DEC 142023
MAT 520-HWH - Sample Sol-ns
Q| $D(x):=\left\{\left.\psi \in L^{2}\left|\int_{x \in \mathbb{R}} x^{2}\right| \psi(x)\right|^{2} d x<\infty\right\}$.
Oaimif(x) is a velsp.
Proof: $-0 \in \mathscr{C}(x)$

$$
\begin{aligned}
& -\psi \in \mathscr{D}(x) \Longrightarrow \lambda \psi \in \Phi(x) \quad \forall \quad \lambda \in \mathbb{C} \checkmark \\
& -\varphi, \psi \in \Phi(x) \text { implies } \\
& \int_{x^{2} \underbrace{|(\varphi+\psi)(x)|^{2}}_{|\varphi(x)|^{2}+|\psi(x)|^{2}} d x} \quad \text { Re\{ }\{\overline{\varphi(x)} \psi(x)\}
\end{aligned}
$$

only "bal" term

$$
\left|\int x^{2} 2 \mathbb{R} e\{\overline{\varphi(x)} \psi(x)\} d x\right| \leqslant
$$

$$
\leqslant \int x^{2}\left|\varphi c_{0}\right||\psi(\omega)| d x \leqslant\left(\int x^{2}|\varphi(\omega)|^{2} d x\right)^{1 / 2}\left(\int x^{2} \left\lvert\, \psi\left(\left.x\right|^{2} d x\right)^{\frac{1}{2}}\right.\right.
$$

Canahy-Schwarz $<\infty$.

Claim: $\mathscr{D}(x)$ is the largest velsp. V s.t. if $\psi \in V$ then $X \psi \in L^{2}$

Proof: $D(x)$ is def. as the set of all $\psi \in L^{2}$ s.2. $X \psi \in L^{2}$. As it thurs out to be itself a resp., it is the largest such

Q2

$$
\begin{aligned}
\mathcal{A}:= & \left\{\psi:[0,1] \rightarrow \mathbb{C} \mid \psi \text { is ac \& } \psi^{\prime} \in L^{2}([0,1])\right\} . \\
A_{j} \psi:= & -i \psi^{\prime} \quad \forall \quad j=1,2 \quad w \mid \\
& \left(A_{1}\right):= \\
& D\left(k_{2}\right):=\{\psi \in A \mid \psi(0)=0\} .
\end{aligned}
$$

Claims: $\overline{D\left(A_{j}\right)}=L^{2}([0,1])$ for $j=1,2$.
Proof: A is dense in L^{2} since

$$
C_{\infty}^{\infty}([0,1]) \subseteq A
$$

and $\quad \overline{C^{\infty}([0,1]]}=L^{2}([0,1])$.
For $D\left(A_{2}\right)$ we multiply w/ a seq. of bump f 'ss at the origin.

Claim: A_{1}, A_{2} are bath dosed.

Proof: We show that $\Gamma^{(}\left(A_{j}\right) \in C l o s e d\left(H e^{2}\right)$.
Let $\left\{\psi_{n}\right\}_{n} \subseteq D\left(A_{j}\right)$. Assume

$$
\left(\psi_{n}, A_{j} \psi_{n}\right) \xrightarrow{n \rightarrow \infty}(\psi, \varphi) \in \delta \psi^{2} .
$$

WiT.S. $(\psi, \varphi) \in \Gamma\left(A_{j}\right)$, i.e., $\psi \in D\left(A_{f}\right)$ and $\varphi=A_{i} \psi$.
Start $w / j=1$.
Since ψ_{n} is ac, we may write

$$
\psi_{n}(x)=\int_{0}^{x} \psi_{n}^{\prime}+\psi_{n}(0) \quad(x \in[0,1]) .
$$

W.T.S. $\psi_{n} \rightarrow \psi$ in L^{2} now implies $\psi_{\text {e ct }}$ too, and $\varphi=-i \psi \Leftrightarrow \int_{0}^{x} \varphi=-i(\psi(x)-\psi(0))$.
This last eq-n actually implies ψ is ac. Qum: : $\psi_{n} \rightarrow \psi$ in $L^{\infty} \quad(\ldots)$.

Hence \forall sro $\exists N_{\varepsilon} \in \mathbb{N}$: if $n \geqslant N_{\varepsilon}$ then

$$
\left|\psi_{n}(0)-\psi(0)\right|,\left|\psi_{n}(x)-\psi(x)\right|,\left\|\psi_{n}^{\prime}+i \varphi\right\|_{L^{2}}
$$

are all $\leqslant \frac{1}{3} \varepsilon$. Thus

$$
\left|\psi(x)-\psi(0)-\int_{0}^{x} i \varphi\right| \leqslant \varepsilon
$$

L^{2} dom. L
The $j=2$ statement is easier.

Claim: $\sigma\left(A_{1}\right)=\mathbb{C}$
Proof: Let $\lambda \in \mathbb{C}$. W.T.S.

$$
\left(A_{1}-\lambda 11\right): A \rightarrow L^{2}
$$

is NOT a bijection.
Consider $f_{\lambda}(x):=e^{i \lambda x} \quad x \in[0,1]$.
It is certainly in A. Moreover,

$$
\begin{aligned}
& f_{\lambda}^{\prime}=i \lambda f_{\lambda} \quad \text { so } \\
& A_{1} f_{\lambda}=\lambda f_{\lambda} \Rightarrow \operatorname{ker}\left(A_{1}-\lambda 1\right) \neq\{0\} .
\end{aligned}
$$

B
Qaim: $\sigma\left(A_{2}\right)=\varnothing$.
Proof: Let $\lambda \in \mathbb{C}$. W.T.S.

$$
\left(A_{2}-\lambda 1\right): \Phi\left(A_{2}\right) \rightarrow L^{2}
$$

is a bijection.
Charm: $\left[\left(A_{2}-\lambda \mathbb{1}\right)^{-1} \psi\right](x)=-i \int_{0}^{x} e^{i \lambda(x-y)} \psi(g) d y$ Proof: first we show $\left(A_{2}-\lambda-1\right)^{-1}$ is ball.

$$
\int_{0}^{1} \mid f\left\|^{2} \leqslant\right\| f \|_{\infty}^{2} \text { so }
$$

$$
\begin{aligned}
& \left\|\left(A_{2}-\lambda \mathbb{L}\right)^{-1} \psi\right\|_{L^{2}} \leqslant \sup _{x \in G, 1]}\left|\int_{0}^{x} e^{i \lambda(x-y)} \psi(y) d y\right| \\
& \leqslant\|\not\|_{L^{2}} .
\end{aligned}
$$

Next,

$$
\begin{aligned}
& \left(A_{2}-\lambda \mathbb{1}\right]^{-1}\left(A_{2}-\lambda \mathbb{1}\right) \psi= \\
= & -i \int_{0}^{x} e^{i \lambda(x-y)}\left[\left(A_{2}-\lambda \mathbb{1}\right) \psi\right](y) d y \\
= & -i \int_{0}^{x} e^{i \lambda(x-y)}\left(-i \psi^{\prime}(y)-\lambda \psi(y)\right) d y \\
= & i \lambda e^{i \lambda x} \int_{0}^{x} e^{-i \lambda y} \psi(y) d y-e^{i \lambda x} \underbrace{e^{\prime}(y) d y}_{\left.e^{-i \lambda y} \int_{0}^{x}-i \lambda y\right)\left.\right|_{0} ^{x}-} \\
& -\int_{0}^{x}\left(-i \lambda \lambda e^{-i \lambda y} \psi(y) y\right.
\end{aligned}
$$

and Similarly:

$$
\left(A_{2}-\lambda \mathbb{1}\right)\left(t i 1 \int_{0}^{0} e^{i \lambda(\cdot-y)} \Psi(y) d y \stackrel{\text { and }}{=}\right.
$$

$$
\begin{aligned}
& =\psi(x)+\lambda e^{i \lambda x} \int_{0}^{x} e^{-i \lambda y} \psi(y) d y \\
& -\lambda \int_{0}^{x} e^{i \lambda(x-y)} \psi(y) d y \\
& =\psi(x) .
\end{aligned}
$$

Hence $A_{2}-\lambda \mathbb{1}$ is indeed invertible $\forall \lambda \in \mathbb{C}$.

Q3 This is Corollary 11.27 in the lezture notes (now fixed since DEC 17 ${ }^{123}$)
$\underline{Q 4} \quad A:=-i 2$

$$
\begin{gathered}
D(A):=\{\psi \in \underset{\text { as in } \bar{Q} 2}{A} \mid \psi(0)=\psi(1)=0\} \\
\text { as }
\end{gathered}
$$

(a) Claim: A is densely def.

Proof: As in Q2.
Maim: A is symm.
Proof: W.T.S. $\quad\langle A \varphi, \psi\rangle_{L^{2}}=\langle\varphi, A \psi\rangle_{L^{2}} \forall \quad \varphi, \psi \in \Phi(A)$.

$$
\begin{aligned}
\langle\varphi, A \psi\rangle_{R^{\prime}} & =\int_{x \in[0,1]} \overline{\varphi(x)}(-i) \psi^{\prime}(x) d x \\
& =\underbrace{\left.\varphi(x)(-i) \psi(x)\right|_{x=0} ^{\prime}}_{=0}-\int_{x \in[0,1]}(-i) \overline{\varphi^{\prime}(x)} \psi(x) \| x \\
& =\int_{x \in[0,1]} \overline{-i \varphi^{\prime}(x)} \psi(x) d x
\end{aligned}
$$

$$
\equiv\langle-i \partial \varphi, \psi\rangle_{L^{2}} \equiv\langle A \varphi, \psi\rangle_{L^{2}} .
$$

Claim: $D\left(A^{*}\right)=A \quad w / \quad A^{*}=-i \partial$.
Proof: \supseteq Let $\varphi \in A$. Then

$$
\int_{0}^{1} \bar{\varphi}(-i) \psi^{l}=\int_{0}^{1} \overline{-i \varphi^{\prime}} \psi \quad \forall \psi_{E} \mathcal{D}(\omega) .
$$

\equiv Let $\varphi \in \Phi\left(A^{*}\right)$. Then by Claim M. Is, $\exists c_{1}<\infty$:

$$
|\langle\varphi, A \psi\rangle| \leqslant C_{1}\|\psi\| \quad(\psi \in \Phi(A))
$$

W.T.S. $\varphi \in \mathcal{A}$, i.e., φ is $a . c$:

$$
\varphi(x)=\varphi(0)+\int_{0}^{x} \varphi^{\prime} \quad \text { L.a.e. } x \in[0, i] \text {. }
$$

The idea is to pick $\psi \in \mathscr{O (t)}$ which approx, $X_{[0, x]}$ within A.
If we had that, then:

$$
\left\langle\varphi, A X_{[0, x]}\right\rangle \approx-i(\overline{\varphi(x)}-\overline{\varphi(0)})
$$

but also, since $\varphi \in \mathscr{D}\left(A^{*}\right)$,

$$
\begin{aligned}
\left\langle\varphi, A X_{[0, x]}\right\rangle & =\left\langle A^{x} \varphi, x_{[0, x]}\right\rangle \\
& =\int_{0}^{x} \overline{-i \varphi^{\prime}}=i \int_{0}^{x} \overline{\varphi^{\prime}} \\
& =i \overline{\int_{0}^{x} \varphi^{\prime}} .
\end{aligned}
$$

Hence φ is indeed a.c. (We omit the argument for $X_{[0 x]}$ being approx. within $\mathscr{A}(A)$.

$$
\Rightarrow \text { As } D\left(A^{*}\right)=A \neq D(A), \quad A \text { is }
$$

NOT SA.
But A is closed since it is A_{1} of Q2. It is also symm.
(c) Let $\alpha \in \mathbb{C}:|\alpha|=1$. Let $A_{\alpha}:=-i \partial w \mid$ $D\left(A_{\alpha}\right):=\{\psi \in A \mid \psi(0)=\alpha \psi(1)\}$.
Claim: A_{α} is KiA.

Proof! First, by similar arguments as before, $\overline{D\left(A_{\alpha}\right)}=L^{2}$, so A_{α} is densely def. It is indeed symm., since

$$
\begin{gathered}
\left\langle\varphi, A_{\alpha} \psi\right\rangle=\int_{0}^{1} \bar{\varphi}(-i) \psi{ }^{\prime} \stackrel{d^{(B D}}{=}-\left.i \bar{\varphi} \psi\right|_{0} ^{1}+i \int_{0}^{1} \bar{\varphi} \psi \\
\text { But } \bar{\varphi}(1) \psi(1)=\frac{1}{\hat{\varphi}} \bar{\alpha} \overline{\varphi(0)} \frac{1}{\alpha} \psi(0)=\bar{\varphi} \bar{\varphi}(0) \psi(0) . \\
\varphi, \psi \in \mathscr{D}\left(A_{\alpha}\right) \quad|\alpha|^{2}=1
\end{gathered}
$$

So weir have $A_{\alpha}=A_{\alpha}^{*}$ if we could show $D\left(A_{\alpha}^{*}\right) \subseteq D\left(A_{\alpha}\right)$.
To that end, let $\psi\left(\Phi\left(A^{*}\right)\right.$ and $P \in \mathscr{D}(A)$. Then

$$
\begin{aligned}
\left\langle\psi, A_{\alpha} \varphi\right\rangle & =\int_{0}^{1} \bar{\psi}(-i) \varphi^{\prime}=-\left.i \bar{\psi} \varphi\right|_{0} ^{1}+i \int_{0}^{1} \bar{\psi} \varphi \varphi \\
A_{\alpha}^{*}=-i \partial \quad & \stackrel{\partial}{=}-\left.i \bar{\psi} \varphi\right|_{0} ^{1}+\left\langle A_{\alpha}^{*} \psi, \varphi\right\rangle \\
\text { too } & \stackrel{D}{=}-\left.i \bar{\psi} \varphi\right|_{0} ^{1}+\left\langle\psi, A_{\alpha} \varphi\right\rangle \\
\left.\Rightarrow \bar{\psi} \varphi\right|_{0} ^{1} & =0 . \text { But } \varphi(0)=\alpha \varphi(1)
\end{aligned}
$$

So $\overline{\varphi(1)}(\psi(1)-\alpha \psi(0))=0$.
lick $\varphi \in D\left(A_{\alpha}\right)$ as

$$
\varphi(x):=\alpha(1-t)+t
$$

to get $\psi \in \Phi\left(A_{2}\right)$ too.

$$
\Rightarrow D\left(A_{\alpha}^{*}\right) \subseteq D\left(A_{\alpha}\right) .
$$

$$
\Rightarrow \quad A \subseteq A_{\alpha}=A_{\alpha}^{*} \subseteq A^{*} .
$$

A has uncountably many S.A. extensions.

Claim: A is closable $\Leftrightarrow \overline{\Gamma(A)}=\Gamma(B)$

$$
\exists B \text {. Then } B=\bar{A} \text {. }
$$

Proof: This is Claim 11.11 in the lecture notes (now fixed since DEC 17 123).

Q6 This is Example 11,12 in the lecture routes (now fixed since DEC 17 123).

Q7 Let $A: D(A) \rightarrow H$ be infective.
Claim: If $\Gamma(A)$, in (A) are both closed, then $\exists C<\infty: \quad\|A \psi\| \geqslant C\|\psi\| \quad(\psi \in D(A))$

Proof i

$$
\begin{aligned}
\pi_{2}: \mathscr{H}^{2} & \rightarrow H \\
(x, y) & \mapsto y \\
\pi_{2}: \Gamma(A) & \rightarrow i m(A) \\
(4, A \psi) & \mapsto A \psi
\end{aligned}
$$

closed
is a cont, bid. on two Banach sp. graph ? Hence it has a bell. inverse, i.e.,

$$
\begin{aligned}
& \exists \alpha \in(0, \infty): \\
& \underbrace{\left\|\pi_{2}(\psi, A \psi)\right\|}_{\leqslant\|A \psi\|} \geqslant \alpha \underbrace{\|(\psi, A \psi \partial \|}_{\Xi \sqrt{\|\psi\|^{2}+\|A \psi\|^{2}}} \\
& \Leftrightarrow\left(1-\alpha^{2}\right)\|A \psi\|^{2} \geqslant\|\psi\|^{2}
\end{aligned}
$$

Cain: If A has dense closed range and obeys (*) then $\Gamma(A)$ is closed.
Proof: $A: \Phi(A) \rightarrow H$ is a bijection. wi gerarantees $\left\|A^{-1}\right\|<\infty$. Hence by
dosed graph tum., $\Gamma\left(A^{-1}\right)$ is closed. But $\Gamma^{\Gamma}\left(A^{-1}\right)=V \Gamma(A) \quad w / \quad V(x, y) \equiv(y, x)$.

Claim! If $\Gamma(A)$ is dosed and obeys then imp (A) is closed.

Proof: Let $\left\{\psi_{n}\right\}_{n} \subseteq H: A \psi_{n} \rightarrow \eta \quad \eta \in \mathcal{H}$. W.T.S. $\eta \in \operatorname{im}(A)$
$\left\|\psi_{n}-\psi_{m}\right\| \leqslant C^{-1}\left\|A\left(\psi_{n}-\psi_{m}\right)\right\|$ small
$\Rightarrow\left\{\psi_{n}\right\}_{n}$ is Counsel
$\Rightarrow\left\{\left(\psi_{n}, A \psi_{n}\right)\right\}_{n}$ is Cauchy and so since $\Gamma(A)$ is closed, $\left(\psi_{n}, A \psi_{n}\right)$ $(\psi, A \psi)$

$$
\exists \psi \in \mathscr{(A)} \text { so } A \psi_{n} \rightarrow A \psi
$$

$$
\downarrow \quad \Rightarrow A \psi=\eta
$$

QP $C_{0}^{\infty}(\mathbb{R}) \equiv\{f: \mathbb{R} \rightarrow \mathbb{C} \mid \operatorname{supp}(f)$ is φt, and f is smooth $\}$.

$$
\begin{aligned}
& \mathscr{D}\left(-\partial^{2}\right):=C_{0}^{\infty}(\mathbb{R}) . \\
& \left(-\partial^{2}\right)^{*}=?_{0}
\end{aligned}
$$

Since $-\partial^{2}=(-i \partial)^{2}$ and $-i \partial$ is symm.,
So is $-\partial^{2}$. For $\left.\psi \in \mathscr{D}\left(\left(-\partial^{2}\right)^{*}\right), \varphi \in C_{0}^{\infty} \subset \mathbb{R}\right)$,

$$
\left\langle\psi,-2^{2} \varphi\right\rangle \equiv-\int_{\mathbb{R}} \bar{\psi} \varphi \| \equiv \int_{\mathbb{R}} \overline{A^{*} \psi} \varphi
$$

and via BP and p ht t. supp.,

$$
A^{*} \psi=-\psi^{n}
$$

so we merely need to calculate $D\left(A^{*}\right)$.
Similarly to Q4 one may show that $\mathscr{D}\left(\left(-\partial^{2}\right)^{*}\right)=\left\{\psi \in L^{2} \mid \psi, \psi^{\prime}\right.$ ac and $\left.\psi^{\prime \prime} \in L^{2}\right\}$ In particular, $\quad A \neq A^{*}$.

Claim: $-\partial^{2}$ is less. S.A.
Proof: By Corollary 11,27, WTS.

$$
\operatorname{kar}\left(\left(-\partial^{2}\right)^{*} \pm i \mathbb{1}\right)=\{0\} .
$$

But $\left(\left(-\partial^{2}\right)^{*} \pm i \mathbb{1}\right) \psi=0$ for $\psi \in \Phi\left(\left(-a^{2}\right)^{*}\right)$ implies $-\psi^{\prime \prime}=\mp i \psi$

V

$$
\psi=A e^{\alpha \cdot}+B e^{-\alpha \cdot}
$$

for $\alpha^{2}=\mp i$
But $\psi \in L^{2} \Rightarrow \psi$ vanishes @ $\pm \infty$
so $A=B=0 \Rightarrow \psi=0$.

$$
-i \partial:\left(C_{0}^{\infty}([0, \infty)) \rightarrow L^{2}([0, \infty))\right.
$$

By ll.27 again, -id is NoT ess. S.A. Indeed, the same argument as above shows

$$
[0, \infty) \triangleq x \mapsto e^{-x} \in \mathbb{C}
$$

is an element of ker $(-i \partial+i \mathbb{1})$.

