Functional Analysis
 Princeton University MAT520
 HW8, Due Nov 10th 2023 (auto extension until Nov 12th 2023)

November 4, 2023

1. Let P, Q be two orthogonal projections onto subspaces M, N in a Hilbert space \mathscr{H} such that $[P, Q]=0$.
(a) Show $P^{\perp} \equiv \mathbb{1}-P, Q^{\perp}, P Q, P+Q-P Q$ and $P+Q-2 P Q$ are orthogonal projections.
(b) What is the relation between the projections in the previous item and M, N ?
2. Let P, Q be two orthogonal projections onto subspaces M, N in a Hilbert space \mathscr{H}. Show that

$$
\underset{n \rightarrow \infty}{\mathrm{~s}-\lim _{\infty}(P Q)^{n}}
$$

exists and is the orthogonal projection onto $M \cap N$.
3. Let $A \in \mathcal{B}(\mathscr{H})$. Show that the set of $\lambda \in \sigma(A)$ such that λ is not an eigenvalue of A and $\operatorname{im}(A-\lambda \mathbb{1})$ is closed but not the whole of \mathscr{H} is an open subset of \mathbb{C}.
4. Define the numerical range $N(A)$ of $A \in \mathscr{B}(\mathscr{H})$ via

$$
N(A):=\{\langle\psi, A \psi\rangle \mid \psi \in \mathscr{H} \wedge\|\psi\|=1\}
$$

(a) Show that

$$
\sigma(A) \subseteq \overline{N(A)}
$$

(b) Find an example where $N(A)$ is not closed and

$$
\sigma(A) \nsubseteq N(A)
$$

(c) Find an example where

$$
\sigma(A) \neq N(A)=\overline{N(A)}
$$

5. Show that if $A \in \mathcal{B}(\mathscr{H})$ has $A=A^{*}$ then

$$
\left\|(A-z \mathbb{1})^{-1}\right\| \leq \frac{1}{|\operatorname{mg}\{z\}|} \quad(z \in \mathbb{C}:|\ln \{z\}|>0)
$$

6. Show that if $A \in \mathscr{B}(\mathscr{H})$ is an isometry then $\operatorname{im}(A)$ is closed in \mathcal{H}.
7. Let $V \in \mathscr{B}\left(L^{2}([0,1] \rightarrow \mathbb{C})\right)$ be give by

$$
V(\psi):=\int_{0} \psi \quad\left(\psi \in L^{2}\right)
$$

(a) Show that V is well-defined (it is a bounded linear map) with

$$
V^{*}(\psi)=\int_{0}^{1} \psi \quad\left(\psi \in L^{2}\right)
$$

(b) Show that the spectral radius of $V, r(V)$, equals zero and that $\sigma(V)=\{0\}$.
(c) Show that $\|V\|=\frac{2}{\pi}$.
8. Let $\mathscr{F}: \ell^{2}(\mathbb{Z}) \rightarrow L^{2}\left(\mathbb{S}^{1}\right)$ be the Fourier series given by

$$
\ell^{2}(\mathbb{Z}) \ni \psi \mapsto\left([0,2 \pi] \ni k \mapsto \sum_{n \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i} k n} \psi_{n}=: \hat{\psi}(k)\right)
$$

Let $A \in \mathscr{B}\left(\ell^{2}(\mathbb{Z})\right)$ be the discrete Laplacian:

$$
A=R+R^{*}
$$

where R is the bilateral right shift operator

$$
R \delta_{n}:=\delta_{n+1} \quad(n \in \mathbb{Z})
$$

and $\left\{\delta_{n}\right\}_{n \in \mathbb{Z}}$ the standard basis of $\ell^{2}(\mathbb{Z})$. Calculate

$$
\mathscr{F} A \mathscr{F}^{*} \in \mathscr{B}\left(L^{2}\left(\mathbb{S}^{1}\right)\right)
$$

9. [extra] Call an operator $A \in \mathcal{B}\left(\ell^{2}\left(\mathbb{Z}^{d}\right)\right)$ local iff

$$
\inf _{x, y \in \mathbb{Z}^{d}}-\frac{1}{\|x-y\|} \log \left(\left|\left\langle\delta_{x}, A \delta_{y}\right\rangle\right|\right)>0
$$

Show that if $A=A^{*}$ and A is local then $(A-z \mathbb{1})^{-1}$ is local too for any $z \in \mathbb{C}:|0 \mathbb{m}\{z\}|>0$.

