Functional Analysis Princeton University MAT520 HW10, Due Dec 1st 2023 (auto extension until Dec 3rd 2023)

December 2, 2023

1. Provide an example for a non-normal operator $A \in \mathcal{B}(\mathcal{H})$ and a point in the resolvent set $z \in \rho(A)$ where

$$\left\| \left(A - z \mathbb{1} \right)^{-1} \right\| \le \frac{1}{\operatorname{dist} \left(z, \sigma \left(A \right) \right)}$$

does not hold.

2. Let A = U[A] be the polar decomposition of an operator $A \in \mathcal{B}(\mathcal{H})$. Let

$$f_n(x) := \begin{cases} \frac{1}{x} & x \ge \frac{1}{n} \\ n & x \le \frac{1}{n} \end{cases} \quad (x \ge 0) .$$

Prove that

$$U = \operatorname{s-lim}_{n \to \infty} Af_n \left(|A| \right) \,.$$

[extra] Do the same with

$$f_n(x) := \frac{1}{x + \frac{1}{n}} \qquad (x \ge 0) \; .$$

3. Prove that if $A \in \mathcal{B}(\mathcal{H})$ is normal then

 $\|A\| = r(A)$

where r(A) is the spectral radius of an operator.

4. Let $A \in \mathcal{B}(\mathcal{H})$ be normal. Show there exists some finite measure space (M, μ) and a unitary

$$U:\mathcal{H}\to L^2\left(M,\mu\right)$$

such that there exists a bounded Borel function $f:M\to \mathbb{C}$ such that

$$\left(UAU^{*}\psi\right)\left(m\right) \ = \ f\left(m\right)\psi\left(m\right) \qquad \left(m\in M;\psi\in L^{2}\left(M,\mu\right)\right)\,.$$

5. Show that if $A, B \in \mathcal{B}(\mathcal{H})$ are two self-adjoint operators such that [A, B] = 0 then there exists a finite measure space (M, μ) and a unitary

$$U:\mathcal{H} \to L^2(M,\mu)$$

such that there are two bounded Borel functions $f,g:M\to \mathbb{R}$ which obey

$$(UAU^*\psi)(m) = f(m)\psi(m)$$
$$(UBU^*\psi)(m) = g(m)\psi(m)$$

for all $m \in M$ and $\psi \in L^2(M, \mu)$.

6. Prove that for $A \in \mathcal{B}(\mathcal{H})$ self-adjoint and $\chi_{\cdot}(A)$ the projection-valued measure of A, we have

 $\lambda \in \sigma\left(A\right) \Longleftrightarrow \begin{bmatrix} \chi_{\left(\lambda - \varepsilon, \lambda + \varepsilon\right)}\left(A\right) \neq 0 \qquad \left(\varepsilon > 0\right) \end{bmatrix} \qquad \left(\lambda \in \mathbb{R}\right)\,.$

- 7. Let \mathcal{H} be a separable Hilbert space. Prove that the *only* operator-norm-closed star-ideals in $\mathcal{B}(\mathcal{H})$ are $\{0\}, \mathcal{K}(\mathcal{H})$ (the compact operators) and $\mathcal{B}(\mathcal{H})$ itself.
- 8. Let $\mathcal{H} = \ell^2(\mathbb{Z})$ and on it define the discrete Laplacian

$$-\Delta = 21 - R - R^*$$

where R is the bilateral right shift operator.

- (a) Recall the definition of a cyclic vector from the lecture notes. For $x \in \mathbb{Z}$, is δ_x a cyclic vector for $-\Delta$?
- (b) Define $f: \mathbb{C}^+ \to \mathbb{C}$ via

$$f(z) := \left\langle \delta_0, \left(-\Delta - z\mathbb{1}\right)^{-1} \delta_0 \right\rangle \,.$$

Find an explicit expression for f using the Fourier series which was presented in the previous homework.

(c) Calculate the limit

$$\lim_{\varepsilon \to 0^+} \operatorname{Im} \left\{ f\left(E + \mathrm{i}\varepsilon \right) \right\}$$

for the two cases $E \in (0, 4)$ and $E \in \mathbb{R} \setminus (0, 4)$.

(d) Calculate the spectral measure of $(-\Delta, \delta_0)$ and determine its type (w.r.t. the Lebesgue decomposition theorem where the reference measure is the Lebesgue measure, i.e., ac, sc, or pp).

9. Let $\mathcal{H} = \ell^2(\mathbb{Z})$ and on it define the multiplication operator

via

 $(V(X)\psi)(x) := V(x)\psi(x) \qquad \left(x \in \mathbb{Z}, \psi \in \ell^2(\mathbb{Z})\right)$

where $V : \mathbb{Z} \to \mathbb{R}$ is some bounded sequence.

- (a) For $x \in \mathbb{Z}$, is δ_x is a cyclic vector for V(X)?
- (b) For any $x \in \mathbb{Z}$, define $f_x : \mathbb{C}^+ \to \mathbb{C}$ via

$$f_{x}(z) := \left\langle \delta_{x}, \left(V(X) - z \mathbb{1} \right)^{-1} \delta_{x} \right\rangle.$$

(c) Calculate both

$$\lim_{\varepsilon \to 0^+} \operatorname{Im} \left\{ f_x \left(E + \mathrm{i} \varepsilon \right) \right\}$$

and

$$\lim_{\varepsilon \to 0^+} \varepsilon \operatorname{Im} \left\{ f_x \left(E + \mathrm{i} \varepsilon \right) \right\}$$

for all $E \in \mathbb{R}$ (separate into cases).

- (d) Calculate the spectral measure of $(V(X), \delta_0)$ and determine its type (w.r.t. the Lebesgue decomposition theorem where the reference measure is the Lebesgue measure, i.e., ac, sc, or pp).
- 10. On $\ell^2(\mathbb{N})$, let \hat{R} be the *unilateral* right shift operator. Calculate ker \hat{R} , ker \hat{R}^* and $im\hat{R}$ and show that \hat{R} is a Fredholm operator. Calculate its Fredholm index.
- 11. Show that on $\ell^2(\mathbb{N})$, $\frac{1}{X}$ where X is the position operator, is not a Fredholm operator by calculating $\operatorname{im} \frac{1}{X}$ and showing that it is not closed.