Functional Analysis Princeton University MAT520 HW6, Due Oct 27th 2023 (auto extension until Oct 29th 2023)

October 21, 2023

Hilbert spaces 1

In the following exercises, \mathcal{H} is a Hilbert space and φ, ψ, \ldots are vectors in it.

- 1. Show that $\ell^2(\mathbb{N} \to \mathbb{C})$ is a Hilbert space: define an inner product on it and show that the induced metric is complete.
- 2. Show that $L^{2}(\mathbb{R})$ (with the Lebesgue measure) is a Hilbert space. Define an inner product and show that the induced metric is complete.
- 3. Let $\mathcal{B}(\mathcal{H})$ be the Banach algebra of bounded linear operators on \mathcal{H} . Show (in a concrete example, e.g., $\mathcal{H} = \mathbb{C}^2$) that $\mathcal{B}(\mathcal{H})$ is not a Hilbert space by showing the operator norm violates the parallelogram law.
- 4. Show that if $M \subseteq \mathcal{H}$ is a closed vector subspace of it then $(M^{\perp})^{\perp} = M$.
- 5. Show that if $\{\varphi_n\}_{n\in\mathbb{N}}$ is a sequence of *pairwise orthogonal* vectors in \mathcal{H} , then the following are equivalent:
 - (a) $\sum_{n \in \mathbb{N}} \varphi_n$ exists in $\|\cdot\|_{\mathcal{H}}$.

 - $\begin{array}{ll} \text{(b)} & \sum_{n\in\mathbb{N}} \|\varphi_n\|_{\mathcal{H}}^2 < \infty. \\ \text{(c)} & \text{For any } \psi \in \mathcal{H}, \ \sum_{n\in\mathbb{N}} \langle \psi, \varphi_n \rangle_{\mathcal{H}} \text{ exists.} \end{array}$
- 6. Show that if $\{\varphi_n\}_{n\in\mathbb{N}}$ is a sequence of vectors in \mathcal{H} , then item (a) above implies item (c) above. Find an example where item (c) does *not* imply item (a).
- 7. Let $N \in \mathbb{N}$, $\alpha \in \mathbb{C}$ with $\alpha^N = 1$ and $\alpha^2 \neq 1$. Show that in \mathcal{H} , for any $\varphi, \psi \in \mathcal{H}$:

$$\langle \varphi, \psi \rangle_{\mathcal{H}} = \frac{1}{N} \sum_{n=1}^{N} \alpha^n \|\varphi + \alpha^n \psi\|^2.$$

Show also that

$$\langle \varphi, \psi \rangle_{\mathcal{H}} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}\theta} \left\| \varphi + \mathrm{e}^{\mathrm{i}\theta} \psi \right\|^2 \mathrm{d}\theta.$$

8. Let

$$\{\varphi_n\}_{n\in\mathbb{N}}, \{\psi_n\}_{n\in\mathbb{N}}\subseteq\{\xi\in\mathcal{H}\mid \|\xi\|\leq 1\}.$$

Assume further that $\lim_{n \in \mathbb{N}} \langle \varphi_n, \psi_n \rangle \to 1$. Show that

$$\lim_{n\in\mathbb{N}} \|\varphi_n - \psi_n\| = 0.$$

9. Let $\{\varphi_n\}_n \subseteq \mathcal{H}$ converge to some $\varphi \in \mathcal{H}$ weakly (i.e., for any $\xi \in \mathcal{H}, \langle \xi, \varphi_n \rangle \to \langle \xi, \varphi \rangle$ in \mathbb{C}). Assume further that $\|\varphi_n\| \to \|\varphi\|$ in \mathbb{R} . Show that

$$\lim_{n \to \infty} \|\varphi_n - \varphi\| = 0.$$

10. Let V be an inner product space and $\{\varphi_n\}_{n=1}^N \subseteq V$ be an orthonormal set. Show that, for fixed ψ , the functional

$$F(\alpha_1,\ldots,\alpha_N) := \left\| \psi - \sum_{n=1}^N \alpha_n \varphi_n \right\|$$

of the N numbers $\alpha_1, \ldots, \alpha_N \in \mathbb{C}$ is minized with the choice $\alpha_n := \langle \varphi_n, \psi \rangle$.