Functional Analysis Princeton University MAT520 HW12, not to be submitted

December 10, 2023

1. Prove Kuiper's theorem: given any $A \in \mathcal{B}(\mathcal{H})$ invertible, there is an operator-norm-continuous path

 $\gamma: [0,1] \to \{ B \in \mathcal{B}(\mathcal{H}) \mid B \text{ is invertible } \}$

such that $\gamma(0) = A$ and $\gamma(1) = 1$.

2. Show that the Fourier transform defined on the Schwarz space

$$\mathcal{F}: \mathcal{S}\left(\mathbb{R}^d\right) \to L^2\left(\mathbb{R}^d\right)$$

given by

$$(\mathcal{F}\psi)(p) := (2\pi)^{-\frac{d}{2}} \int_{\mathbb{R}^d} e^{-ip \cdot x} \psi(x) \, \mathrm{d}x$$

is well-defined, and that actually

$$\mathcal{F}\left(\mathcal{S}\left(\mathbb{R}^{d}\right)\right)\subseteq\mathcal{S}\left(\mathbb{R}^{d}\right)$$
.

Proceed to show also that:

- (a) \mathcal{F} may be extended to the whole of L^2 .
- (b) As an operator on L^2 , \mathcal{F} is unitary.
- (c) Show that $\sigma(\mathcal{F}) = \{\pm 1, \pm i\}$ and find the eigenvectors of \mathcal{F} .
- 3. Find an example for a self-adjoint operator $A \in \mathcal{B}\left(\ell^2(\mathbb{Z})\right)$ such that there exist $C, \mu \in (0, \infty)$ for which

$$|\langle \delta_x, A\delta_y \rangle| \le C e^{-\mu |x-y|} \qquad (x, y \in \mathbb{Z})$$

with $\{\delta_x\}_x$ the Kronecker delta basis of $\ell^2(\mathbb{Z})$, and yet, for some $a, b \in \mathbb{R}$ with a < b, the operator defined via the measurable functional calculus

 $\chi_{[a,b]}(A)$

fails to have the above locality estimate.

4. Define the Dirichlet Laplacian $-\Delta$ on the Hilbert space

$$\mathcal{H} := \left\{ \psi \in L^2 \left((0, 1) \right) \mid \psi \left(0 \right) = \psi \left(1 \right) = 0 \right\}$$

via

$$\mathcal{D}\left(-\Delta\right) := H_0^1\left((0,1)\right) \cap H^2\left((0,1)\right)$$

where the Sobolev space $H^r((0,1))$ has been defined in the lecture notes and the subscript zero means those functions which vanish on the boundary points. Show that as such, $-\Delta$ is a self-adjoint operator which is unbounded, but with a discrete set of eigenvalues of finite multiplicities. Calculate the eigenvalues and eigenvectors.

5. On $L^{2}(\mathbb{R})$, define the harmonic oscillator with parameter $\omega > 0$ as

$$H = -\Delta + \frac{1}{2}\omega^2 X^2$$

and domain

$$\mathcal{D}(H) := \operatorname{span}\left(\left\{ x \mapsto x^{\alpha} e^{-\frac{1}{2}x^{2}} \mid \alpha \in \mathbb{N}_{\geq 0} \right\}\right)$$

Show that H is self-adjoint, calculate the spectrum and the eigenvalue / eigenvector pairs.