1 Banach algebras and the spectra of elements in it

In the following, \(\mathcal{A} \) is a \(\mathbb{C} \)-Banach algebra.

1. Prove Fekete’s lemma: If \(\{ a_n \}_{n \in \mathbb{N}} \subseteq \mathbb{R} \) is sub-additive then \(\lim_{n \to \infty} \frac{1}{n} a_n \) exists and equals \(\inf \frac{1}{n} a_n \).

2. Let \(R : \mathbb{C} \to \mathbb{C} \) be a rational function, i.e.,
\[
R(z) = p(z) + \sum_{k=1}^{n} \sum_{l=1}^{q} c_{k,l} (z - z_k)^{-l}
\]
where \(p \) is a polynomial, \(n \in \mathbb{N} \), and \(\{ z_k \}_{k=1}^{n}, \{ c_{k,l} \}_{k,l} \subseteq \mathbb{C} \). Let now \(a \in \mathcal{A} \) such that \(\{ z_k \}_{k=1}^{n} \subseteq \rho(a) \).
Assume further that we choose some \(\sigma(a) \subseteq \Omega \in \text{Open (} \mathbb{C} \text{)} \) such that \(R \) is holomorphic on \(\Omega \), and \(\gamma_j : [a, b] \to \Omega, j = 1, \ldots, m \) a collection of \(m \) oriented loops which surround \(\sigma(a) \) within \(\Omega \), such that
\[
\frac{1}{2\pi i} \sum_{j=1}^{m} \oint_{\gamma_j} \frac{1}{z - \lambda} \, dz = \begin{cases} 1 & \lambda \in \sigma(a) \\ 0 & \lambda \notin \Omega \end{cases}.
\]
Using Lemma 6.26 in the lecture notes (= Lemma 10.24 in Rudin) show that \(R(a) \) obeys the Cauchy integral formula, in the sense that
\[
p(a) + \sum_{k=1}^{n} \sum_{l=1}^{q} c_{k,l} (a - z_k)^{-l} = \frac{1}{2\pi i} \sum_{j=1}^{m} \oint_{\gamma_j} R(z) (z1 - a)^{-1} \, dz.
\]

3. Let \(\mathcal{A} \) be such that there exists some \(a \in \mathcal{A} \) with \(\sigma(a) \) not connected. Show that then \(\mathcal{A} \) contains some non-trivial idempotent (an element \(b \in \mathcal{A} \) with \(b^2 = b \notin \{ 0, 1 \} \)).

4. Assume that \(\{ a_n \}_{n \in \mathbb{N}} \subseteq \mathcal{A} \) is a sequence such that \(\exists \lim_{n} a_n =: a \in \mathcal{A} \). Let \(\Omega \subseteq \text{Open (} \mathbb{C} \text{)} \) contains a component of \(\sigma(a) \). Show that \(\sigma(a_n) \cap \Omega \neq \emptyset \) for all sufficiently large \(n \). \textit{Hint:} If \(\sigma(a) \subseteq \Omega \cup \bar{\Omega} \) where \(\bar{\Omega} \subseteq \text{Open (} \mathbb{C} \text{)} \) (in particular this means \(\Omega \cap \bar{\Omega} = \emptyset \)), define \(f : \mathbb{C} \to [0, 1] \) such that \(f|_{\Omega} = 1 \) and \(f|_{\bar{\Omega}} = 1 \).

5. Let \(X, Y \) be two Banach spaces and \(A, B \) be two bounded linear operators on \(X, Y \) respectively. Let \(T \in \mathcal{B}(X \to Y) \). Show that the following two assertions are equivalent:

(a) \(TA = BT \).
(b) \(Tf(A) = f(B)T \) for any \(f : \mathbb{C} \to \mathbb{C} \) holomorphic in some open set \(U \) which contains \(\sigma(A) \cup \sigma(B) \).