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1. Normed-closed convex subset K is weakly-cosed. To see this, for any x0 ∈ X\K,

since K is normed-closed and convex and {x0} is (strongly-)compact and convex

in X, apply the Hahn-Banach separation theorem (Theorem 3.4 in Rudin’s

Functional Analysis), there exists λ ∈ X∗ such that

Reλ(x0) < γ < Reλ(y)

for some γ ∈ R and for all y ∈ K. In particular, we have {x ∈ X : |λ(x−x0)| <
ε} ⊂ X \K for some ε small enough. If the closed unit ball B in X is weakly

compact, then with rK ⊂ B for r small by boundedness of K, we concude that

rK and hence K is weakly-compact (note weak topology on X is Hausdorff).

To show that B is weakly compact, we consider X ∼= X∗∗ by reflexivity of X. In

fact, with respect to the weak topology on X and weak-star topology on X∗∗,

the spaces X and X∗∗ are homeomorphic. Indeed, xα → x converges weakly

in X if and only if J(xα) → J(x) in the weak-star sense, where J : X → X∗∗

is the canonical map, since both translate to λ(xα) → λ(x) for all x ∈ X∗.

Now J(B) is the closed unit ball in X∗∗ and hence is weak-star compact by the

Banach-Alaoglu theorem. Thus B is weakly-compact.

2. (i.) (Use the Banach-Alaoglu theorem to exhibit an element of (`∞)∗ which is

not in `1.) It is clear that µn ∈ (`∞)∗ and ‖µn‖ ≤ 1 and we can apply the

Banach-Alaoglu theorem on the sequence {µn}∞n=1 to find an element µ in the

closed unit ball of (`∞)∗ such that for any weak-star neighborhood U of µ, we

have µn ∈ U for infinitely many n. Let ej ∈ `∞ be the vector that takes value

1 in the j-th position and zero otherwise. Since µn(ej) → 0, we must have

µ(ej) = 0; otherwise {µn} ∩ {η ∈ (`∞)∗|(η − µ)(ej)| < ε} has finitely many

terms. Let a ∈ `∞ be the all 1 vector. We have µ(a) = 1 by similar reasoning.

Now, consider the canonical map J : `1 → (`∞)∗ where {xj} is mapped to the

functional λ : {aj} 7→
∑

j ajxj. Suppose µ = J(x) for some x ∈ `1. We have

xj = J(x)(ej) = µ(ej) = 0 for all j. Thus J(x) = 0. However µ 6= 0.

(ii.) (Show that `∞ ∼= (`1)∗.) Let J : `∞ → (`1)∗ map {xj} to a functional

λ : {aj} 7→
∑

j ajxj. It is clear that J is injective. To show surjectivity, for

λ ∈ (`1)∗, let xj := λ(ej), and we have J({xj}) = λ. Apply Hahn-Banach to

show that J is isometric.

3. The dual of Lp for p ∈ (1,∞) is Lq where 1/p + 1/q = 1. Since Lq([−π, π]) ⊂
L1([−π, π]), we will show that for any f ∈ L1([−π, π]), we have f̂(n) :=
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∫ π
−π f(t)eintdt → 0 as n → ∞. We know that the trigonometric polynomi-

als are dense in C([−π, π]) in sup norm, and C([−π, π]) is dense in L1([−π, π])

in L1 norm. For f ∈ L1, find trigonometric polynomial p such that ‖f−p‖∞ < ε

and find g ∈ L1 such that ‖f − g‖1 < ε. Then

|f̂(n)| ≤ |f̂(n)− ĝ(n)|+ |ĝ(n)− p̂(n)|+ |p̂(n)| ≤ 2ε+ |p̂(n)|

since p̂(n) → 0, for sufficiently large n we have |f̂(n)| ≤ 2ε. Now if fn → g in

norm, then g = 0. However ‖fn‖p = 1.

4. (Show C([0, 1]) is dense in L∞([0, 1]) with respect to the weak-star topology and

not with respect to the norm topology.) Let η be the standard mollifier (see,

e.g., Section C5 in Evans’ Partial Differential Equation) and ηε(x) = 1
ε
η(x

ε
). If

f ∈ L∞, we will show that
∫
ηε ∗ fg →

∫
fg for all g ∈ L1, and note that ηε ∗ f

is smooth. Since
∫
|ηε(x − y)f(y)||g(x)|dxdy ≤ ‖ηε‖∞‖f‖∞‖g‖L1 , we can use

Fubini’s theorem to get
∫
ηε ∗ fg =

∫
ηε ∗ gf . Thus∣∣∣∣∫ ηε ∗ fg −

∫
fg

∣∣∣∣ ≤ ∫ |f ||ηε ∗ g − g| ≤ ‖f‖∞‖ηε ∗ g − g‖ → 0

as ε→ 0, since ηε ∗ g → g in L1. For the norm topology, we now that C([0, 1])

is closed in L∞([0, 1]) in this topology. Since C([0, 1]) ( L∞([0, 1]), it cannot

be dense.

5. First we show that B ⊂ S. Let ‖x0‖ < 1. We need to show that

{x : |λi(x− x0)| < ε} ∩ S

is nonempty for any λ1, . . . , λn ∈ X∗ and ε > 0. The map (λ1, . . . , λn) : X → Rn

has nontrivial kernel; otherwise we will have the contradiction that dimX ≤ n.

Denote y0 6= 0 the be the vector such that λi(y0) = 0 for all i. Since α 7→
‖x0 + αy0‖ is continuous, and ‖x0‖ < 1 and ‖x0 + αy0‖ → ∞ as |α| → ∞, by

the intermediate value theorem, there is some α such that ‖x0+αy0‖ = 1. Thus

x0 + αy0 ∈ S and λi(x0 + αy0 − x0) = 0 < ε. To show S ⊂ B, we note that B

is weakly-closed since

B =
⋂
‖λ‖=1

{x : |λ(x)| ≤ 1}

which follows from ‖x‖ = sup‖λ‖=1 |λ(x)|.

6. We have

|Ln(xn)− L(x)| ≤ |Ln(xn)− Ln(x)|+ |Ln(x)− L(x)|
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The second term converges to zero since Ln → L in the weak-star sense. Also,

since |Ln(x)| is bounded for each x ∈ X, then ‖Ln‖ is bounded by the uniform

boundedness principle. Thus

|Ln(xn)− Ln(x)| ≤ ‖Ln‖‖xn − x‖ → 0

7. Use the Gelfand’s formula for spectral radius.

8. x−1(xy) = y ∈ G.

9. One can construct left and right inverses for x and y.

10. LR = 1 and RL projects onto n ≥ 2.

11. Let z = (1− xy)−1. One can verify that 1 + yzx is the inverse for 1− yx. To

motivate, formally we have

1− yx =
∞∑
n=0

(yx)n = 1 + y

(
∞∑
n=0

(xy)n

)
x = 1 + yzx

12. If λ 6= 0, then λ−xy is invertible if and only if λ−yx is invertible. This follows

exactly the same as Problem 11. Take R and L from Problem 10. Then LR is

invertible while RL is not.

14. If z is on the boundary of σ(x), then there is a sequence zn → z such that x−zn
is invertible. In particular, any neighborhood balls of x− z intersects x− zn for

some n.

15. Take xn → x where xn ∈ G. We have ‖x−1n ‖ → ∞. Indeed, xx−1n is not invertible

and hence 1 ≤ ‖1− xx−1n ‖. Thus

1 ≤ ‖1− xx−1n ‖ = ‖(x− xn)x−1n ‖ ≤ ‖x− xn‖‖x−1n ‖

and ‖x−1n ‖ = 1/‖x− xn‖ → ∞. Let yn = x−1n /‖x−1n ‖. Then

‖xyn‖ =
‖xx−1n ‖
‖xn‖

=
‖(x− xn)x−1n + 1‖

‖x−1n ‖
≤ ‖x− xn‖+

1

‖x−1n ‖
→ 0

IfA is a Banach algebra whose nonzero elements are invertible, then by Gelfand-

Mazur A = C, and 0 is the only topological divisor of 0.
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16. Here `2(N) is a Hilbert space, and we can talk about the adjoint of T . It is not

hard to find that T is unitary and T 2 = −1, which implies σ(T ) belongs to the

unit circle and σ(T ) ⊂ {i,−i}, respectively. Thus σ(T ) = {i,−i} since T is not

identically i or −i.

17. r(x) = infn ‖xn‖1/n = 0.

18. We need to show that {x ∈ A : r(x) < α} is open for any α > 0. If r(x0) < α,

then σ(x0) ⊂ B(0, α−ε). We use Theorem 10.20 in Rudin’s Functional Analysis

to find δ > 0 such that for all ‖x− x0‖ < δ, we have σ(x) ⊂ B(0, α− ε). Thus

r(x) < α.
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