Functional Analysis
 Princeton University MAT520
 HW7, Due Nov 3rd 2023 (auto extension until Nov 5th 2023)

November 1, 2023

1 C-star algebras

In the following exercises, \mathcal{A} is a C-star algebra with involution $*: \mathcal{A} \rightarrow \mathcal{A}$ and norm $\|\cdot\| . a, b, \cdots \in \mathcal{A}$.

1. Show that if a is a partial isometry (i.e. $|a|^{2}$ is an idempotent) then $a=a a^{*} a=a a^{*} a a^{*} a$.
2. Show that a is a partial isometry iff a^{*} is a partial isometry.
3. Show that if p, q are self-adjoint projections then $\|p-q\| \leq 1$.
4. Show that if u, v are unitary then $\|u-v\| \leq 2$.
5. Show that if a is self-adjoint with $\|a\| \leq 1$ then

$$
a+\mathrm{i} \sqrt{1-a^{2}}, \quad a-\mathrm{i} \sqrt{1-a^{2}}
$$

are unitary. Conclude that any $b \in \mathcal{A}$ is the linear combination of four unitaries.
6. Two self-adjoint projections p, q are said to be orthogonal (written $p \perp q$) iff $p q=0$. Show that the following are equivalent:
(a) $p \perp q$.
(b) $p+q$ is a self-adjoint projection.
(c) $p+q \leq \mathbb{1}$.
7. Let v_{1}, \ldots, v_{n} be partial isometries and suppose that

$$
\sum_{j=1}^{n}\left|v_{j}\right|^{2}=\sum_{j=1}^{n}\left|v_{j}^{*}\right|^{2}=\mathbb{1}
$$

Show that $\sum_{j=1}^{n} v_{j}$ is unitary.
8. [extra] Show that for any $\varepsilon>0$ there exists a $\delta_{\varepsilon}>0$ such that if a obeys

$$
\max \left(\left\{\left\|a-a^{*}\right\|,\left\|a^{2}-a\right\|\right\}\right) \leq \delta_{\varepsilon}
$$

then there exists a self-adjoint projection p with $\|a-p\| \leq \varepsilon$.
9. [extra] Show that for any $\varepsilon>0$ there exists a $\delta_{\varepsilon}>0$ such that if a obeys

$$
\max \left(\left\{\left\||a|^{2}-\mathbb{1}\right\|,\left\|\left|a^{*}\right|^{2}-\mathbb{1}\right\|\right\}\right) \leq \delta_{\varepsilon}
$$

then there exists a unitary u with $\|a-u\| \leq \varepsilon$.
10. [extra] Show that $\sigma(p) \subseteq\{0,1\}$ for an idempotent p.
11. [extra] Show that $\|p\|=1$ for a non-zero self-adjoint projection p.
12. [extra] Show that the spectral radius $r(a)$ of a self-adjoint a equals its norm $\|a\|$.
13. [extra] Show that $\sigma(u) \subseteq \mathbb{S}^{1}$ if u is unitary (i.e. $|u|^{2}=\left|u^{*}\right|^{2}=\mathbb{1}$).
14. [extra] Show that $\sigma(a) \subseteq[0, \infty)$ if a is positive (i.e. $a=|b|^{2} \exists b$).
15. [extra] Show that $\sigma(a) \subseteq \mathbb{R}$ if $a=a^{*}$.
16. [extra] Show that a is invertible if $|a|^{2} \geq \varepsilon \mathbb{1}$ for some $\varepsilon>0 ;$ (recall $a \geq b$ iff $a-b \geq 0$ iff $a-b=|c|^{2}$ for some c).

2 Hilbert spaces

In this section \mathscr{H} is a Hilbert space.
17. Show that

$$
\mathcal{H}:=\ell^{2}(\mathbb{R}) \equiv\left\{f: \mathbb{R} \rightarrow \mathbb{C} \mid f^{-1}(\mathbb{C} \backslash\{0\}) \text { is a countable set and } \sum_{x \in \mathbb{R}}|f(x)|^{2}<\infty\right\}
$$

is not a separable Hilbert space.
18. Let R be the unilateral right shift operator on $\ell^{2}(\mathbb{N})$:

$$
R e_{j}:=e_{j+1} \quad(j \in \mathbb{N})
$$

where $\left\{e_{j}\right\}_{j \in \mathbb{N}}$ is the standard basis of $\ell^{2}(\mathbb{N})$ and extend linearly.
(a) Calculate R^{*}.
(b) Calculate $|R|^{2}$ and $\left|R^{*}\right|^{2}$.
(c) Show that R is a partial isometry.
(d) Calculate $\sigma(R), \sigma\left(R^{*}\right), \sigma\left(|R|^{2}\right)$ and $\sigma\left(\left|R^{*}\right|^{2}\right)$.
19. Let \hat{R} be the bilateral right shift operator on $\ell^{2}(\mathbb{Z})$:

$$
\hat{R} e_{j}:=e_{j+1} \quad(j \in \mathbb{Z})
$$

where $\left\{e_{j}\right\}_{j \in \mathbb{Z}}$ is the standard basis of $\ell^{2}(\mathbb{Z})$ and extend linearly.
(a) Calculate \hat{R}^{*}.
(b) Calculate $|\hat{R}|^{2}$ and $\left|\hat{R}^{*}\right|$.
(c) Show that \hat{R} is a unitary.
(d) Calculate $\sigma(\hat{R}), \sigma\left(\hat{R}^{*}\right), \sigma\left(|\hat{R}|^{2}\right)$ and $\sigma\left(\left|\hat{R}^{*}\right|^{2}\right)$.
20. Let $\frac{1}{X} \in \mathscr{B}\left(\ell^{2}(\mathbb{N})\right)$ be given by

$$
\frac{1}{X} e_{j}:=\frac{1}{j} e_{j} \quad(j \in \mathbb{N})
$$

and extend linearly.
(a) Calculate $\left(\frac{1}{X}\right)^{*}$.
(b) Calculate $\sigma\left(\frac{1}{X}\right)$.
(c) Show that $\frac{1}{X}$ does not have closed range.
21. Show that if M is a closed linear subspace and $P_{M}: \mathscr{H} \rightarrow \mathscr{H}$ is given by

$$
P_{M} \psi:=a
$$

where $\psi=a+b$ in the unique decomposition $\mathscr{H}=M \oplus M^{\perp}$, then P_{M} is a self-adjoint projection, i.e., show that $P_{M}=P_{M}^{*}=P_{M}^{2}$. Conversely, given any self-adjoint projection $P \in \mathcal{B}(\mathcal{H})$, find a closed linear subspace M such that $P=P_{M}$.
22. [extra] Let $\left\{A_{n}\right\}_{n} \subseteq \mathscr{B}(\mathscr{H})$ such that for any $\varphi, \psi \in \mathscr{H}$,

$$
\exists \lim _{n}\left\langle\varphi, A_{n} \psi\right\rangle .
$$

Show there exists $A \in \mathcal{B}(\mathscr{H})$ such that $A_{n} \rightarrow A$ weakly.
23. For any $t>0$, let $T_{t} \in \mathscr{B}\left(L^{2}(\mathbb{R})\right)$ be given by

$$
T_{t} \varphi:=\varphi(\cdot+t) \quad\left(\varphi \in L^{2}\right)
$$

(a) Calculate $\left\|T_{t}\right\|$.
(b) Find a limit to which T_{t} converges as $t \rightarrow \infty$ (in which operator topology?).
24. [extra] Show that multiplication is not jointly continuous as a map

$$
\mathscr{B}(\mathcal{H}) \times \mathscr{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})
$$

if $\mathscr{B}(\mathscr{H})$ is given the strong operator topology.
25. Let $A_{n} \rightarrow A, B_{n} \rightarrow B$ in the strong operator topology. Show that $A_{n} B_{n} \rightarrow A B$ in the strong operator topology.
26. Let $A_{n} \rightarrow A, B_{n} \rightarrow B$ in the weak operator topology. Find a counter example for $A_{n} B_{n} \rightarrow A B$ in the weak operator topology.
27. Show that for $A \in \mathscr{B}(\mathcal{H})$,

$$
\|A\|_{\mathrm{op}}=\sup (\{|\langle\varphi, A \psi\rangle| \mid\|\varphi\|=\|\psi\|=1\})
$$

and if $A=A^{*}$ then

$$
\|A\|_{\mathrm{op}}=\sup (\{|\langle\varphi, A \varphi\rangle| \mid\|\varphi\|=1\})
$$

28. Show that if $A_{n} \geq 0, A_{n} \rightarrow A$ in norm (resp. strongly) then $\sqrt{A_{n}} \rightarrow \sqrt{A}$ in norm (resp. strongly).
29. Show that if $A_{n} \rightarrow A$ in norm then $\left|A_{n}\right| \rightarrow|A|$ in norm.
30. [extra] Show that if $A_{n} \rightarrow A$ and $A_{n}^{*} \rightarrow A^{*}$ strongly then $\left|A_{n}\right| \rightarrow|A|$ strongly.
31. [extra] Find a counter example to

$$
\||A|-|B|\| \leq\|A-B\|
$$

