exists a unique complex meagurg onR such that

(p|(A — 2) ") = /R M, ze C\R. (3.40)

t— =z

Proof. The uniqueness is obvious (the set of functi¢fis — z)~! : = € C\ R} is dense in
Cy(R)). The existence follows from the polarization identity:

Apl(A=2)7) = (p +Yl(A = 2) e +9)) = (= ¥|(A = 2) (v = ¥))

+ilp —W|(A = 2) (e — 1Y) —i(p + W|(A = 2) 7 (p + 1))

In particular,
1 :
Pow = 7 oty = Ho—p +1(Hp—ip = Hpiv)) - (3.41)

The main result of this subsection is:

41



Theorem 3.13 Assume that) is a cyclic vector forA. ThenA is unitarily equivalent to the
operator of multiplication by: on L?(R, du,,). In particular, sp(A) = supp fiy.

Proof. Clearly, we may assume that+# 0. Note that(A — 2) 1 = (A — w) W iff z = w.
Forz € C\Rwesetr,(z) = (xr —z)~". r, € L*(R,dpy) and the linear span dfr. }.cc\r
is dense inL3(R, du,,). Set
UA—-2) " =r,. (3.42)

If Z = w, then

1
(Tz|rw)L2(]R,d;4¢) = /Tszde == /(Tz— T‘w)dﬂw
R R

Z—w

= [l -2 - @A - w) )]

= ((A=2)""Y|(A - w)y).

By a limiting argument, the relation

(r:Irw) 2@ an,) = (A= 2)7PI(A —w) ")

holds for allz,w € C\ R. Hence, the map (3.42) extends to a unitdry H — L*(R, dj).
Since
U(A=2)"H A= w) ™ = r(@)ry (@) = r:(2)U(A — w) "',

(A — 2)~!is unitarily equivalent to the operator of multiplication by — 2)~! on L*(R, djy).
For any¢ € H,
UAA—2)tp=Up+2UA—2)"p=(1+z2(x—2)"HUgp
=2(r—2)"'U¢ =aU(A—2)""¢,

and soA is unitarily equivalent to the operator of multiplication byO

We finish this subsection with the following remark. Assume thé& a cyclic vector forA
and letA, be the operator of multiplication byon L*(R, du,,). Then, by Theorem 3.13, there
exists a unitary/ : H — L*(R,du,) such that

UAU! = A,. (3.43)

However, a unitary satisfying (3.43) is not unique.Ulfis such a unitary, thefVv is a cyclic

vector forA,. On the other hand, if € L?(R,du,) is a cyclic vector forA,, then there is a
unique unitaryU : H — L*(R,du,,) such that (3.43) holds aridy = f||+||/||f]]. The unitary

constructed in the proof of Theorem 3.13 satisities = 1.
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3.8 Proof of the spectral theorem—the general case

Let A be a self-adjoint operator on a separable Hilbert sgaceéetH,, A,, ¥, n € I' be as

in the decomposition theorem (Theorem 3.8). Ugt: H,, — L?*(R, du,,) be unitary such that

A,, is unitarily equivalent to the operator of multiplication lbyWe denote this last operator by

A,. LetU = @,U,. An immediate consequence of the decomposition theorem and Theorem
3.13is

Theorem 3.14 The mapl : H — @, .- L*(R, dpy,, ) is unitary andA is unitarily equivalent
to the operator P, A,,. In particular,

sp(A) = | supp py,,.
nel’

Note thatifp € H andU¢ = { ¢y, fner, thenuy = - 1 tto,. -

Theorem 3.10 is a reformulation of Theorem 3.14. To see that, choose cyclic vegtens
that)", . [[¥n]|* < co. For eacn € T', letR,, be a copy ofR and

M:U&V

nel’

You may visualizeM as follows: enumerat€ so thatl’ = {1,...,N} orI" = N and set
R, = {(n,z) : = € R} C R? Hence,M is just a collection of lines ifR? parallel to they-axis
and going through the points, 0),n € I'. Let F be the collection of all set8' C M such that
FNR, is Borel for alln. ThenF is ac-algebra and

F)=) . (FNRy)

nel’

is a finite measure o/ (u(M) = >, 1 [¥n]* < ). Let f : M — R be the identity function
(f(n,z) = x). Then

LX(M,dp) = P LR duy,),  Ar =P An.

nel’ nel’

and Theorem 3.10 follows.

Set
/vLac(F) = Z/Jd)n,ac(F N Rn)a
nel’
,usc(F) = ZM#M,SC(F N RTL)?
nel’
fpp(F) = Zﬂwmpp(F NR,).
nel’
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ThenL?(M, du,.), L*(M, dus.), L*(M, dp,,) are closed subspace bf(M, dy) invariant un-
derA; and
L*(M,dp) = L*(M, dptae) © L*(M, dpge) ® L*(M, djupy).

Set
Haoe = U L*(M, dpiae), Hee = U LA(M, dpg.), Hop = U LA (M, djupy)-

These subspaces are invariant under Moreover,y € H,. iff the spectral measurg,, is
absolutely continuous w.r.t. the Lebesgue measure, H. iff 1, is singular continuous and
Y € Hyp iff 11y is pure point. Obviously,

H = Hae & Hee ® Hyp.

The spectra

SPac(A) = sp(A | Hac) = U SUPD Ly, acs

nel’

SPge(A) = sp(A | Hee) = U SUPD ey, scs

nel’

sppp(A) = sp(A | Hpp) = | supprey,, pp

nel’

are called, respectively, the absolutely continuous, the singular continuous, and the pure point
spectrum ofA. Note that

Sp(A) = 8pac(A) Uspy(A) Uspp,(A),
andsp,(A) = sp,,(4). The singular and the continuous spectrumiaire defined by

Spsing<A) = Spsc(A) U Sppp (A)> SPcont (A) = Spac(A) U Spsc(A>'

The subspaceH .., Hs., H,p are called the spectral subspaces associated, respectively, to
the absolutely continuous, singular continuous, and pure point spectrum. The projections on
these subspaces are denotedLyA), 1..(A), 1,,(A). The spectral subspaces associated to
the singular and the continuous spectrum7dig, = Hse ® Hpp aNdHeont = Hae @ Hee. The
corresponding projections atg,;(A) = 1s.(A) + 1,,(A) andleon(A) = 1ac(A) + 15.(A).

When we wish to indicate the dependence of the spectral subspaces on the ofpenator
will write H,.(A), etc.
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3.9 Harmonic analysis and spectral theory

Let A be a self-adjoint operator on a Hilbert spd¢ey € H, andy, the spectral measure for
Aandy. Let F,,, andF,, be the Borel and the Poisson transformugf The formulas

(WI(A = 2)7 ) = Fl,(2),
Im ([(A = 2)7') = P, (2)

provide the key link between the harmonic analysis (the results of Section 2) and the spectral
theory. Recall thaﬂw,sing = Mpsc T M pp-

Theorem 3.15 (1) For Lebesgue a.ex € R the limit
(1A~ —10)7) = m(¥|(4 — = —iy) ')
exists and is finite and non-zero.

(2) dpty ac = 7 ' Im(|(A — 2 — 10) 1) dx.
(3) 11ysing IS concentrated on the set

o+ limIm (914 — 2 — i) ') = oo}

Theorem 3.15 is an immediate consequence of Theorems 2.5 and 2.17. Similarly, Theorems
2.6, 2.8 and Corollary 2.10 yield:

Theorem 3.16 Let|[q, b] be a finite interval.
(1) pop ac([a, b]) = 0'iff for somep € (0, 1)

b
li{g/ [Im (|(A — 2 — iy) "))  dz = 0.
yl0 Jq
(2) Assume that for some> 1

sup / [Im (¢|(A — z — iy)"')]" dz < oco.

O<y<1

Then,qu,sing([a, bD =0.
(3) . pp([a, 0]) = O iff

’ 2
I;fgy/a [Im (Y[(A — z —iy)~')] " dz = 0.

45



Let H,, be the cyclic subspace spannedAwndqy. W.l.o.g. we may assume thigp || = 1.

By Theorem 3.13 there exists a (unique) unitéiy : H,, — L*(R,du,) such that/,y = 1
and UwAUf is the operator of multiplication by on L*(R,du,). We extendlU, to H by
settingU,¢ = 0 for ¢ € H;;. Recall that

1

Im(A—2)"' = 5((14 —2) = (A-2)).

1
The interplay between spectral theory and harmonic analysis is particularly clearly captured in
the following result.

Theorem 3.17 Let¢ € H. Then:

1)
e (WIm (A -2 —iy)~'9)
(Uyplact)(z) = lﬁg I (U](A =2 —iy)T0) for fupac — a.e. x.
@ (¥[(A iy)~'¢)
—r—1i
(Uyp Lsing®) () = lylfgl (O(A—z= iz)_1¢) for puysng — a.e. x.
Proof. Since

(WIm (A -z —iy)'¢)  Puyeu,(T+1y)

Im (¢[(A — 2 —iy) ")) P, (z+iy)
(1) follows from Theorem 2.5. Similarly, since

(Pl(A—z—iy) o)  Fu,epu,(c+1iy)

(W|(A =z —iy)"'Y) Fu,(z+iy)
(2) follows from the Poltoratskii theorem (Theorem 2.18).

3.10 Spectral measure forAd

Let A be a self-adjoint operator on a separable Hilbert sgaead let{¢, },.cr be a cyclic set
for A. Let{a,}.cr be a sequence such thgt> 0 and

> anllgnl® < oo
nel’
The spectral measure fa, 1.4, is a Borel measure dR defined by
pal) =Y anps, (-):
nel’

Obviously, .4 depends on the choice ¢6,} anda,. Two positive Borel measureg andus
onR are called equivalent (we writg ~ 1) iff 4 andiv, have the same sets of measure zero.
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Theorem 3.18 Let u4 and vy be two spectral measures far. Thenpy ~ v4. Moreover,
HAac ™~ VAacs MAsc ™~ VAscs andﬂA,pp ~ VApp-

Theorem 3.19 Let 4 be a spectral measure fot. Then

SUPD A ac = SPac(A), SUPD A se = SPec(A), SUPP fa,pp = SPpp (A).

The proofs of these two theorems are left to the problems.

3.11 The essential support of the ac spectrum

Let B; andB; be two Borel sets ifR. Let B; ~ B iff the Lebesgue measure of the symmetric
difference(B; \ By) U (Bs \ By) is zero. ~ is an equivalence relation. Let, be a spectral
measure of a self-adjoint operatérand f () its Radon-Nikodym derivative w.r.t. the Lebesgue
measuredya .. = f(z)dz). The equivalence class associatedto f(z) > 0} is called the
essential support of the absolutely continuous spectrum and is denof®gi(by). With a slight
abuse of terminology we will also refer to a particular elemeni$if(A) as an essential support
of the ac spectrum (and denote it by the same syribp( A)). For example, the set

{x :0< 1ifg1(2r)_1u,4(](a:77")) < oo}
is an essential support of the absolutely continuous spectrum.
Note that the essential support of the ac spectrum is independent on the chejce of

Theorem 3.20 Let X¢%(A) be an essential support of the absolutely continuous spectrum.
Thencl(35F(A) Nsp,.(A)) = sp,c(A).

The proof is left to the problems.
Although the closure of an essential suppoff(A) C sp,.(A) equalssp,.(A), 35(A)
could be substantially "smaller” thap,.(A); see Problem 6.

3.12 The functional calculus

Let A be a self-adjoint operator on a separable Hilbert sgacdaetU : H — L*(M,du),
f, and A, be as in the spectral theorem. LBt(R) be the vector space of all bounded Borel
functions onR. Forh € B,(R), consider the operatot,.r. This operator is bounded and
| Aporl| < suph(x). Set

h(A) = U™ AposU. (3.44)

Let® : B,(R) — B(H) be given byd(h) = h(A). Recall that,(z) = (z — z) .
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Theorem 3.21 (1) The map?d is an algebraick-homomorphism.

(2) [|[®(h)[| < max [h(z)].

(3)®(r.) = (A—z) 'forall - € C\ R.

(4)If hy(z) — h(x) for all x, andsup,, , |h.(z)| < oo, thenh,,(A)y — h(A)y for all .

The map? is uniquely specified by (1)-(4). Moreover, it has the following additional properties:
(5) If Ay = A, then®(h)y) = h(N)w.

(6) If h > 0, then®(h) > 0.

We remark that the uniqueness of the functional calculus is an immediate consequence of
Problem 11 in Section 1.

Let  C H be a closed subspace. Af is invariant under4, then for allh € By(R),
h(A)K C K.

For any Borel functiorh : R — C we defineh(A) by (3.44). Of coursei(A) could be an
unbounded operator. Note that(A)hs(A) C hy o ha(A), hi(A) + he(A) C (h1 + ho)(A).
Also, h(A)* = h(A) andh(A) is self-adjoint iffh(z) € R for py-a.e.x € M.

In fact, to defineh(A), we only need thaRan f C Dom h. Hence, ifA > 0, we can define
VA, if A> 0we can definén A, etc.

The two classes of functions, characteristic functions and exponentials, play a particularly
important role.

Let /' be a Borel set iR and x its characteristic function. The operatgy(A) is an
orthogonal projection, called the spectral projection on theFseln these notes we will use
the notationl 7(A) = xr(A) and1,(A) = 1.(A). Note thatl.(A) # 0iff e € sp,(A). By
definition, the multiplicity of the eigenvalueis dim 1.(A).

The subspacBan 1x(A) is invariant underd and

cl(int(F) Nsp(A)) C sp(A | Ran1x(A)) C sp(A) Nel(F). (3.45)
Note in particular that € sp(A) iff forall € > 0 Ran1(._c .1 (A) # {0}. The proof of (3.45)

is left to the problems.

Theorem 3.22 (Stone’s formula)or ¢ € H,

b

Y N 1
lim = Im(A—x — dr=-1|1 A 1 A '
im - | Im(A —z —iy)de = 5 [Lan(A)9 + Len(4)Y]
Proof. Since
b 1 0 if ¢ & [a,b],
hmg —————doe=¢1/2 ift=ao0rt=0,
wlo mJ, (t—2)*+y? .
1 ifte(ab),

the Stone formula follows from Theorem 3.21.
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Another important class of functions are exponentials. tFar R, setU(t) = exp(itA).
ThenU (t) is a group of unitary operators @i. The groupl/(¢) is strongly continuous, i.e. for
ally e H,

hII% U(s)y =U(t)y.
Fori € Dom (A) the functionR > ¢ — U(t)v is strongly differentiable and
lim w = iA. (3.46)

On the other hand, if the limit on the I.h.s. exists for sommeheni € Dom (A) and (3.46)
holds.
The above results have a converse:

Theorem 3.23 (Stone’s theorem)et U(t) be a strongly continuous group on a separable
Hilbert spaceH. Then there is a self-adjoint operatdrsuch that/ (¢) = exp(itA).

3.13 The Weyl criteria and the RAGE theorem
Let A be a self-adjoint operator on a separable Hilbert sféce

Theorem 3.24 (Weyl criterion 1)e € sp(A) iff there exists a sequence of unit vectgrs
Dom (A) such that
lim ||(A—e)y,| =0. (3.47)

Remark. A sequence of unit vectors for which (3.47) holds is called a Weyl sequence.
Proof. Recall thaie € sp(A) iff 1_cc1(A) # 0forall e > 0.

Assume that € sp(A). Letv, € Ranli_i/nct1/n)(A) be unit vectors. Then, by the
functional calculus,

[(A=e)pn] < sup  Jr—el <1/n.
z€(e—1/n,e+1/n)
On the other hand, assume that there is a sequénsech that (3.47) holds and thatZ
sp(A). Then
[ull = (A =€) 7(A = e)tbn]| < ClI(A — e)tnll,
and sol = ||4,|| — 0, contradiction.C
The discrete spectrum of, denotedp,;..(A), is the set of all isolated eigenvalues of finite

multiplicity. Hencee € spy;e.(A) iff 1 < dim1(_cet)(A) < oo for all e small enough. The
essential spectrum of is defined by

Spess<A) = Sp(A) \ Spdisc(A)'

Hence,e € sp.(A) iff forall € > 0 dim1(_cce)(A) = co. Obviously,sp..(A) is a closed
subset ofR.
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Theorem 3.25 (Weyl criterion 2)e € sp.(A) iff there exists an orthonormal sequengg €
Dom (A) (|[1n]| = 1, (¥nlthy) = 0if n # m), such that

Tim (A — )] = 0. (3.48)

Proof. Assume thak € sp.(A). Thendim 11/ e41/n)(A) = oo for all n, and we can
choose an orthonormal sequenggsuch that),, € Ran 1(c_1/n c11/2)(A). Clearly,

(A= e)¢nll < 1/n

and (3.48) holds.

On the other hand, assume that there exists an orthonormal seqgugesaeh that (3.48)
holds and that < spy,.(A4). Choosee > 0 such thatdim1_.4(A4) < oo. Then,
lim,,_ 1(6_6764_6) (A)wn =0and

lim || (A - €>1R\(6—6,6+5)(A)77Z)n|| = 0.

n—oo

Since(A — e) [ Ran 1y (c—c.cte)(A) is invertible and the norm of its inverse4s1/¢, we have
that

H]-]R\(e—e,e-I—e) (A)wnH S 6_1H (A - e)lR\(e—e,e+€) (A)wnHJ
and solim,, .o 1r\(e—c,e+e)(A)Y, = 0. Hencel = |4, || — 0, contradiction.d

Theorem 3.26 (RAGE)(1) Let K be a compact operator. Then for all € H o,

1 [T .
Tliix;o 7 /0 | K e 4ey||?dt = 0. (3.49)

(2) The same result holds if is bounded and< (A +i)~! is compact.

Proof. (1) First, recall that any compact operator is a norm limit of finite rank operators. In other
words, there exist vectors,, v, € H such thatk,, = > 7 (¢;]-)¢; satisfiedim, .o [[K —

K, || = 0. Hence, it suffices to prove the statement for the finite rank operAtarBy induction

and the triangle inequality, it suffices to prove the statement for the rank one op&rator
(¢|-)¢. Thus, it suffices to show that fgre ‘H andy € Hont,

1 [T ,
lim —/ |(le™p)|2dt = 0.
T J,
Moreover, since

(lee_imw) = (¢|e_itAlcont<A)¢) = (1cont(A)¢|e_itA¢)a
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w.l.o.g we may assume thate H,,,. Finally, by the polarization identity, we may assume
thaty = 4. Since fory € H..n the spectral measuygg, has no atoms, the result follows from
the Wiener theorem (Theorem 1.6 in Section 1).

(2) SinceDom (A) N Heons IS dense inH..y, it suffices to prove the statement for €
Dom (A) N Heont. Write

[ e 4] = | (A +1)~ e (A + 1)y

and use (1)O0

3.14 Stability

We will first discuss stability of self-adjointness—Afand B are self-adjoint operators, we wish
to discuss conditions under whieh+ B is self-adjoint orDom (A) N Dom (B). One obvious
sufficient condition is that eithet or B is bounded. A more refined result involves the notion
of relative boundedness.

Let A and B be densely defined linear operators on a separable Hilbert $pac€&he
operatorB is calledA-boundedf Dom (A) C Dom (B) and for some positive constantsand
band ally) € Dom (A),

1By < al|Ag|| + bl ). (3.50)

The numbew is called a relative bound d? w.r.t. A.

Theorem 3.27 (Kato-Rellich) Suppose that! is self-adjoint, B is symmetric, and3 is A-
bounded with a relative bound< 1. Then:

(1) A + B is self-adjoint orDom (A).

(2) A + B is essentially self-adjoint on any core .4f

(3) If Ais bounded from below, thett + B is also bounded from below.

Proof. We will prove (1) and (2); (3) is left to the problems. In the proof we will use the
following elementary fact: it is a bounded operator afid’ || < 1, then0 ¢ sp(1 + V). This
is easily proven by checking that the inverselof V is given byl + > 72 (—1)*V*.

By Theorem 3.4 (and the Remark after Theorem 3.5), to prove (1) it suffices to show that
there existg > 0 such thaRan(A + B +iy) = H. In what followsy = (1 +b)/(1 — a). The
relation (3.50) yields

IB(AEiy) || < allA(A£iy) [+ bl (Axiy) M| <at+by ™' <1,

and sol + B(A +iy)~! : H — 'H are bijections. Sincel + iy : Dom (A) — H are also
bijections, the identity

A+ B+iy=(1+B(A+iy) ) (A+iy)

yieldsRan(A + B + iy) = H.
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The proof of (2) is based on Theorem 3.5. Letbe a core forA. Then the set$A +
iy)(D) = {(A +iy)y : ¢ € D} are dense ifH, and sincel + B(A + iy)~! are bijections,

(A+B+iy)(D)=(1+B(A+iy) ) (A+iy)(D)
are also dense iK. O
We now turn to stability of the essential spectrum. The simplest result in this direction is:

Theorem 3.28 (Weyl)Let A and B be self-adjoint and3 compact. TheRp, . (A) = Sp(A+
B).

Proof. By symmetry, it suffices to prove thap.. (A + B) C sp.s(A). Lete € sp. (A + B)
and lety,, be an orthonormal sequence such that

lim [|(A+ B — e)yn] =0.

Sincey,, converges weakly to zero ariglis compactBy,, — 0. Hence||(A — )¢, || — 0 and
€ € SPegs(A). O

Section Xlll1.4 of [RS4] deals with various extensions and generalizations of Theorem 3.28.

3.15 Scattering theory and stability of ac spectra

Let A andB be self-adjoint operators on a Hilbert spad¢eAssume that for al) € Ran 1,.(A)
the limits _ _
Q% (A, B)y = lim ee By (3.51)

t—+o0

exist. The operator@*(A, B) : Ran1,.(A) — H are calledvave operators

Proposition 3.29 Assume that the wave operators exist. Then

(1) (=(A, B)o|Q* (A, BY) = (6]¢).

(2) Forany f € By(R), 0*(4, B) f(A) = [(B)Q*(A, B).

(8) Ran Q% (A, B) C Ran 1,.(B).

The wave operator@* (A, B) are called complete iRan Q* (A, B) = Ran 1,.(B);
(4) Wave operator§)* (A, B) are complete iff2*(B, A) exist.

The proof of this proposition is simple and is left to the problems (see also [RS3]).
Let H be a separable Hilbert space apd,} an orthonormal basis. A bounded positive
self-adjoint operatoH is calledtrace classf

Tr(A) = ) (alAthn) < o0,
The numberTr(A) does not depend on the choice of orthonormal basis. More generaly, a
bounded self-adjoint operater is called trace class ifr(|A|) < co. A trace class operator is
compact.
Concerning stability of the ac spectrum, the basic result is:
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Theorem 3.30 (Kato-Rosenblum)et A and B be self-adjoint andB trace class. Then the
wave operator§)* (A + B, A) exist and are complete. In particulasp, (A + B) = sp,.(A)
andXe®(A + B) = X5(A).

For the proof of Kato-Rosenblum theorem see [RS3], Theorem XI.7.

The singular and the pure point spectra are in general unstable under perturbations—they
may appear or dissapear under the influence of a rank one perturbation. We will discuss in
Section 4 criteria for "generic" stability of the singular and the pure point spectra.

3.16 Notions of measurability

In mathematical physics one often encounters self-adjoint operators indexed by elements of
some measure spac#/, ), namely one deals with functiond > w — A, whereA, is a
self-adjoint operator on some fixed separable Hilbert sgécén this subsection we address
some issues concerning measurability of such functions.

Let (M, F) be ameasure space alda topological space. A functiofi: M — X is called
measurable if the inverse image of every open set j5.in

Let H be a separable Hilbert space aB(l{) the vector space of all bounded operators
on H. We distinguish three topologies 1(7#), the uniform topology, the strong topology,
and the weak topology. The uniform topology is induced by the operator nor&{&HN). The
strong topology is the minimal topology w.r.t. which the functid®ig{) > A — Ay € H
are continuous for all) € H. The weak topology is the minimal topology w.r.t. which the
functionsB(H) > A — (¢|Ay) € C are continuous for alb, v € H. The weak topology is
weaker than the strong topology, and the strong topology is weaker than the uniform topology.

A function f : M — B(H) is uniform/strong/weak measurable if it is measurable with
respect to the uniform/strong/weak topology. Obviously, uniform measurasiisgrong mea-
surability = weak measurability. Note th&tis weakly measurable iff the functiald > w —
(¢|f(w)y) € Cis measurable for abh, v € H.

Theorem 3.31 A functionf : M — B(H) is uniform measurable iff it is weakly measurable.

The proof of this theorem is left to the problems. A functipn M — B(H) is measur-
ableiff it is weakly measurable (which is equivalent to requiring tlias strongly or uniform
measurable).

Letw — A, be afunction with values in (possibly unbounded) self-adjoint operatotg.on
We say thatd,, is measurablef for all z € C \ R the function

wi (A, —2)7' € B(H)

is measurable.
Until the end of this subsectiom — A, is a given measurable function with values in
self-adjoint operators.
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Theorem 3.32 The functionv — h(A,) is measurable for alk € B, (R).

Proof. Let 7 C By(R) be the class of functions such that— h(A,) is measurable By
definition,(z — z)~! € 7 for all z € C\ R. Since the linear span §fz — z)~' : z € C\ R} is
dense in the Banach spaCg(R), Cy(R) C 7. Note also that if,, € 7, sup,, . |h,(7)| < oo,
andh,(z) — h(z) for all z, thenh € 7. Hence, by Problem 11 in SectionZ,= B(R). O

From this theorem it follows that the functions— 15(A,,) (B Borel) andw — exp(itA,)
are measurable. One can also easily show that iR — R is an arbitrary Borel measurable
real valued function, them — h(A,) is measurable.

We now turn to the measurability of projections and spectral measures.

Proposition 3.33 The functionv — 1..,(A.) is measurable.

Proof. Let {¢,}.en be an orthonormal basis @ and letP, be the orthogonal projection on
the subspace spanned fy; }1>.. The RAGE theorem yields that far, ) € H,

n—oo T—o00

1 [T . .
([ Lons (A)) = lim lim / (et Pe Ay dt (3.52)
0

(the proof of (3.52) is left to the problems), and the statement follaws.

Proposition 3.34 The functionv — 1,.(A,) is measurable.

Proof. By Theorem 2.6, for all) € H,

(OlLe(A)0) = fim Tinlim = [ i (A, — o~ i6)0)]" da,

M—co pT1 €l0 TP J_,f

and sow — (¥]1..(A,)) is measurable. The polarization identity yields the statement.

Proposition 3.35 The functionsy — 1,.(A,) andw — 1,,(A,) are measurable.

Proof. 1s(As,) = leont(Aw) — lac(Ay) @andl,,(Ay) =1 — 1eont(As). O

Let M(R) be the Banach space of all complex Borel measureR @thhe dual ofC,(R)).
A mapw — p* € M(R) is called measurable iff for alf € B,(R) the mapw — p“(f) is
measurable.

We denote by:;) the spectral measure fef,, andy.

Proposition 3.36 The functionsv — w5 ., w — w3 ., w — pg, ,, are measurable.
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Proof. Since for any Borel seB, (15(A, )Y |1ac(AL)Y) = ,ugm(B), (15(AL)Y|1sc(AL)Y) =
15 so(B), (1(Au)Y|1pp(Au)Y) = p . (B), the statement follows from Propositions 3.34 and
3.35.0

Let {¢,,} be a cyclic set ford,, and leta,, > 0 be such tha}_  a,||¢,]|* < oo . We denote
by
H= ) ank,

the corresponding spectral measureAgr Proposition 3.36 yields

Proposition 3.37 The functionsv — i, w — g, w — w2, are measurable.
Let > be the essential support of the ac spectrurd of The map
— (1 +2%) Tygese(z) € LY(R, dx) (3.53)
does not depend on the choice of representative&irt-.

Proposition 3.38 The function (3.53) is weakly measurable, namely fohal L>°(R, dx), the
function

W / (1 + %) Tygesse (v)dx

iS measurable.

Proof. It suffices to prove the statement fbfz) = (1 + z)*xz(z) where B is a bounded
interval. Letu” be a spectral measure fdr,. By the dominated convergence theorem

P (x +10)
ess,w d = 21 1 d 354
/BXE“ (z)dz 10 510 B P (v + 16) + Py (x + 1) (3.54)

and the statement follows]

3.17 Non-relativistic guantum mechanics

According to the usual axiomatization of quantum mechanics, a physical system is described
by a Hilbert spacé. Its observables are described by bounded self-adjoint operatéts ks

states are described by density matricegfome. positive trace class operators with tracéf

the system is in a stajg then the expected value of the measurement of an obsentable

(), = Tr(pA).
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The variance of the measurement is

D,(A) = (A = (4),)%), = (A7), — (4);,

p

The Cauchy-Schwarz inequality yields tHeisenberg principleFor self-adjointd, B € B(H),
ITr(pilA, B])| < DP<A)1/2DP(B)1/2'

Of particular importance are the so called pure states (|-)¢. In this case, for a self-
adjoint 4,

(A), = Tr(pA) = (¢|Ap) = /R zdpig(z),

D) = [, ([ xduw)Q,

where ., is the spectral measure fet and ¢. If the system is in a pure state described by
a vectoryp, the possible result® of the measurement of are numbers igp(A) randomly
distributed according to
Prob(R € [a,b]) = / d,
[a,0]

(recall thaty, is supported osp(A)). Obviously, in this cas¢A), andD,(A) are the usual
expectation and variance of the random variable

The dynamics is described by a strongly continuous unitary giqupon . In the Heisen-
berg picture, one evolves observables and keeps states fixed. Hence, if the system is initially in
a statep, then the expected value dfat timet is

Te(p[U (1) AU(1)").

In the Schrédinger picture, one keeps observables fixed and evolves states—the expected value
of A attimet is Tr([U(t)*pU(t)]A). Note that ifp = |p)(¢|, then

Te([U(t)"pU ()] A) = [AU (1) ]

The generator ot/(t), H, is called the Hamiltonian of the system. The spectrunfof
describes the possible energies of the system. The discrete spectidndedcribes energy
levels of bound states (the eigenvectorgiore often called bound states). Note that it an
eigenvector off, then|| AU (t)¢||? = || A||* is independent of.

By the RAGE theorem, i € H.on:(H) and A is compact, then

1" )
TlEEOT/O AU (#)o|2dt = 0. (3.55)

Compact operators describe what one might call sharply localized observables. The states as-
sociated tdH.....(H ) move to infinity in the sense that after a sufficiently long time the sharply
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localized observables are not seen by these states. On the other hardHf,(H ), then for
any bounded,

fin 7 [ 1AU@eRd = 3D DALl

T—o00
e€spy,, (H)

The mathematical formalism sketched above is commonly used for a description of non-
relativistic quantum systems with finitely many degrees of freedom. It can be used, for example,
to describe non-relativistic matter—a finite assembly of interacting non-relativistic atoms and
molecules. In this casH is the usualV-body Schrodinger operator. This formalism, however,
is not suitable for a description of quantum systems with infinitely many degrees of freedom
like non-relativistic QED, an infinite electron gas, quantum spin-systems, etc.

3.18 Problems

[1] Prove Proposition 3.7
[2] Prove Theorem 3.9.

[3] Prove Theorem 3.18.
[4] Prove Theorem 3.19.
[5] Prove Theorem 3.20.

[6] LetO < e < 1. Construct an example of a self-adjoint operatbsuch thatp, .(A) = [0, 1]
and that the Lebesgue measureél§f(A) is equal toe.

[7] Prove thaty € H_ .y iff (3.49) holds for all compack’.
[8] Prove thatA > 0 iff sp(A) C [0, 00).

[9] Prove Relation (3.45).

[10] Prove Part (3) of Theorem 3.27.

[11] Prove Proposition 3.29.

[12] Prove Theorem 3.31.

[13] Let M > w — A, be a function with values in self-adjoint operators&n Prove that the
following statements are equivalent:
(1) w — (A, — 2)~!is measurable for alt € C \ R.
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(2) w — exp(itA,) is measurable for alt € R.
(3)w — 1p5(A,) is measurable for all Borel setB.

[14] Prove Relation (3.52).

[15] In the literature, the proof of the measurability of— 1..(A,,) is usually based on Car-
mona’s lemma: Lep be a finite, positive Borel measure @& and letZ be the set of finite
unions of open intervals, each of which has rational endpoints. Then, for any Bore| set

psing(B) = lim  sup p(BNI).

n=o0 e |I1<1/n

Prove Carmona’s lemma and using this result show that- 1..(H,) is measurable. Hint:
SegCL] or Section 9.1 ifCFKS].

[16] Recall thatM (R) is the Banach space of all complex measureRomssume that +—

o, € M(R) is measurable. Prove that this function is also measurable w.r.t. the uniform
topology ofM (R).

[17] Assume that — H,, is self-adjoint measurable. Prove that— 1,,(H,,) is measurable

by using Simon’s local Wiener theorem (Theorem 2.9).

The next set of problems deals with spectral theory of a closed ope#ator a Hilbert
spaceH.

[18] Let F' C sp(A) be an isolated, bounded subsetpfA). Lety be a closed simple path in
the complex plane that separatesSromsp(A) \ F. Set

1p(A) = = 7{(2 — A) =

Comi

(1) Prove thatl »(A) is a (not necessarily orthogonal) projection.

(2) Prove thatRan 1(A) andKer 1(A) are complementary (not necessarily orthogonal) sub-
spacesRan 1x(A) + Ker1p(A) = HandRan15(A) NKer1x(A) = {0}.

(3) Prove thatRan 1x(A) C Dom (A) and thatA : Ran1r(A) — Ran1g(A). Prove that

A | Ran1p(A) is a bounded operator and that its spectrunfis

(4) Prove thatKer 17(A) N Dom (A) is dense and that

Al (Kerlp(A)NDom (A)) — Kerlp(A). (3.56)

Prove that the operator (3.56) is closed and that its spectrum(id) \ F'.

(5) Assume thatr" = {z,} and thatRan1, (A) is finite dimensional. Prove that if €
Ran1,,(A), then(A — zy)"y = 0 for somen.

Hint: Consult Theorem XI1.5 ifRS4].

Remark. The set ofz, € sp(A) which satisfy (5) is called the discrete spectrum of the

58



closed operator operatorl and is denotedp,,..(A). The essential spectrum is defined by
Spess(A) - Sp(A> \ Spdisc(A>

[19] Prove thatsp,.(A) is a closed subset df.

[20] Prove thatz — (A — z)~! is a meromorphic function oft \ sp,.(A) with singularities
at pointszy € spy..(A). Prove that the negative coefficents of of the Laurent expansion at
20 € Spaisc(A) are finite rank operators. Hint: See Lemma 1R54], Section XIII.4.

[21] The numerical range ofl is defined byV(A) = {(¥|A) : b € Dom (A)}. In general,
N(A) is neither open nor closed subset©f It is a deep result of Hausdorff tha{ (A) is a

convex subset @. Prove that ifDom (A) = Dom (A*), thensp(A) C N(A). For additional
information about numerical range, the reader may congsR].

[22] Let =z € sp(A). A sequence),, € Dom (A) is called a Weyl sequencelji/,,|| = 1 and

(A — 2)¢,]| — 0. If Ais not self-adjoint, then a Weyl sequence may not exist for some
z € sp(A). Prove that a Weyl sequence exists for eveon the topological boundary eb(A).

Hint: See Section XllII.4 dRS4]or [VH].

[23] Let A and B be densely defined linear operators. Assume fhas A-bounded with a
relative boundz < 1. Prove thatA + B is closable iffA is closable, and that in this case the
closures ofd and A + B have the same domain. Deduce tHat- B is closed iffA is closed.

[24] Let A and B be densely defined linear operators. Assume tha closed and thaB is
A-bounded with constantsandb. If A is invertible(that is,0 ¢ sp(A)), and ifa andb satisfy

a+ A7 <1,
prove thatA + B is closed, invertible, and that

A~
a—bll A=’

A+ B) < =

1A ][ (@ + bl A1)
1 —a—bf[A~1]]

I(A+B)" =A™ <

Hint: See Theorem 1V.1.16 [iKa].

[25] In this problem we will discuss the regular perturbation theory for closed operators. Let
A be a closed operator and |d8 be A-bounded with constants andb. For A € C we set

Ay = A+ AB. If |Ma < 1, thenA, is a closed operator anbom (A,) = Dom (A). Let F' be

an isolated, bounded subset4fand~ a simple closed path that separateésandsp(H) \ F.

(1) Prove that forz € ~,

IB(A =27 < a+(alz] +b)I(A—2)""].
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(2) Prove that ifA is self-adjoint and: ¢ sp(A), then||(A — 2)7Y| = 1/dist{z,sp(A)}.

(3) Assume thabom (A) = Dom (A*) and letN(A) be the numerical range of. Prove that
forall z ¢ N(A), (A —2)7Y < 1/dist{z, N(A)}.

(4) Let A = [a +sup,,(alz]) +b)|[(A - z)‘lm_1 and assume that\| < A. Prove that
sp(A,) N~ = 0 and that forz € ~,

(z— A\~ Z)\"z— ) [B(z—A)7']".

Hint: Start withz — Ay = (1 — AB(z — A)7!)(z — A).
(5) Let F, be the spectrum ot inside~ (so F, = F). For |A| < A the projection ofA4, onto
F), is given by

i

Py =1p(A)) = ! f(z — Ay 'da.

Prove that the projection-valued function— P, is analytic for|\| < A.

(6) Prove that the differential equatioli, = [P, P\|U,, Uy = 1, (the derivatives are w.r.tA
and[A, B] = AB — BA) has a unique solution fot\| < A, and thatU, is an analytic family
of bounded invertible operators such th[&tPoU;l = P.

Hint: See[RS4], Section XII.2.

(7) SetA, = U'AU, andX, = P,A\F,. ¥, is a bounded operator on the Hilbert space
Ran P,. Prove thatsp(2,) = F\ and that the operator-valued function— X, is analytic for
|A] < A. Compute the first three terms in the expansion

Sh=) AT, (3.57)
n=0

The termY; is sometimes called the Feynman-Hellman term. The tegnoften called the
Level Shift Operator (LSO), plays an important role in quantum mechanics and quantum field
theory. For example, the formal computations in physics involving Fermi’'s Golden Rule are
often best understood and most easily proved with the help of LSO.

(8) Assume thatlim P, = dim Ran Py < co. Prove thatdim P, = dim P, for |A\| < A and
conclude that the spectrum df, inside~ is discrete and consists of at makin F, distinct
eigenvalues. Prove that the eigenvaluesigfinsidey are all the branches of one or more
multi-valued analytic functions with at worst algebraic singularities.

(9) Assume that, = {2} anddim P, = 1 (hamely that the spectrum of inside is a
semisimple eigenvalug). In this case, = z(\) is an analytic function fofA| < A. Compute

the first five terms in the expansiofh) = >~ >° X"z,
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4 Spectral theory of rank one perturbations

The Hamiltonians which arise in non-relativistic quantum mechanics typically have the form
Hy = Hy+V, (4.58)

where Hy, and V' are two self-adjoint operators on a Hilbert spdg¢e H, is the "free" or
"reference" Hamiltonian antl” is the "perturbation”. For example, the Hamiltonian of a free
non-relativistic quantum particle of massmoving inR? is —ﬁA, whereA is the Laplacian

in L(R?). If the particle is subject to an external potential fiéfdr), then the Hamiltonian
describing the motion of the particle is

Hy = —LA +V, (4.59)
2m
whereV denotes the operator of multiplication by the functidf:). Operators of this form
are called Schrodinger operators.
We will not study in this section the spectral theory of Schrédinger operators. Instead, we

will keep H, general and focus on simplest non-trivial perturbatibhdMore precisely, let
be a Hilbert spacel{, a self-adjoint operator ofif and) € H a given unit vector. We will
study spectral theory of the family of operators

Hy=Ho+A¥|- )Y, AeR. (4.60)

This simple model is of profound importance in mathematical physics. The classical reference
for the spectral theory of rank one perturbations is [Si2].

The cyclic subspace generated By andi> does not depend okand is equal to the cyclic
subspace generated b and+ which we denoté+,, (this fact is an immediate consequence
of the formulas (4.62) below). Let* be the spectral measure fér, and:. This measure
encodes the spectral properties'df | H,,. Note thatH, | H;; = H, | H;;. In this section we
will always assume thatl = H,,, namely that) is a cyclic vector forH,,.

The identities

(Hy —2)"' = (Hy—2)' = (Hy — 2) Y (Hy — H)\)(Hy — 2)"

(4.61)
= (Ho— 2)""(Ho — Hy\)(Hy — 2)"
yield
(Hy—2)"" = (Ho — 2) 7' = M@[(Ho — 2) ') (Hx — 2) ™4,
(4.62)
(Ho— 2) ' = (Hx — 2) 7' + A@|(Hx — 2)" ') (Ho — 2) "9
Let

Ry(:) = (0l - 270 = [ dur),

t—z
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Note that ifz € C,, thenF)(z) is the Borel transform anfin I\ (z) is the Poisson transform
of 1.
The second identity in (4.62) yields

Fo(z) = Fa(2)(1 4+ AFo(2)),

s Fi(z) = —2oE) (4.63)
M T T NR(2) '
 ImFy(z)

These elementary identities will play a key role in our study. The function

dp®(t
Glx) = / (1)
R (z —1)?
will also play an important role. Recall that(z) = o for p’-a.e.x (Lemma 2.3).
In this section we will occasionally denote py| the Lebesgue measure of a Borel Bet

4.1 Aronszajn-Donoghue theorem
Recall that the limit
F\(z) = lim F)\(x + iy)
yl0
exists and is finite and non-zero for Lebesgue a.e.
For A # 0 define

Sy={r €R : Fy(r) = -\, G(z) = o0},
T\={r R : Fy(r) = -\ G(z) < 0},
L={xeR : ImFy(z)>0}.

In words, S is the set of all: € R such thatim, |, Fy(x + iy) exists and is equal te A, etc.
Any two sets in the collectioiS), Th, L}, are disjoint. By Theorem 3.115,| = |7)| = 0.
As usualy(y) denotes the delta-measureyof R; o(y)(f) = f(y).

Theorem 4.1 (1) T), is the set of eigenvalues &f,. Moreover,

1
A
oy = NG )
Tn €T n
(2) 112, is concentrated o15).
(3) For all A\, L is the essential support of the ac spectruntigfandsp,.(H)) = sp,.(Ho).
(4) The measure$y., , }rer are mutually singular. In other words, ¥, # \,, then the mea-

sures;@i;g and 2 are concentrated on disjoint sets.

sing
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Proof. (1) The eigenvalues of, are precisely the atoms pf. LetT), = {z € R : p*({z}) #
0}. Since
ylm Fy(x + iy)

0|1+ AFo(z +1iy)[?

pr{z}) = hm ylm Fy\(z + 1y) = hm (4.65)
Ty C {z : Fy(x) = —A~'}. The relation (4.65) yields

1
< \2 Y
w{e}) <A 15{3 Im Fy(z + iy) /\ZG(x)7

and sal, C {z : Fy(z) = —\"!,G(z) < oo} = T). On the other hand, i (z) = —A~" and
G(z) < oo, then
lim Fo(x + 1y) — Fy(x)
yl0 1y
(the proof of this relation is left to the problems). Hence; & T), then

= G(x) (4.66)

Fo(z +iy) = yG(z) — A"+ o(y),

Im Fy( ) 1

Y olz +1y

_1 —
({:1:}) z}lO 14+ AFo(z +iy)|2  A2G(x)

HenceT, = Ty, and forz € Ty, p*({z}) = 1/A2G(z). This yields (1).
(2) By Theorem 2.5, , is concentrated on the set

> 0.

{z : limIm F\(z + iy) = oo}.
yl0

The formula (4.64) yields thaty}, , is concentrated on the st : FO( )= —=A"1If Fy(z) =
—-A"tandG(z) < oo, then by (1):1: is an atom ofu*. Hence,u?, is concentrated on the set
{z: Fo(z) = —\"1,G(z) = 00} = S).
(3) By Theorem 2.5,

dp.(z) = 7' Im Fy\(x)d.
On the other hand, by the formula (4.64), the dats Im Fy(z) > 0} and{z : Im F\(x) > 0}
coincide up to a set of Lebesgue measure zero. Hehdsg,the essential support of the ac
spectrum offf, for all \. Sinceu?. and.. are equivalent measures,.(Hy) = sp,.(H)).
(4) By (1) and (2), forx # 0, lu?ing is concentrated on the sgt : Fy(x) = —A~'}. By Theorem
2.5, 113, 1S concentrated ofir : Im Fy(z) = oo}. This yields the statementl

4.2 The spectral theorem

By Theorem 3.13, for al\ there exists a unique unitafyy, : H, — L*(R,du,) such that
Uxy = TandU,H,U, ' is the operator of multiplication by on L?(R, ds,). In this subsection
we describd/,.
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For¢ € Handz € C\ R let
My(z) = (V|(Ho — )" 9),

and
My(z £10) = lim($|(Ho -z Fiy)~'¢)

whenever the limits exist. By Theorem 2.17 the limits exist and are finite for Lebesgue a.e.
For consistency, in this subsection we wiigx + i0) = lim,,|o Fo(x + iy).

Theorem 4.2 Leto € H.
(1) For all X and for i .c-a.€.z,
1 My(z +10) — My(z — 10)

(Ualaco)(2) = o T Fale - 10) — MMy (x +i0)

A (My(z +10) — My(z — i0)) Fy(z + i0)

2 Im Fy(z + i0)
(2) Let X # 0. Then foru, gng-a.e.x the limit My (x + 10) exists and
(UrLging®)(z) = =AMy (x +10).

Proof. The identities (4.61) yield
—14\ My(2)

Combining this relation with (4.63) and (4.64) we derive

(Wl (Hr = 2)719) _ 1 My(2) = MolE) + MEEDMal:) = Vo) oy o
Im (Y|(Hy — 2)"1)  2i Im Fy(2) ' '

Similarly,

(G](Hy = 2)7'9) _ My(2)
(Q[(Hx —2)"1)  Fo(z)
(1) follows from the identity (4.67) and Part 1 of Theorem 3.17. Singg,, is concentrated
on the sefx : lim,|o Fo(z +10) = —A~'}, the identity (4.68) and Part 2 of Theorem 3.17 yield
(2).O
Note that Part 2 of Theorem 4.2 yields that for every eigenvalokH, (i.e. for allz € T)),

This special case (which can be easily proven directly) has been used in the proofs of dynamical
localization in the Anderson model; see [A, DJLS]. The extension of (4.69) to singular con-
tinuous spectrum depends critically on the full strength of the Poltoratskii theorem. For some
applications of this result see [JL3].

(4.68)
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4.3 Spectral averaging

In the sequel we will freely use the measurability results established in Subsection 3.16.
Let

i(B) = [ iE)an

whereB C R is a Borel set. Obviously; is a Borel measure oR. The following (somewhat
surprising) result is often callespectral averaging

Theorem 4.3 The measurg@ is equal to the Lebesgue measure and forfadl L'(R, dz),
[rwa= [ | [ rowtw] o
R R R

Proof. For any positive Borel functiotf,

[ roant = [ | [ o] o

(both sides are allowed to be infinity). Let

f(t):m>

wherey > 0. Then

AH) = Tm ) — Im Fy(x + iy)
/R P40 = m Fy(o +iy) = o

By the residue calculus,

Im Fy(z + iy)
d\ = 4.70
e |1+ AFy(z +iy)[? " (*.70)

and so the Poisson transformjoexists and is identically equal tg the Poisson transform of
the Lebesgue measure. By Theorem 2.i§ equal to the Lebesgue measure.

Spectral averaging is a mathematical gem which has been rediscovered by many authors. A
detailed list of references can be found in [Si3].
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4.4 Simon-Wolff theorems

Theorem 4.4 Let B C R be a Borel set. Then the following statements are equivalent:
(1) G(x) < o for Lebesgue a.ex € B.
(2) u,..(B) = 0 for Lebesgue a.e\.

Proof. (1) = (2). If G(x) < o for Lebesgue a.ec € B, thenlm Fy(z) = 0 for Lebesgue a.e.
x € B. Hence, for all\, Im F,(x) = 0 for Lebesgue a.ex € B, and

p(B) = 7r_1/ Im Fy(x)dz = 0.
B

By Theorem 4.1, the measuig, | B is concentrated on the sdt= {x € B : G(x) = oo}.
SinceA has Lebesgue measure zero, by spectral averaging,

[ i< [penan=ja-o.

R

Hence,u2.(A) = 0 for Lebesgue a.e\ € R, and squ2.(B) = 0 for Lebesgue a.e\.
(2) = (1). Assume that the set = {x € B : G(x) = oo} has positive Lebesgue measure. By
Theorem 4-1MSP(A) = 0 for all A # 0. By spectral averaging,

[ ar = [ ar =141 >0
R R
Hence, for a set of of positive Lebesgue measuye, . (B) > 0. O

Theorem 4.5 Let B be a Borel set. Then the following statements are equivalent:
(1) Im Fy(z) > 0 for Lebesgue a.e: € B.
(2) 113, (B) = 0 for Lebesgue a.e).

Proof. (1) = (2). By Theorem 4.1, foA # 0 the measurge@ing [ B is concentrated on the set
A ={x € B:Im Fy(z) = 0}. SinceA has Lebesgue measure zero, by spectral averaging,

[ ttiar< [ iar—o.
R R
Hence, for Lebesgue a.&, 1, (B) = 0.

(2) = (1). Assume that the set = {x € B : Im Fy(z) = 0} has positive Lebesgue measure.
Clearly,u).(A) = 0 for all \, and by spectral averaging,

[ tatar= [ =g >o.
R R

Hence, for a set of of positive Lebesgue measuye,,(B) > 0. O
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Theorem 4.6 Let B be a Borel set. Then the following statements are equivalent:
(1) Im Fy(z) = 0 andG(z) = oo for Lebesgue a.ex € B.
(2) 115.(B) + 1, (B) = 0 for Lebesgue a.e\.

The proof of Theorem 4.6 is left to the problems.
Theorem 4.4 is the celebrated result of Simon-Wolff [SW]. Although Theorems 4.5 and 4.6
are well known to the workers in the field, | am not aware of a convenient reference.

4.5 Some remarks on spectral instability

By the Kato-Rosenblum theorem, the absolutely continuous spectrum is stable under trace class
perturbations, and in particular under rank one perturbations. In the rank one case this result is
also an immediate consequence of Theorem 4.1.

The situation is more complicated in the case of the singular continuous spectrum. There
are examples where sc spectrum is stable, namely whehas purely singular continuous
spectrum in(a, b) for all A € R. There are also examples wheilg has purely sc spectrum in
(a,b), but H, has pure point spectrum for all# 0.

A. Gordon [Gor] and del Rio-Makarov-Simon [DMS] have proven that pp spectruah is
waysunstable for generig.

Theorem 4.7 The set
{\ : H, has no eigenvalues bp(H,)}

is densd>s in R.

Assume thata, b) C sp(H,) and that for Lebesgue a.e. € (a,b), G(x) < oco. Then the
spectrum ofH, in (a, b) is pure point for Lebesgue a.2. However, by Theorem 4.7, there is
a densé7; set of \'s such thatH, has purely singular continuous spectrungdnb) (of course,
H) has no ac spectrum f{f, b) for all \).

4.6 Boole’s equality

So far we have used the rank one perturbation theory and harmonic analysis to study spectral
theory. In the last three subsections we will turn things around and use rank one perturbation
theory and spectral theory to reprove some well known results in harmonic analysis. This
subsection deals with Boole’s equality and is based on [DJLS] and [Po2].
Let v be a finite positive Borel measure @&and F,(z) its Borel transform. As usual, we
denote
F,(z) =lmF,(z +1iy).
yl0

The following result is known as Boole’s equality:
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Proposition 4.8 Assume that is a pure point measure with finitely many atoms. Then for all
t>0 (®)
14
Hx @ F(z) >t} =z : F,(z) < -t} = —

Proof. We will prove that/{x : F,(z) > t}| = v(R)/t. Let{z; }1<j<n, 21 < --- < z,, be the
support ofy anda; = v({z,}) the atoms of. W.l.0.g. we may assume thafR) = > . o; = 1.
Clearly,

Fy(w) =y —
j=1
Setry = —00, ,41 = 00. SinceF)(x) > 0for x # x;, the functionF, (z) is strictly increasing
on (z;, z;4+1), with vertical asymptots at;, 1 < j < n. Letr; < --- < r, be the solutions of
the equation?, (x) = t. Then

iL’j—.I'

n

{z : B@) >t} =) (25— 1))

Jj=1

On the other hand, the equatiéh(x) = t is equivalent to

> [l —x) = tH(%‘ — ),

k=1  j#k J
or

n

H(xj —z)—t! Zak H(:L'j —z) =0.

j=1 k=1  j#k

Since{r;} are all the roots of the polynomial on the L.h.s.,

D=t
j=1 j=1
and this yields the statemenmnt.

Proposition 4.8 was first proven by G. Boole in 1867. The Boole equality is another gem
that has been rediscovered by many authors; see [Po2] for the references.

The rank one perturbation theory allows for a simple proof of the optimal version of the
Boole equality.

Theorem 4.9 Assume that is a purely singular measure. Then for alt 0
v(R)

o s F(a) >t} = [{o : Br) < —t}] = ==
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Proof. W.l.o.g. we may assume thatR) = 1. Let H, be the operator of multiplication by
on L*(R,dv) andy = 1. Let Hy = Hy + \(+| - )¢ and letu* be the spectral measure fi,
andi. Obviously,.’ = v andF, = F,. Sincev is a singular measure,® is singular for all
AeR.
By Theorem 4.1, foi # 0, the measurg” is concentrated on the sgt : Fy(z) = —\71}.
Let
I'v={z : Fo(x) > t}.

1 if —t7t< <0,
MA(Ft) = {

Then for\ #£ 0,

0 ifx<—ttor\>0.
By the spectral averaging,

| :/m(n)@mzt—l.
R

A similar argument yields tha{x : F,(z) < —t}| =t~'. O

The Boole equality fails it is not a singular measure. However, in general we have
Theorem 4.10 Letv be a finite positive Borel measure &1 Then

Jim ¢ {z s B (2)] > t}] = 205ng (R).

Theorem 4.10 is due to Vinogradov-Hruschev. Its proof (and much additional information)
can be found in the paper of Poltoratskii [P02].

4.7 Poltoratskii’'s theorem

This subsection is devoted to the proof of Theorem 2.18. We follow [JL1].
We first consider the case = 0, x compactly supportedf € L*(R,du) real valued.
W.l.0.g. we may assume thatR) = 1.
Consider the Hilbert spack?(R,du) and letH, be the operator of multiplication by.
Note that
Fu(2) = (1|(Hy—2)7'1),  Fu(z) = (1](Ho — 2)7'f).

For\ € R, let
Hy = Hy + \(1]-)1,

and let be the spectral measure i, and1. To simplify the notation, we write

Fy(z) = (1](Hy — 2)"'1) = F,(2).
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Note that with this notationiy = F, !
By Theorem 4.1, the measurég’ .} cr are mutually singular. By Theorem 2.5, the mea-

sing

SUr€ising = [ IS CONCeNtrated on the set

{reR: li{gImFo(x +iy) = oo}.
v

We also recall the identity

F()(Z)
BE) =1 Re

By the spectral theorem, there exists a unitary

(4.71)

Uy : L*(R,dp) — LR, dp?)
such that/,1 = 1andU,H,U; " is the operator of multiplication by on L?(R, du*). Hence

D)) g 0

(L](Hy— =)' f) = / 1A () = Fu s (2).

R L —ZX

In what follows we set = 1 and writeU = Uj.
Fora € Randb > 0 lethy(z) = 2b((x — a)* + b*) ', w = a+ib, andr,(z) = (z —w) !
(hencehy, = i~!(r, — r)). The relation

Uhay = hay + M\ (Fo(w)ry, — Fo(0)ry) (4.72)

yields thatUh,, is a real-valued function. The proof of (4.72) is simple and is left to the
problems. Since the linear span{df,, : a € R,b > 0} is dense irCy(R), U takes real-valued
functions to real-valued functions. In particul&rf is a real-valued function.

The identity

(1|(Ho —2)"'f) = (1 + (2](Ho — 2) ' 1))(1|(Hy — 2) " f)

can be rewritten as
(1|(Hy—2)"f) = (1 + Fo(2)Ew e (2). (4.73)

It follows that )
Im (1|(Hy—2)""f)

Im Fo(2) = Re Flypu(2) + L(2), (4.74)
where
L(z) = Re&;ﬂﬁgz))lm Fupu (2)-
We proceed to prove that
lyiﬁ)l Im Fiypye(z+1iy) =0 for piging —a.e. x, (4.75)
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hﬁ’)l Lz +iy) =0 for fising — a.e. x. (4.76)
y

We start with (4.75). Using first thdf f is real-valued and then the Cauchy-Schwarz in-
equality, we derive

Im Fiy g (v +1y) = Py (v +1iy) < \/Pul (x + iy)\/P(Uf)Qul(l' + iy).
Since the measure®’ f)*1;,,, and gy, are mutually singular,

lim P(Uf)2M1 ($ + iy)
ylo  P,(z+1iy)

=0 for pigng —a.e. x

(see Problem 4). Hence,

Im F, i
hm m (U,.f)lll (.’L’ + 1?/) ' = 0 for ﬂ’sing —a.e. 1. (477)
vl \/Pul(x +iy)y/Pule +1y)
Since
. . . , Im Fy(z +iy))?
Pa(x +iy)P,(z +1y) = Im Fy (z + iy)Im Fy(z + iy) = ( ol v)) <1

T+ Fy(x+iy)2

forall z € R, (4.77) yields (4.75).
To prove (4.76), note that

Lt iy)| = S Fwne(@+iy)  [Re(l+ Fow +iy)| Im Fo(e +iy)
VPua(z+iy)/Pu(z+iy) ImFo(z+iy) |1+ Fo(z +iy)|

Im F(Uf)ul(x + iy)
B \/Pu1<37 + iy)\/Pu(x +iy)

Hence, (4.77) yields (4.76).
Rewrite (4.74) as

Fupu (2) = o ]IIL(HH;OZz)Z) Dbt Fupu(2) = L(2). (4.78)

By Theorem 2.5,

Im (1|(Hy —z —iy)~! P 1
lim m (1](Ho — _ )" /) = limw = f(z) for p—a.e. x.
yl0 Im Fy(z + iy) ylo P,(x +1y)

Hence, (4.78), (4.75), and (4.76) yield that

lyiﬁ)l Fupuw (@ +1iy) = f(x) for piging —a.e. . (4.79)
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Rewrite (4.73) as

Ffu<l’ + ly)
F,(x +1y)

1
= 1) F, 1 iy). 4.80
(5 +1) Fnm (e +in (4.80)
Since|Fy(z +1y)| — oo asy | 0 for pne-a.e.x, (4.79) and (4.80) yield

hm Ffu(l' -+ ly)

= for pigng — a.e. .
I e+ ) f(x) OI flsing — Q.€. T

This proves the Poltoratskii theorem in the special case whete0, . is compactly supported,
andf € L*(R,du) is real-valued.

We now remove the assumptiofis= L*(R, du) and thatf is real valued (we still assume
that i is compactly supported and that = 0). Assume thatf € L'(R,du) and thatf is
positive Setg = 1/(1+ f) andp = (1 + f)u. Then

lim F(x+ iy)'  lim Fyp(x —i-'iy) _ 1 7
vlo Faipu(z +iy)  wlo Fy(z+1iy) 1+ f(2)

for psng-a.€.z. By the linearity of the Borel transform,

I3 : r :
lim Epulz+iy) —i-.ly) = lim (G + iy) _ 1= f(x),
ylo Fl(r+1iy) w0 F,(x+1iy)

for psng-a.€.z. Since everyf € LY(R,du) is a linear combination of four positive functions in
L' (R, dp), the linearity of the Borel transform implies the statement forfadl L' (R, dy).

Assume thaf: is not compactly supported (we still assume= 0) and let[a, b] be a finite
interval. Decomposg = iy + 2, Whereu; = p | [a,b], p2 = p [ R\ [a, b]. Since

Fru(z) _  Fpn(2) + Fpn(2)
FN(Z) Fu1<z>(1+FM2(Z)/FM1(Z))

andlim, o |F, (z +iy)| — oo for p; gng-a.€.x € [a, b],

lim Fru(z +iy)

= f sing-a.€. ,b).
e et w) f(x) or figng-a.€.7 € (a,b)

Since[a, b] is arbitrary, we have removed the assumption thstcompactly supported.
Finally, to finish the proof we need to show thavitl 1, then

I :
lim 2T W) (4.81)
ylo F,(z + iy)
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for pgng-a.e.z. Sincev can be written as a linear combination of four positive measures each
of which is singular w.r.t., w.l.0.g. me may assume thats positive. LetS be a Borel set
such thaf:(S) = 0 and thatv is concentrated of. Then

lim Fys(utv) (z +1y)
yl0 Fu+z/(x + iy)

= xs(z),

for pusing + Vsing-a.€.2. Hence,

lim F,(z +iy)
ylo F(z +iy) + F,(x +iy)

for psng- a.€.2, and this yields (4.81). The proof of the Poltoratskii theorem is complete.
The Poltoratskii theorem also holds for complex measures

Theorem 4.11 Letr andu be complex Borel measures and- f i+, be the Radon-Nikodym
decomposition. Lej|q,, be the part of x| singular with respect to the Lebesgue measure. Then

- Fy(z +1y)
lim —= = f(x for |ulgne — a.e.x.

Theorem 4.11 follows easily from Theorem 2.18.

4.8 F.& M. Riesz theorem

The celebrated theorem of & M. Riesz states:

Theorem 4.12 Let # 0 be a complex measure ai¢i(z) its Borel transform. I, (z) = 0
forall z € C,, then|y| is equivalent to the Lebesgue measure.

In the literature one can find many different proofs of this theorem (for example, three different
proofs are given in [Ko]). However, it has been only recently noticed thatiW. Riesz theorem
is an easy consequence of the Poltoratskii theorem. The proof below follows [JL3].

Proof. Forz € C\ R we set
dp(t
Fu(z) :/RJ

t—z
and write
F(r £i0) = hﬂ)l F,(x £1iy).
y

By Theorem 2.17 (and its obvious analog for the lower half-plafg)z + i0) exists and is
finite for Lebesgue a.ex.

73



Write i = h|u|, where|h(z)| = 1 for all x. By the Poltoratskii theorem,

i JEule £ iy)

— 2 = |h(z)| =1
I @iy~ @)l

for |plsing-a.€. z. Since by Theorem 2.%im,, |F|, (z + iy)| = oo for |u|sng-a.€. 2, we must
havelim, o | F,(z +iy)| = oo for |p|sing-a.€.xz. Hence, if|u|sng # 0, thenF),(z) cannot vanish
onC,.

It remains to prove thdj| is equivalent to the Lebesgue measure. By Theoremi2ub —
7 'Im F), (x+10)dz, so we need to show thah Fj, (z+10) > 0 for Lebesgue a.e:. Assume
thatIm F|, (z +i0) = 0 for x € S, whereS has positive Lebesgue measure. The formula

gy = [l [ vdelt)
Fu(x‘f’ly)—/ + /R(

r (t—x)% 4 y? t—x)2 4 y?

/ ydu(t)
r (t—2)*+ 9y

. N (t —x)dp(t)
e Y N T

and the bound
< ImFj,(z + iy)

yield that forz € S,

Hence,
F,(r—i0) = F,(x +1i0) =0  for Lebesgue a.ex € S. (4.82)

SinceF), vanishes o1, F}, does not vanish o@_ (otherwise, since the linear span of the set
of functions{(z — z)~! : z € C\ R} is dense inCy(R), we would haveu = 0). Then, by
Theorem 2.17 (i.e., its obvious analog for the lower half-plafg)z — i0) # 0 for Lebesgue
a.ex € R. This contradicts (4.82)]

4.9 Problems and comments
[1] Prove Relation (4.66). Hint: See Theorem [.2$12].

[2] Prove Theorem 4.6.
[3] Prove Relation (4.72).
[4] Letr and i be positive measures such that,, L fins. Prove that for,.-a.e.x

lim —Pl,(x i 1y) =0
ylo P,(z +iy)
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Hint: Write
PVac (Z) Pl’sing (Z)

_|_
PV('Z) — 'PH’Sing (Z) 'Plllsing (Z)
PN (Z P,uac (Z) + 1
P:U‘sing (Z)

and use Theorem 2.5.
[5] Prove the Poltoratskii theorem in the case wherm@nd . are positive pure point measures.

[6] In the Poltoratskii theorem one cannot replagg,, by .. Find an example justifying this
claim.

The next set of problems deals with various examples involving rank one perturbations. Note
that the model (4.60) is completely determined by a choice of a Borel probability medsure
onR. SettingH = L*(R, du°), Hy = operator of multiplication by, 1) = 1, we obtain a class
of HamiltoniansH, = H, + A(¢|- )% of the form (4.60). On the other hand, by the spectral
theorem, any family Hamiltonians (4.60), when restricted to the cyclic subgpade unitarily
equivalent to such a class.

[7] Let ¢ be the standard Cantor measure (see Example 3 in Section [RiSdf) andd® =

(dz 1 [0,1] + duc)/2. The ac spectrum off is [0, 1]. The singular continuous part @f is
concentrated on the Cantor s€t SinceC is closedspg,,, (Ho) = C. Prove that for\ # 0 the
spectrum of,, in [0, 1] is purely absolutely continuous. Hint: See the last example in Section
X111.7 of [RS4].

[8] Assume that’ = ji. Prove that for all\ # 0, H, has only pure point spectrum. Compute
the spectrum off,. Hint: This is Example 1 ifSW]. See also Example 3 in Section I1.5 of
[Si2].

[9] Let

277.

j=1
andy = > ayp,, Wherea,, > 0, > a, =1, > 2"a, = co. The spectrum off, is pure
point and equal td0, 1]. Prove that the spectrum d@f, in [0, 1] is purely singular continuous

for all A # 0. Hint: This is Example 2 ifSW]. See also Example 4 in Section 11.586f2].

[10] Letv,,,(A) = pc(A+ j/2™) and

0o AL
0 _ -2
2 —‘CXWJ]E n E Vjn,
n=1 j=1
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wherec is the normalization constant. Prove that the spectrurd pbn [0, 1] is purely singular
continuous for all\. Hint: This is Example 5 in Section 11.5 {#i2].

[11] Find ° such that:

(1) The spectrum ofi is purely absolutely continuous and equal@o1].

(2) For a set of\’s of positive Lebesgue measufé, has embedded point spectrumini].
Hint: See[DS] and Example 7 in Section 1.5 {$i2].

[12] Find .° such that:

(1) The spectrum off is purely absolutely continuous and equal@o1].

(2) For a set of)\’s of positive Lebesgue measuré, has embedded singular continuous spec-
trumin [0, 1].

Hint: See[DS] and Example 8 in Section 11.5 {$i2].

[13] del Rio and SimofDS] have shown that there exigi8 such that:

(1) For all Asp,.(Hy) = [0,1].

(2) For a set of\’s of positive Lebesgue measufé, has embedded point spectrumini].

(3) For a set of)\’s of positive Lebesgue measurfé, has embedded singular continuous spec-
trumin [0, 1].

[14] del Rio-Fuentes-PoltoratsiDFP] have shown that there existé such that:

(1) For all A sp,.(Hy) = [0,1]. Moreover, for all\ € [0, 1], the spectrum off, is purely
absolutely continuous.

(2)Forall A ¢ [0,1], [0, 1] C spgpe(H2).

[15] Let 1° be a pure point measure with atom&({z,}) = a,, n € N, wherez,, € [0,1].
Clearly,

Qn
G(z) = ; el
(1) Prove that ify  \/a, < oo, thenG(z) < oo for Lebesgue a.e: € [0, 1].

(2) Assume that;,, = z,,(w) are independent random variables uniformly distributed@n|
(we keepu,, deterministic). Assume that  /a, = oco. Prove that for a.ew, G(x) = oo for
Lebesgue a.ex € [0, 1].

(3) What can you say about the spectrumiffin the cases (1) and (2)?

Hint: (1) and (2) are proven ifiHow].
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