MAT 520 HW4

1. Normed-closed convex subset K is weakly-cosed. To see this, for any $x_{0} \in X \backslash K$, since K is normed-closed and convex and $\left\{x_{0}\right\}$ is (strongly-)compact and convex in X, apply the Hahn-Banach separation theorem (Theorem 3.4 in Rudin's Functional Analysis), there exists $\lambda \in X^{*}$ such that

$$
\operatorname{Re} \lambda\left(x_{0}\right)<\gamma<\operatorname{Re} \lambda(y)
$$

for some $\gamma \in \mathbb{R}$ and for all $y \in K$. In particular, we have $\left\{x \in X:\left|\lambda\left(x-x_{0}\right)\right|<\right.$ $\epsilon\} \subset X \backslash K$ for some ϵ small enough. If the closed unit ball B in X is weakly compact, then with $r K \subset B$ for r small by boundedness of K, we concude that $r K$ and hence K is weakly-compact (note weak topology on X is Hausdorff). To show that B is weakly compact, we consider $X \cong X^{* *}$ by reflexivity of X. In fact, with respect to the weak topology on X and weak-star topology on $X^{* *}$, the spaces X and $X^{* *}$ are homeomorphic. Indeed, $x_{\alpha} \rightarrow x$ converges weakly in X if and only if $J\left(x_{\alpha}\right) \rightarrow J(x)$ in the weak-star sense, where $J: X \rightarrow X^{* *}$ is the canonical map, since both translate to $\lambda\left(x_{\alpha}\right) \rightarrow \lambda(x)$ for all $x \in X^{*}$. Now $J(B)$ is the closed unit ball in $X^{* *}$ and hence is weak-star compact by the Banach-Alaoglu theorem. Thus B is weakly-compact.
2. (i.) (Use the Banach-Alaoglu theorem to exhibit an element of $\left(\ell^{\infty}\right)^{*}$ which is not in ℓ^{1}.) It is clear that $\mu_{n} \in\left(\ell^{\infty}\right)^{*}$ and $\left\|\mu_{n}\right\| \leq 1$ and we can apply the Banach-Alaoglu theorem on the sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ to find an element μ in the closed unit ball of $\left(\ell^{\infty}\right)^{*}$ such that for any weak-star neighborhood U of μ, we have $\mu_{n} \in U$ for infinitely many n. Let $e_{j} \in \ell^{\infty}$ be the vector that takes value 1 in the j-th position and zero otherwise. Since $\mu_{n}\left(e_{j}\right) \rightarrow 0$, we must have $\mu\left(e_{j}\right)=0$; otherwise $\left\{\mu_{n}\right\} \cap\left\{\eta \in\left(\ell^{\infty}\right)^{*}\left|(\eta-\mu)\left(e_{j}\right)\right|<\epsilon\right\}$ has finitely many terms. Let $a \in \ell^{\infty}$ be the all 1 vector. We have $\mu(a)=1$ by similar reasoning. Now, consider the canonical map $J: \ell^{1} \rightarrow\left(\ell^{\infty}\right)^{*}$ where $\left\{x_{j}\right\}$ is mapped to the functional $\lambda:\left\{a_{j}\right\} \mapsto \sum_{j} a_{j} x_{j}$. Suppose $\mu=J(x)$ for some $x \in \ell^{1}$. We have $x_{j}=J(x)\left(e_{j}\right)=\mu\left(e_{j}\right)=0$ for all j. Thus $J(x)=0$. However $\mu \neq 0$.
(ii.) (Show that $\ell^{\infty} \cong\left(\ell^{1}\right)^{*}$.) Let $J: \ell^{\infty} \rightarrow\left(\ell^{1}\right)^{*}$ map $\left\{x_{j}\right\}$ to a functional $\lambda:\left\{a_{j}\right\} \mapsto \sum_{j} a_{j} x_{j}$. It is clear that J is injective. To show surjectivity, for $\lambda \in\left(\ell^{1}\right)^{*}$, let $x_{j}:=\lambda\left(e_{j}\right)$, and we have $J\left(\left\{x_{j}\right\}\right)=\lambda$. Apply Hahn-Banach to show that J is isometric.
3. The dual of L^{p} for $p \in(1, \infty)$ is L^{q} where $1 / p+1 / q=1$. Since $L^{q}([-\pi, \pi]) \subset$ $L^{1}([-\pi, \pi])$, we will show that for any $f \in L^{1}([-\pi, \pi])$, we have $\hat{f}(n):=$
$\int_{-\pi}^{\pi} f(t) e^{i n t} d t \rightarrow 0$ as $n \rightarrow \infty$. We know that the trigonometric polynomials are dense in $C([-\pi, \pi])$ in sup norm, and $C([-\pi, \pi])$ is dense in $L^{1}([-\pi, \pi])$ in L^{1} norm. For $f \in L^{1}$, find trigonometric polynomial p such that $\|f-p\|_{\infty}<\epsilon$ and find $g \in L^{1}$ such that $\|f-g\|_{1}<\epsilon$. Then

$$
|\hat{f}(n)| \leq|\hat{f}(n)-\hat{g}(n)|+|\hat{g}(n)-\hat{p}(n)|+|\hat{p}(n)| \leq 2 \epsilon+|\hat{p}(n)|
$$

since $\hat{p}(n) \rightarrow 0$, for sufficiently large n we have $|\hat{f}(n)| \leq 2 \epsilon$. Now if $f_{n} \rightarrow g$ in norm, then $g=0$. However $\left\|f_{n}\right\|_{p}=1$.
4. (Show $C([0,1])$ is dense in $L^{\infty}([0,1])$ with respect to the weak-star topology and not with respect to the norm topology.) Let η be the standard mollifier (see, e.g., Section C5 in Evans' Partial Differential Equation) and $\eta_{\epsilon}(x)=\frac{1}{\epsilon} \eta\left(\frac{x}{\epsilon}\right)$. If $f \in L^{\infty}$, we will show that $\int \eta_{\epsilon} * f g \rightarrow \int f g$ for all $g \in L^{1}$, and note that $\eta_{\epsilon} * f$ is smooth. Since $\int\left|\eta_{\epsilon}(x-y) f(y)\|g(x) \mid d x d y \leq\| \eta_{\epsilon}\left\|_{\infty}\right\| f\left\|_{\infty}\right\| g \|_{L^{1}}\right.$, we can use Fubini's theorem to get $\int \eta_{\epsilon} * f g=\int \eta_{\epsilon} * g f$. Thus

$$
\left|\int \eta_{\epsilon} * f g-\int f g\right| \leq \int|f|\left|\eta_{\epsilon} * g-g\right| \leq\|f\|_{\infty}\left\|\eta_{\epsilon} * g-g\right\| \rightarrow 0
$$

as $\epsilon \rightarrow 0$, since $\eta_{\epsilon} * g \rightarrow g$ in L^{1}. For the norm topology, we now that $C([0,1])$ is closed in $L^{\infty}([0,1])$ in this topology. Since $C([0,1]) \subsetneq L^{\infty}([0,1])$, it cannot be dense.
5. First we show that $B \subset \bar{S}$. Let $\left\|x_{0}\right\|<1$. We need to show that

$$
\left\{x:\left|\lambda_{i}\left(x-x_{0}\right)\right|<\epsilon\right\} \cap S
$$

is nonempty for any $\lambda_{1}, \ldots, \lambda_{n} \in X^{*}$ and $\epsilon>0$. The map $\left(\lambda_{1}, \ldots, \lambda_{n}\right): X \rightarrow \mathbb{R}^{n}$ has nontrivial kernel; otherwise we will have the contradiction that $\operatorname{dim} X \leq n$. Denote $y_{0} \neq 0$ the be the vector such that $\lambda_{i}\left(y_{0}\right)=0$ for all i. Since $\alpha \mapsto$ $\left\|x_{0}+\alpha y_{0}\right\|$ is continuous, and $\left\|x_{0}\right\|<1$ and $\left\|x_{0}+\alpha y_{0}\right\| \rightarrow \infty$ as $|\alpha| \rightarrow \infty$, by the intermediate value theorem, there is some α such that $\left\|x_{0}+\alpha y_{0}\right\|=1$. Thus $x_{0}+\alpha y_{0} \in S$ and $\lambda_{i}\left(x_{0}+\alpha y_{0}-x_{0}\right)=0<\epsilon$. To show $\bar{S} \subset B$, we note that B is weakly-closed since

$$
B=\bigcap_{\|\lambda\|=1}\{x:|\lambda(x)| \leq 1\}
$$

which follows from $\|x\|=\sup _{\|\lambda\|=1}|\lambda(x)|$.
6. We have

$$
\left|L_{n}\left(x_{n}\right)-L(x)\right| \leq\left|L_{n}\left(x_{n}\right)-L_{n}(x)\right|+\left|L_{n}(x)-L(x)\right|
$$

The second term converges to zero since $L_{n} \rightarrow L$ in the weak-star sense. Also, since $\left|L_{n}(x)\right|$ is bounded for each $x \in X$, then $\left\|L_{n}\right\|$ is bounded by the uniform boundedness principle. Thus

$$
\left|L_{n}\left(x_{n}\right)-L_{n}(x)\right| \leq\left\|L_{n}\right\|\left\|x_{n}-x\right\| \rightarrow 0
$$

7. Use the Gelfand's formula for spectral radius.
8. $x^{-1}(x y)=y \in \mathcal{G}$.
9. One can construct left and right inverses for x and y.
10. $L R=\mathbb{1}$ and $R L$ projects onto $n \geq 2$.
11. Let $z=(\mathbb{1}-x y)^{-1}$. One can verify that $\mathbb{1}+y z x$ is the inverse for $\mathbb{1}-y x$. To motivate, formally we have

$$
\mathbb{1}-y x=\sum_{n=0}^{\infty}(y x)^{n}=\mathbb{1}+y\left(\sum_{n=0}^{\infty}(x y)^{n}\right) x=\mathbb{1}+y z x
$$

12. If $\lambda \neq 0$, then $\lambda-x y$ is invertible if and only if $\lambda-y x$ is invertible. This follows exactly the same as Problem 11. Take R and L from Problem 10. Then $L R$ is invertible while $R L$ is not.
13. If z is on the boundary of $\sigma(x)$, then there is a sequence $z_{n} \rightarrow z$ such that $x-z_{n}$ is invertible. In particular, any neighborhood balls of $x-z$ intersects $x-z_{n}$ for some n.
14. Take $x_{n} \rightarrow x$ where $x_{n} \in \mathcal{G}$. We have $\left\|x_{n}^{-1}\right\| \rightarrow \infty$. Indeed, $x x_{n}^{-1}$ is not invertible and hence $1 \leq\left\|\mathbb{1}-x x_{n}^{-1}\right\|$. Thus

$$
1 \leq\left\|\mathbb{1}-x x_{n}^{-1}\right\|=\left\|\left(x-x_{n}\right) x_{n}^{-1}\right\| \leq\left\|x-x_{n}\right\|\left\|x_{n}^{-1}\right\|
$$

and $\left\|x_{n}^{-1}\right\|=1 /\left\|x-x_{n}\right\| \rightarrow \infty$. Let $y_{n}=x_{n}^{-1} /\left\|x_{n}^{-1}\right\|$. Then

$$
\left\|x y_{n}\right\|=\frac{\left\|x x_{n}^{-1}\right\|}{\left\|x_{n}\right\|}=\frac{\left\|\left(x-x_{n}\right) x_{n}^{-1}+\mathbb{1}\right\|}{\left\|x_{n}^{-1}\right\|} \leq\left\|x-x_{n}\right\|+\frac{1}{\left\|x_{n}^{-1}\right\|} \rightarrow 0
$$

If \mathcal{A} is a Banach algebra whose nonzero elements are invertible, then by GelfandMazur $\mathcal{A}=\mathbb{C}$, and 0 is the only topological divisor of 0 .
16. Here $\ell^{2}(\mathbb{N})$ is a Hilbert space, and we can talk about the adjoint of T. It is not hard to find that T is unitary and $T^{2}=-\mathbb{1}$, which implies $\sigma(T)$ belongs to the unit circle and $\sigma(T) \subset\{i,-i\}$, respectively. Thus $\sigma(T)=\{i,-i\}$ since T is not identically i or $-i$.
17. $r(x)=\inf _{n}\left\|x^{n}\right\|^{1 / n}=0$.
18. We need to show that $\{x \in \mathcal{A}: r(x)<\alpha\}$ is open for any $\alpha>0$. If $r\left(x_{0}\right)<\alpha$, then $\sigma\left(x_{0}\right) \subset B(0, \alpha-\epsilon)$. We use Theorem 10.20 in Rudin's Functional Analysis to find $\delta>0$ such that for all $\left\|x-x_{0}\right\|<\delta$, we have $\sigma(x) \subset B(0, \alpha-\epsilon)$. Thus $r(x)<\alpha$.

