December 2, 2023

1. Provide an example for a non-normal operator $A \in B(\mathcal{H})$ and a point in the resolvent set $z \in \rho(A)$ where

$$\left\| (A - zI)^{-1} \right\| \leq \frac{1}{\text{dist}(z, \sigma(A))}$$

does not hold.

2. Let $A = U |A|$ be the polar decomposition of an operator $A \in B(\mathcal{H})$. Let

$$f_n(x) := \begin{cases} \frac{1}{x} & x \geq \frac{1}{n} \\ \frac{1}{n} & x \leq \frac{1}{n} \end{cases} \quad (x \geq 0).$$

Prove that

$$U = \text{s-lim}_{n \to \infty} Af_n(|A|).$$

[extra] Do the same with

$$f_n(x) := \frac{1}{x + \frac{1}{n}} \quad (x \geq 0).$$

3. Prove that if $A \in B(\mathcal{H})$ is normal then

$$||A|| = r(A)$$

where $r(A)$ is the spectral radius of an operator.

4. Let $A \in B(\mathcal{H})$ be normal. Show there exists some finite measure space (M, μ) and a unitary

$$U : \mathcal{H} \to L^2(M, \mu)$$

such that there exists a bounded Borel function $f : M \to \mathbb{C}$ such that

$$(UAU^* \psi)(m) = f(m) \psi(m) \quad (m \in M; \psi \in L^2(M, \mu)).$$

5. Show that if $A, B \in B(\mathcal{H})$ are two self-adjoint operators such that $[A, B] = 0$ then there exists a finite measure space (M, μ) and a unitary

$$U : \mathcal{H} \to L^2(M, \mu)$$

such that there are two bounded Borel functions $f, g : M \to \mathbb{R}$ which obey

$$(UAU^* \psi)(m) = f(m) \psi(m)$$

$$(UBU^* \psi)(m) = g(m) \psi(m)$$

for all $m \in M$ and $\psi \in L^2(M, \mu)$.
6. Prove that for $A \in \mathcal{B}(\mathcal{H})$ self-adjoint and $\chi(A)$ the projection-valued measure of A, we have

$$\lambda \in \sigma(A) \iff \chi(\lambda - \varepsilon, \lambda + \varepsilon)(A) \neq 0 \quad (\varepsilon > 0) \quad (\lambda \in \mathbb{R}).$$

7. Let \mathcal{H} be a separable Hilbert space. Prove that the only operator-norm-closed star-ideals in $\mathcal{B}(\mathcal{H})$ are $\{0\}$, $\mathcal{K}(\mathcal{H})$ (the compact operators) and $\mathcal{B}(\mathcal{H})$ itself.

8. Let $\mathcal{H} = \ell^2(\mathbb{Z})$ and on it define the discrete Laplacian

$$-\Delta = 2\mathbb{1} - R - R^*$$

where R is the bilateral right shift operator.

(a) Recall the definition of a cyclic vector from the lecture notes. For $x \in \mathbb{Z}$, is δ_x a cyclic vector for $-\Delta$?

(b) Define $f : \mathbb{C}^+ \to \mathbb{C}$ via

$$f(z) := \langle \delta_0, (-\Delta - z\mathbb{1})^{-1} \delta_0 \rangle.$$

Find an explicit expression for f using the Fourier series which was presented in the previous homework.

(c) Calculate the limit

$$\lim_{\varepsilon \to 0^+} \mathbb{I} \mathbb{M}\{f(E + i\varepsilon)\}$$

for the two cases $E \in (0, 4)$ and $E \in \mathbb{R} \setminus (0, 4)$.

(d) Calculate the spectral measure of $(-\Delta, \delta_0)$ and determine its type (w.r.t. the Lebesgue decomposition theorem where the reference measure is the Lebesgue measure, i.e., ac, sc, or pp).

9. Let $\mathcal{H} = \ell^2(\mathbb{Z})$ and on it define the multiplication operator

$$V(X)$$

via

$$(V(X)\psi)(x) := V(x)\psi(x) \quad (x \in \mathbb{Z}, \psi \in \ell^2(\mathbb{Z}))$$

where $V : \mathbb{Z} \to \mathbb{R}$ is some bounded sequence.

(a) For $x \in \mathbb{Z}$, is δ_x a cyclic vector for $V(X)$?

(b) For any $x \in \mathbb{Z}$, define $f_x : \mathbb{C}^+ \to \mathbb{C}$ via

$$f_x(z) := \langle \delta_x, (V(X) - z\mathbb{1})^{-1} \delta_x \rangle.$$

(c) Calculate both

$$\lim_{\varepsilon \to 0^+} \mathbb{I} \mathbb{M}\{f_x(E + i\varepsilon)\}$$

and

$$\lim_{\varepsilon \to 0^+} \varepsilon \mathbb{I} \mathbb{M}\{f_x(E + i\varepsilon)\}$$

for all $E \in \mathbb{R}$ (separate into cases).

(d) Calculate the spectral measure of $(V(X), \delta_0)$ and determine its type (w.r.t. the Lebesgue decomposition theorem where the reference measure is the Lebesgue measure, i.e., ac, sc, or pp).

10. On $\ell^2(\mathbb{N})$, let \hat{R} be the unilateral right shift operator. Calculate $\ker \hat{R}$, $\ker \hat{R}^*$ and $\text{im} \hat{R}$ and show that \hat{R} is a Fredholm operator. Calculate its Fredholm index.

11. Show that on $\ell^2(\mathbb{N})$, $\frac{1}{X}$ where X is the position operator, is not a Fredholm operator by calculating $\text{im} \frac{1}{X}$ and showing that it is not closed.