MAT 520 HW5

- 3. Since σ(a) is disconnected, we can write σ(a) ⊂ U ∪ V where U, V are open subsets of C, each of which encloses some components of σ(a). Consider the holomorphic function f that is 1 on U and 0 on V. Define b = f(a). Then b² = (f(a))² = f(a) = b since f squares to itself as a function. In particular b is nontrivial since σ(f(a)) = f(σ(a)) = {0,1}.
- 4. If $\sigma(a)$ is connected, then the result follows from Theorem 10.20 in Rudin. Otherwise suppose $\sigma(a) \subset \Omega_0 \cup \Omega$ where Ω_0 and Ω are disjoint open subsets and Ω enclosed a component of $\sigma(a)$. For all *n* large enough, we have $\sigma(a_n) \subset \Omega_0 \cup \Omega$ by Theorem 10.20 in Rudin. Consider the holomorphic function *f* that is 1 on Ω and 0 on Ω_0 . Now $f(a) \neq 0$. Thus

$$||f(a_n)|| \ge ||f(a)|| - ||f(a_n) - f(a)|| > 0$$

for all *n* large, since $||f(a_n) - f(a)|| \to 0$ (to show this, we can use the estimate in Lemma 6.14 and the integral formula (6.7) of Theorem 6.28 in the lecture note, and also the resolvent identity.) Thus $\sigma(a_n) \cap \Omega \neq \emptyset$ for all *n* large; otherwise $f(a_n) = 0$.

5. That (b) implies (a) is clear. If (a) is true, than TR(A) = R(B)T holds for rational functions R without poles in U. We can approximate a holomorphic function f on U by rational functions $\{R_n\}$ without poles in U, uniformly on compact subsets of U. Thus $R_n(A) \to f(A)$ and $R_n(B) \to f(B)$ in norm (see Theorem 6.28 in the lecture note), and hence Tf(A) = f(B)T.