3. Since $\sigma(a)$ is disconnected, we can write $\sigma(a) \subset U \cup V$ where U, V are open subsets of \mathbb{C}, each of which encloses some components of $\sigma(a)$. Consider the holomorphic function f that is 1 on U and 0 on V. Define $b=f(a)$. Then $b^{2}=(f(a))^{2}=f(a)=b$ since f squares to itself as a function. In particular b is nontrivial since $\sigma(f(a))=f(\sigma(a))=\{0,1\}$.
4. If $\sigma(a)$ is connected, then the result follows from Theorem 10.20 in Rudin. Otherwise suppose $\sigma(a) \subset \Omega_{0} \cup \Omega$ where Ω_{0} and Ω are disjoint open subsets and Ω enclosed a component of $\sigma(a)$. For all n large enough, we have $\sigma\left(a_{n}\right) \subset \Omega_{0} \cup \Omega$ by Theorem 10.20 in Rudin. Consider the holomorphic function f that is 1 on Ω and 0 on Ω_{0}. Now $f(a) \neq 0$. Thus

$$
\left\|f\left(a_{n}\right)\right\| \geq\|f(a)\|-\left\|f\left(a_{n}\right)-f(a)\right\|>0
$$

for all n large, since $\left\|f\left(a_{n}\right)-f(a)\right\| \rightarrow 0$ (to show this, we can use the estimate in Lemma 6.14 and the integral formula (6.7) of Theorem 6.28 in the lecture note, and also the resolvent identity.) Thus $\sigma\left(a_{n}\right) \cap \Omega \neq \varnothing$ for all n large; otherwise $f\left(a_{n}\right)=0$.
5. That (b) implies (a) is clear. If (a) is true, than $T R(A)=R(B) T$ holds for rational functions R without poles in U. We can approximate a holomorphic function f on U by rational functions $\left\{R_{n}\right\}$ without poles in U, uniformly on compact subsets of U. Thus $R_{n}(A) \rightarrow f(A)$ and $R_{n}(B) \rightarrow f(B)$ in norm (see Theorem 6.28 in the lecture note), and hence $T f(A)=f(B) T$.

