Functional Analysis Princeton University MAT520 HW9, Due Nov 17th 2023 (auto extension until Nov 19th 2023)

November 19, 2023

1. Prove Weyl's criterion for the spectrum of an operator. Let $A = A^* \in \mathcal{B}(\mathcal{H})$ be given. We have $\lambda \in \sigma(A)$ iff there exists some $\{\varphi_n\}_{n \in \mathbb{N}}$ with $\|\varphi_n\| = 1$ such that

$$\lim_{n} \|(A - \lambda \mathbb{1})\varphi_n\| = 0.$$

- 2. Let $A \in \mathcal{B}(\mathcal{H})$ be compact and $\{\varphi_n\}_n \subseteq \mathcal{H}$ converge *weakly* (in the sense of the Banach space weak topology on \mathcal{H}) to some $\varphi \in \mathcal{H}$. Show that $A\varphi_n \to A\varphi$ in norm.
- 3. Figure out if the following operators are compact or not (and prove what you think):
 - (a) **1**.
 - (b) $u \otimes v^*$ for some $u, v \in \mathcal{H}$.
 - (c) On the Banach space $X := C\left([0,1] \to \mathbb{C}\right)$ with $\|\cdot\|_{\infty}$, let $A : X \to X$ be given

$$(A\varphi)(x) := \int_{y=0}^{1} K(x,y) \varphi(y) \,\mathrm{d}y$$

where $K: [0,1]^2 \to \mathbb{C}$ is some *continuous* function.

(d) $A := \frac{1}{1+X^2}$ on $\ell^2(\mathbb{Z})$ where X is the position operator given by

 $(X\psi)(n) \equiv n\psi(n) \qquad \left(n \in \mathbb{Z}; \psi \in \ell^2(\mathbb{Z})\right)$

and we employ the holomorphic functional calculus to define A.

4. On $\mathcal{H} \oplus \mathcal{H}$, let

$$H := \begin{bmatrix} 0 & S^* \\ S & 0 \end{bmatrix}$$

for some $S \in \mathcal{B}(\mathcal{H})$. Find the polar decomposition of H.

- 5. Show that an idempotent is compact if and only if it is of finite rank.
- 6. Show that no nonzero multiplication operator on $L^{2}([0,1])$ is compact.
- 7. Show that if $A \in \mathcal{B}(\mathcal{H})$ is compact and $\{e_n\}_n$ is an ONB then $||Ae_n|| \to 0$. Find a counter-example of the converse.
- 8. [extra] Let $\Omega \subseteq \mathbb{R}^3$ be a bounded region with a smooth boundary surface $\partial\Omega$. Let $f : \partial\Omega \to \mathbb{C}$ be continuous. Fix some parameter m > 0. Find a function $\varphi : \overline{\Omega} \to \mathbb{C}$ which is twice differentiable in Ω and continuous on $\overline{\Omega}$ such that

$$\begin{aligned} \left(-\Delta + m^2 \mathbb{1} \right) \varphi &= 0 \\ \varphi |_{\partial \Omega} &= f . \end{aligned}$$

Find (and prove the properties of) a function $K : \overline{\Omega} \times \overline{\Omega} \to \mathbb{C}$ (called the Poisson kernel of $-\Delta + m^2 \mathbb{1}$ in the interior of Ω) which allows the solution of the above Dirichlet problem be written as

$$\varphi(x) = \int_{y \in \partial \Omega} K(x, y) f(y) \, \mathrm{d}y.$$