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Spectral Theorem for Commuting Normal Operators

Throughout these notes H is a Hilbert space and L(H) is the set of all bounded linear

operators with domain H and taking values in H. First recall

Definition 1 (Normal Operator) An operatorA ∈ L(H) is called normal if A∗A = AA∗.

That is, if A commutes with its adjoint.

Remark 2 (Normal Operators)

(a) A self–adjoint operator A ∈ L(H) obeys A = A∗ and hence is normal.

(b) A unitary operator U ∈ L(H) obeys UU∗ = U∗U = 1l and hence is normal.

(c) Any operatorA ∈ L(H) can be written in the form A = ReA+i ImA with, by definition,

ReA = 1
2 (A + A∗) and ImA = 1

2i (A − A∗). Both ReA and ImA are self–adjoint. The

operator A is normal if and only if ReA and ImA commute.

In these notes we prove

Theorem 3 (Spectral Theorem for Commuting Bounded Normal Operators)

Let n ∈ IN and let {A1, A2, · · · , An} ⊂ L(H) be a finite set of commuting, normal, bounded

operators. Then there exist

◦ a measure space ⟨M,Σ, µ⟩ and

◦ n bounded measurable functions ai : M → C, 1 ≤ i ≤ n and

◦ a unitary operator U : H → L2(M,Σ, µ)

such that
(

UAiU
−1ϕ

)

(m) = ai(m)ϕ(m)

for all ϕ ∈ L2(M,Σ, µ) and all 1 ≤ i ≤ n. If H is separable, µ can be chosen to be a finite

measure.

Proof: Step 0 (Reduction to self–adjoint operators):

By Fuglede’s theorem (proven below), if the normal operators {A1, A2, · · · , An} commute,

then so do all of the operators {A1, A2, · · · , An, A
∗
1, A

∗
2, · · · , A

∗
n}. Consequently we may

restrict our attention to commuting, self–adjoint, bounded operators simply by replacing

{A1, A2, · · · , An} with {ReA1, ImA1,ReA2, ImA2, · · · ,ReAn, ImAn}. So from now on

assume that {A1, A2, · · · , An} ⊂ L(H) is a finite set of commuting, self–adjoint, bounded

operators.
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Step 1 (f(A1, · · · , An) for some simple functions f):

Set, for 1 ≤ i ≤ n, Ii = [−∥Ai∥, ∥Ai∥] and then set I = I1 × I2 × · · ·× In ⊂ IRn. Define

the set of “rectangles” in I to be

R =
{

B1 ×B2 × · · ·×Bn ⊂ I
∣

∣ Bi ⊂ Ii, Borel, for each 1 ≤ i ≤ n
}

There are quotation marks around “rectangles” because the sides of the “rectangles” are

Borel sets rather than intervals. We are about to define f(A1, · · · , An) for all simple

functions f : I → C that have the special form specified in

S =
{

f(x) =
m
∑

j=1

αj χRj
(x)

∣

∣

∣
αj ∈ C, Rj ∈ R, 1 ≤ j ≤ m

}

We have already defined, in the functional calculus version of the spectral theorem (The-

orem 27 in the notes [spectralReview.pdf]), χBi
(Ai) for each Borel Bi ⊂ Ii and 1 ≤ i ≤ n.

We also already know the following.

◦ χBi
(Ai) is an orthogonal projection. (This is an immediate consequence of [spectral-

Review.pdf, Theorem 27.a].)

◦ χBi
(Ai) and χBj

(Aj) commute for all measurable Bi ⊂ Ii, Bj ⊂ Ij, 1 ≤ i, j ≤ n.

(This is an immediate consequence of [spectralReview.pdf, Theorem 27.g].)

◦ If the measurable sets Bi, B
′
i ⊂ Ii are disjoint, then χBi

(Ai)χB′

i
(Ai) = 0. (This is an

immediate consequence of [spectralReview.pdf, Theorem 27.a,b].)

We define, for each R = B1 ×B2 × · · ·×Bn ∈ R

χR(A1, · · · , An) =
n
∏

j=1

χBi
(Ai)

and for each f =
∑m

j=1 αj χRj
(x) ∈ S

f(A1, · · · , An) =
m
∑

j=1

αj χRj
(A1, · · · , An)

From the above bullets

◦ χR(A1, · · · , An) is an orthogonal projection for each rectangle R ∈ R.

◦ If the rectangles R,R′ ∈ R are disjoint, then χR(A1, · · · , An)χR′(A1, · · · , An) = 0.

Here is the main property that we need of the operators f(A1, · · · , An), f ∈ S.

Lemma 4 If f ∈ S then

∥f(A1, · · · , An)∥ ≤ sup
x∈I

|f(x)|
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Proof. Let f ∈ S. We may always write f in the form f =
∑m

j=1 αj χRj
(x) with all

of the Rj’s disjoint (by possibly subdividing some of the Rj’s) and with
⋃n

j=1 Rj = I

(by possibly having some of the αj ’s zero). Then every x ∈ I is an element of exactly

one Rj and the range of f is exactly
{

αj

∣

∣ 1 ≤ j ≤ m
}

. So

sup
x∈I

|f(x)| = max{|αj | | 1 ≤ j ≤ m}

Now the χRj
(A1, · · · , An)’s project onto mutually orthogonal subspaces of H and,

since
⋃n

j=1 Rj = I, we have
∑m

j=1 χRj
(A1, · · · , An) = 1l. So, for every v ∈ H,

v =
m
∑

j=1

χRj
(A1, · · · , An)v

=⇒ ∥v∥2 =
m
∑

j=1

∥χRj
(A1, · · · , An)v∥

2

and

f(A1, · · · , An)v =
m
∑

j=1

αj χRj
(A1, · · · , An)v

=⇒ ∥f(A1, · · · , An)v∥
2 =

m
∑

j=1

|αj|
2 ∥χRj

(A1, · · · , An)v∥
2

≤ max{|αj| | 1 ≤ j ≤ m}2
m
∑

j=1

∥χRj
(A1, · · · , An)v∥

2

= max{|αj| | 1 ≤ j ≤ m}2∥v∥2

The rest of the proof is identical to the corresponding parts of the proof of the multiplication

operator version of the spectral theorem. Here is a very coarse outline of the remaining

steps in the proof.

Step 2 (f(A1, · · · , An) for continuous functions f):

By the Stone–Weierstrass Theorem, every continuous function f : I → C, is a uniform

limit of a sequence
{

fℓ
}

ℓ∈IN
of simple functions in S. So we can define

f(A1, · · · , An) = lim
ℓ→∞

fℓ(A1, · · · , An) ∈ L(H)

By Lemma 4 in Step 1, the right hand side converges in norm. Consequently the map

f ∈ C(I) ,→ f(A1, · · · , An) ∈ L(H) is
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◦ continuous and

◦ linear and obeys

◦ (fg)(A1, · · · , An) = f(A1, · · · , An) g(A1, · · · , An) and

◦ f(A1, · · · , An)∗ = (f̄)(A1, · · · , An).

Step 3 (Construction of µv):

Let 0 ̸= v ∈ H. Then

ℓv(f) = ⟨v , f(A1, · · · , An)v⟩H

is a positive linear functional on C(I). So, by the Riesz–Markov Theorem, there is a

unique, fnite, regular Borel measure µv on I such that

⟨v , f(A1, · · · , An)v⟩H =

∫

I

f(x) dµv(x)

for all f ∈ C(I).

Step 4 (Construction of Hv and Uv):

Let 0 ̸= v ∈ H and set

Hv =
{

f(A1, · · · , An)v
∣

∣ f ∈ C(I)
}

Lemma 5 There is a unique unitary operator Uv : Hv → L2(µv) such that

Uvv = 1

(UvAiU
−1
v

)f(x) = xi f(x) 1 ≤ i ≤ n

Proof. Set

Dv =
{

f(A1, · · · , An)v
∣

∣ f ∈ C(I)
}

and define Ũv : Dv → L2(µv) by

(

Ũvf(A1, · · · , An)v
)

(x) = f(x)

This operator is

◦ well–defined

◦ linear

◦ inner product preserving

As Dv is dense in Hv, we can use the BLT theorem to define Uv as the continuous

extension of Ũv to Hv. Then Uv has the required properties and is indeed uniquely

determined by those properties.

Step 5 (Completion of the proof by Zornification):

If Hv = H, we are done. If not Zornify.
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Theorem 6 Let A, T ∈ L(H). If A is normal and T commutes with A, then T commutes

with A∗.

Proof: By induction AnT = TAn for all 0 ≤ n ∈ ZZ. As the exponential series eλ̄A =
∑∞

n=0
1
n! (λ̄A)n converges in norm, we have

eλ̄AT = Teλ̄A =⇒ eλ̄ATe−λ̄A = T =⇒ e−λA∗

eλ̄ATe−λ̄AeλA
∗

= e−λA∗

TeλA
∗

for all λ ∈ C. As A is normal, we have that e−λA∗

eλ̄A = e−λA∗+λ̄A and furthermore that

U(λ) = e−λA∗+λ̄A obeys U(λ)∗ = U(−λ) = U(λ)−1. Thus U(λ) is unitary and is hence of

norm 1. So

∥e−λA∗

TeλA
∗

∥ = ∥U(λ)T U(−λ)∥ ≤ ∥T∥

This shows that the analytic operator valued function e−λA∗

TeλA
∗

is bounded uniformly

on all of C. So e−λA∗

TeλA
∗

has to be independent of λ and

e−λA∗

TeλA
∗

= e−λA∗

TeλA
∗

∣

∣

∣

λ=0
= T

for all λ. Differentiating with respect to λ and then setting λ = 0 gives

−A∗T + TA∗ = 0

as desired.
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