MAT 520 HW3

1. See Theorem 4.5 in the lecture note.
2. Suppose X^{*} is reflexive but $X \neq X^{* *}$. Denote $J: X \rightarrow X^{* *}$ the canonical map. Let $f \in X^{* *} \backslash J(X)$, and define $\ell: J(X)+\mathbb{C} f \rightarrow \mathbb{C}$ as $\ell(J(x)+t f)=t$. Note ℓ is bounded since $J(X)$ is closed in $X^{* *}$, where $\inf _{x}\|J(x)+f\|=\delta>0$ and $\inf _{x}\|J(x)+t f\|=|t| \delta$. Extend ℓ using Hahn-Banach to a bounded linear functional $\tilde{\ell}$ on $X^{* *}$. Write $\psi: X^{*} \rightarrow X^{* * *}$. Since $X^{*}=X^{* * *}$, there is $\lambda \in X^{*}$ such that $\psi(\lambda)=\tilde{\ell}$. In particular $\psi(\lambda)(J(x))=\tilde{\ell}(J(x))=\ell(J(x))=0$, and this implies

$$
0=\psi(\lambda)(J(x))=J(x)(\lambda)=\lambda(x)
$$

for all $x \in X$. Thus $\lambda=0$. However, $\tilde{\ell} \neq 0$, which is a contradiction.
3. This is similar to the previous one. Suppose $f^{*}: Y \rightarrow X^{*}$ is not surjective. Choose $\lambda_{0} \in X^{*} \backslash f^{*}(Y)$, we define $\ell: f^{*}(Y)+\mathbb{C} \lambda_{0}$ as $\ell\left(f^{*}(y)+t \lambda_{0}\right)=t$. Extend ℓ using Hahn-Banach to $\tilde{\ell} \in X^{* *}$. Since X is reflexive, there is x such that $J(x)=\tilde{\ell}$, where $J: X \rightarrow X^{* *}$ is the canonical map. Then

$$
J(x)\left(f^{*}(y)\right)=f^{*}(y)(x)=f(x)(y)=0
$$

for all $y \in Y$. Since $f: X \rightarrow Y^{*}$ is isometric and hence injective, then $f(x)=0$ and hence $x=0$. Thus $\tilde{\ell}=0$, which is a contradiction. We must have $Y \cong X^{*}$ and $Y^{*} \cong X^{* *} \cong X^{*}$.
4. Apply Baire's category theorem to $S=\bigcup_{n}\left(L^{1+1 / n}([0,1]) \cap S\right)$ to conclude that there is $L^{1+1 / n}([0,1]) \cap S$ that has nonempty interior in S. There is a ball B in $L^{1}([0,1])$ such that $B \cap S \subset L^{1+1 / n}([0,1]) \cap S$. This implies that $S=$ $L^{1+1 / n}([0,1])$.
5. Define the subspace $M \subset \ell^{\infty}$ and the convex function p as in the problem. Let $\ell: M \rightarrow \mathbb{R}$ be the linear functional defined as $\ell(\psi)=\lim _{n} \Lambda_{n} \psi$. Use the Hahn-Banach theorem to extend ℓ to a linear functional $\Lambda: \ell^{\infty} \rightarrow \mathbb{R}$ such that $\Lambda(\psi) \leq p(\psi)$ for any $\psi \in \ell^{\infty}$. We have $L \psi-\psi \in M$ and hence $\Lambda(L \psi-\psi)=$ $\ell(L \psi-\psi)=0$ which implies $\Lambda L=\Lambda$. Indeed

$$
\Lambda_{n}(L \psi-\psi)=\frac{\psi(2)+\cdots+\psi(n+1)}{n}-\frac{\psi(1)+\cdots+\psi(n)}{n}=-\frac{\psi(1)}{n}+\frac{\psi(n+1)}{n} \rightarrow 0
$$

We show that $p(\psi) \leq \limsup _{n} \psi(n)$ for all ψ. Suppose for contradiction that $p(\psi)-\epsilon>\lim \sup _{n} \psi(n)$ for some ψ. Then $p(\psi)-\epsilon \geq \psi(n)$ for all $n \geq N$ for
some N. Now

$$
\frac{1}{n} \sum_{j=1}^{n} \psi(j)=\frac{1}{n} \sum_{j=1}^{N-1} \psi(j)+\frac{1}{n} \sum_{j=N}^{n} \psi(j) \leq \frac{1}{n} \sum_{j=1}^{N-1} \psi(j)+\frac{n-N}{n}(p(\psi)-\epsilon)
$$

Thus $p(\psi)=\lim \sup \Lambda_{n} \psi \leq p(\psi)-\epsilon$ which is a contradiction.
6. See Claim 5.16 in the lecture note.
7. See HW2 problem 15.

