MAT 520 HW4

1. Normed-closed convex subset K is weakly-cosed. To see this, for any zy € X\ K,
since K is normed-closed and convex and {z} is (strongly-)compact and convex
in X, apply the Hahn-Banach separation theorem (Theorem 3.4 in Rudin’s
Functional Analysis), there exists A € X* such that

Re A(z9) < v < ReA(y)

for some v € R and for all y € K. In particular, we have {z € X : |\(z —x¢)| <
€} € X\ K for some e small enough. If the closed unit ball B in X is weakly
compact, then with r K C B for r small by boundedness of K, we concude that
rK and hence K is weakly-compact (note weak topology on X is Hausdorff).
To show that B is weakly compact, we consider X = X** by reflexivity of X. In
fact, with respect to the weak topology on X and weak-star topology on X**,
the spaces X and X** are homeomorphic. Indeed, z, — = converges weakly
in X if and only if J(z,) — J(x) in the weak-star sense, where J : X — X**
is the canonical map, since both translate to A(z,) — A(x) for all x € X*.
Now J(B) is the closed unit ball in X** and hence is weak-star compact by the
Banach-Alaoglu theorem. Thus B is weakly-compact.

2. (i.) (Use the Banach-Alaoglu theorem to exhibit an element of (¢/°°)* which is

not in ¢1.) Tt is clear that p, € (¢*°)* and ||u,|| < 1 and we can apply the
Banach-Alaoglu theorem on the sequence {u,}>°; to find an element y in the
closed unit ball of (¢*°)* such that for any weak-star neighborhood U of u, we
have p,, € U for infinitely many n. Let e; € £°° be the vector that takes value
1 in the j-th position and zero otherwise. Since p,(e;) — 0, we must have
p(e;) = 0; otherwise {p,} N {n € (£>)*|(n — p)(e;)| < €} has finitely many
terms. Let a € > be the all 1 vector. We have p(a) = 1 by similar reasoning.
Now, consider the canonical map J : ¢! — (£*°)* where {z;} is mapped to the
functional A : {a;} + 3 a;x;. Suppose pu = J(z) for some x € £'. We have
xz; = J(x)(e;) = p(e;) =0 for all j. Thus J(z) = 0. However p # 0.
(ii.) (Show that ¢ = (¢')*.) Let J : £> — (¢')* map {z;} to a functional
A {a;} = D2 azxs. It is clear that J is injective. To show surjectivity, for
A€ (0, let x; := A(e;), and we have J({z;}) = \. Apply Hahn-Banach to
show that J is isometric.

3. The dual of L? for p € (1,00) is LY where 1/p+ 1/q = 1. Since L([—m,7]) C
L'([-7,7]), we will show that for any f € L'([—m, x]), we have f(n) :=

1



f:r ft)e™dt — 0 as n — oo. We know that the trigonometric polynomi-
als are dense in C'([—7,7]) in sup norm, and C([—,7]) is dense in L'([—,7])
in L' norm. For f € L', find trigonometric polynomial p such that || f —p|le < €
and find g € L' such that ||f — g||; < e. Then

IF ()] < 1f(n) = g(n)] + |g(n) — (n)| + [p(n)| < 2¢ + |p(n))|

since p(n) — 0, for sufficiently large n we have |f(n)| < 2¢. Now if f, — ¢ in
norm, then g = 0. However ||f,||, = 1.

4. (Show C(]0, 1]) is dense in L>(]0, 1]) with respect to the weak-star topology and
not with respect to the norm topology.) Let n be the standard mollifier (see,
e.g., Section C5 in Evans’ Partial Differential Equation) and n(z) = tn(%). If
f € L*, we will show that [n.x fg — [ fg for all g € L', and note that 7. x f

is smooth. Since [ [ne(z —y)f(y)llg(@)ldzdy < |[nellsol| fllocllgllr, we can use
Fubini’s theorem to get [n.* fg = [ne*gf. Thus

'/m*fg—/fg‘S/\fl\ne*g—gléHfHoon*g—g!HO

as € — 0, since 7. * g — ¢ in L*. For the norm topology, we now that C([0, 1])
is closed in L>([0,1]) in this topology. Since C([0,1]) € L*°([0,1]), it cannot
be dense.

5. First we show that B C S. Let ||zo|| < 1. We need to show that
{z: | Ni(z —x0)| <€e}nNS

is nonempty for any Aq,..., A\, € X*and € > 0. The map (A,...,\,) : X = R"
has nontrivial kernel; otherwise we will have the contradiction that dim X < n.
Denote yg # 0 the be the vector such that \;(yo) = 0 for all 7. Since o
l|xo + ol is continuous, and |[|zo|| < 1 and [|zg + ayo|| — oo as |a| — oo, by
the intermediate value theorem, there is some « such that ||zo+ayo|| = 1. Thus
T+ ayo € S and (¢ + ayo — 79) = 0 < €. To show S C B, we note that B

is weakly-closed since

B= () {o: M) < 1}

[[All=1

which follows from ||z = sup = [A(@)].
6. We have
| La(n) = L(2)]| < [Ln(2n) = Ln(2)] + | Ln(2) = L()|
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The second term converges to zero since L,, — L in the weak-star sense. Also,
since |L,(z)| is bounded for each z € X, then ||L,|| is bounded by the uniform
boundedness principle. Thus

| L (n) = L ()] < | Lnl[[l2n — 2]l =0

Use the Gelfand’s formula for spectral radius.

N zy) =y eq.

One can construct left and right inverses for x and .
LR =1 and RL projects onto n > 2.

Let 2 = (1 — xzy)~!. One can verify that 1 + yzz is the inverse for 1 — yx. To

motivate, formally we have

L—yz=>) (yx)"=1+y (Z(my)”) r=1+yz

If A # 0, then A — 2y is invertible if and only if A —yx is invertible. This follows
exactly the same as Problem 11. Take R and L from Problem 10. Then LR is
invertible while RL is not.

If 2 is on the boundary of o(x), then there is a sequence z,, — z such that x — z,
is invertible. In particular, any neighborhood balls of x — z intersects x — z,, for

some n.

Take x,, — = where x,, € G. We have ||z, !|| — oco. Indeed, zz;! is not invertible
and hence 1 < |1 — zz!||. Thus

1< =z, = [[(z — zn)z, || < [l — @l||l2, |
and ||z || = 1/||z — z,|| = oo. Let y, = x,,;'/||z}||. Then

|z, [l = zn)a, " + 1

= —0
[E [Fomd|

< lw = 2l +

|2yl = —
" [l

If A is a Banach algebra whose nonzero elements are invertible, then by Gelfand-
Mazur A = C, and 0 is the only topological divisor of 0.
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Here (*(N) is a Hilbert space, and we can talk about the adjoint of T'. Tt is not
hard to find that 7" is unitary and 72 = —1, which implies o(T") belongs to the
unit circle and o(7T") C {i, —i}, respectively. Thus o(T") = {i, —i} since T is not
identically 7 or —1.

r(z) = inf, ||z"|V/™ = 0.

We need to show that {z € A: r(x) < a} is open for any o > 0. If r(x) < a,
then o(xg) C B(0,a—¢). We use Theorem 10.20 in Rudin’s Functional Analysis
to find 0 > 0 such that for all ||z — || < J, we have o(x) C B(0,a —¢€). Thus
r(z) < a.



