DEC 172023

MAT520-FA - HW IO Sample Solons
QI

$$
\begin{aligned}
& A:=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \in \mathscr{B}\left(\mathbb{C}^{2}\right) \text {. } \\
& A^{*} A=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& A A^{*}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& \text { Er A not normal. } \\
& \sigma(A) \equiv\{\lambda \in \mathbb{C} \mid \underbrace{A-\lambda \mathbb{1}} \text { NOT invertible }\} \\
& {\left[\begin{array}{cc}
-\lambda & 1 \\
0 & -\lambda
\end{array}\right]} \\
& \operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 1 \\
0 & -\lambda
\end{array}\right]\right)=\lambda^{2} \stackrel{!}{=} 0 \Rightarrow \lambda=0 \\
& \Rightarrow \sigma(A)=\{0\} .
\end{aligned}
$$

Take $\lambda=1 \in \rho(A)$.
$A-\mathbb{1}=\left[\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right]$ has inverse $-A-1$
as $\begin{aligned} & A^{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \quad \text { so }(A-1)(-A-1)= \\ &=-A+A+1=1\end{aligned}$

$$
=-A+A+1=1 .
$$

$$
\begin{aligned}
& \text { so }(A-\mathbb{1})^{-1}=-A-\mathbb{1}=\left[\begin{array}{cc}
-1 & -1 \\
0 & -1
\end{array}\right] . \\
& {\left[\begin{array}{cc}
-1 & -1 \\
0 & -1
\end{array}\right]^{*}\left[\begin{array}{cc}
-1 & -1 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & -1 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]} \\
& \sigma\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right]\right)=\frac{1}{2}(3 \pm \sqrt{5}) \approx\{0,38,2.61\} .
\end{aligned}
$$

In particulars $\operatorname{dist}(1, \sigma(A))=1$

$$
\left\|(A-\mathbb{1})^{-1}\right\|=\frac{1}{2}(3+\sqrt{5})>1 .
$$

Q2 Let $A=U|A|$ be the polar decomp.

$$
\begin{cases}f_{n}(x) & :=\left\{\begin{array}{ll}
\frac{1}{x} & x \geqslant \frac{1}{n} \\
n & x \leqslant \frac{1}{n}
\end{array} \quad(x \geqslant 0), ~\right.\end{cases}
$$

Claim: $U=\delta-\lim _{n \rightarrow \infty} A-f_{n}(|A|)$
Proof: $\Leftrightarrow U-\operatorname{sim}_{n \rightarrow \infty} U|A| f_{n}(|A|)=0$

$$
\begin{aligned}
& \Leftrightarrow U \operatorname{S-lim}_{n \rightarrow \infty}\left(\mathbb{1}-|A| f_{n}(|A|)\right)=0 \\
& \Leftrightarrow \operatorname{sim}_{n \rightarrow \infty} g_{n}(|A|)=0
\end{aligned}
$$

w) $g_{n}(x):=1-x f_{n}(x) \quad \forall x \geqslant 0$.

Tee., $\quad g_{n}(x)= \begin{cases}0 & x \geqslant \frac{1}{n} \\ 1-n x & 0 \leqslant x \leqslant \frac{1}{n}\end{cases}$
g_{n} is Bored msribe. \&s bod. af $\left\|g_{n}\right\|_{\infty}=1$. Moreover, $\quad g_{n} \rightarrow \begin{cases}1 & x=0 \\ 0 & x \neq 0\end{cases}$
the limit being L^{2}-equiv. to the zero f^{n}.
Hence by Thu, 10.16 in L.N., $g_{n}(|A|) \rightarrow 0 \quad$ strongly.

Q3 Claim: If $A \in \mathcal{B} H)$ is normal then

$$
r(A)=\|A\| .
$$

Proof: By the functional calculus,

$$
\|A\|=\left\|\int_{\lambda \in \mathbb{C}} \lambda d_{R}(\lambda)\right\|
$$

prof.- val. mir. of A

$$
\leqslant \int_{\lambda \in \mathbb{C}}|\lambda| d P_{A}(\lambda) \leqslant r(A)
$$

But $\quad r(A) \leqslant\|A\|$ always (see eng. The. 6.23).

Alt. proof by Geffandis formula:

$$
\left(A^{*} A\right)^{n}=\left(A^{*}\right)^{n} A^{n}=\left(A^{n}\right)^{*} A^{n}
$$

Q4 will appear after QS
QS Let $A, B \in B(H)$ be $\delta, A::[A, B]=0$.
Then $\left[R_{A}(z), R_{B}(w)\right]=0$ for

$$
R_{A}(z) \equiv(A-z \mathbb{1})^{-1} \quad z \in \mathbb{C} \backslash \mathbb{R}
$$

Via Stone's the, we may recover the projection-roaluad measures $d P_{A}$ as

$$
\frac{1}{2}\left(X_{[a, b]}(A)+X_{(a, b)]}(A)\right)=s-\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\pi} \int_{a}^{b} \mathbb{R}_{m}\left\{R_{A}(E+i \varepsilon)\right\} d E
$$

Moreover, this formula shows

$$
\left[d P_{A}, d P_{B}\right]=0
$$

This allows us to define a mar.

$$
Q_{A B}\left(S_{1} \times S_{2}\right) \quad:=P_{A}\left(S_{1}\right) P_{B}\left(S_{2}\right) \quad\left(S_{1}, S_{2} \subseteq \mathbb{R}\right)
$$

on "cylinder" sets from which we may extend to marble sets of \mathbb{R}^{2}. Thus we now define, \forall Bore bed.

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{C}
$$

the operator

$$
f(A, B)=\int_{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2}} f\left(\lambda_{1}, \lambda_{2}\right) d Q_{A B}\left(\lambda_{1}, \lambda_{2}\right)
$$

In particulars to get the unitary, define, $\forall \Psi \in \mathcal{H}$

$$
\begin{aligned}
H_{\psi} & :=\left\{f(A, B) \psi \mid f: \mathbb{R}^{2} \rightarrow \mathbb{C} \text { marble, bud. }\right\} \\
\text { and } \cup: H_{\psi} & \rightarrow L^{2}\left(d Q_{A B} \psi\right) \\
\psi & \longmapsto 1 \\
A \psi & \mapsto \lambda \mapsto \lambda_{1} \\
B \psi & \mapsto \lambda \mapsto \lambda_{2}
\end{aligned}
$$

and if $H_{\psi} \neq H_{1}$ continue in this wang. for more details, see Feldman e.g. (his notes are attached here, slightly different approach...)

Spectral Theorem for Commuting Normal Operators

Throughout these notes \mathcal{H} is a Hilbert space and $\mathcal{L}(\mathcal{H})$ is the set of all bounded linear operators with domain \mathcal{H} and taking values in \mathcal{H}. First recall

Definition 1 (Normal Operator) An operator $A \in \mathcal{L}(\mathcal{H})$ is called normal if $A^{*} A=A A^{*}$. That is, if A commutes with its adjoint.

Remark 2 (Normal Operators)

(a) A self-adjoint operator $A \in \mathcal{L}(\mathcal{H})$ obeys $A=A^{*}$ and hence is normal.
(b) A unitary operator $U \in \mathcal{L}(\mathcal{H})$ obeys $U U^{*}=U^{*} U=\mathbb{1}$ and hence is normal.
(c) Any operator $A \in \mathcal{L}(\mathcal{H})$ can be written in the form $A=\operatorname{Re} A+i \operatorname{Im} A$ with, by definition, $\operatorname{Re} A=\frac{1}{2}\left(A+A^{*}\right)$ and $\operatorname{Im} A=\frac{1}{2 i}\left(A-A^{*}\right)$. Both $\operatorname{Re} A$ and $\operatorname{Im} A$ are self-adjoint. The operator A is normal if and only if $\operatorname{Re} A$ and $\operatorname{Im} A$ commute.

In these notes we prove

Theorem 3 (Spectral Theorem for Commuting Bounded Normal Operators)

Let $n \in \mathbb{N}$ and let $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\} \subset \mathcal{L}(\mathcal{H})$ be a finite set of commuting, normal, bounded operators. Then there exist

- a measure space $\langle\mathcal{M}, \Sigma, \mu\rangle$ and
- n bounded measurable functions $a_{i}: \mathcal{M} \rightarrow \mathbb{C}, 1 \leq i \leq n$ and
- a unitary operator $U: \mathcal{H} \rightarrow L^{2}(\mathcal{M}, \Sigma, \mu)$
such that

$$
\left(U A_{i} U^{-1} \varphi\right)(m)=a_{i}(m) \varphi(m)
$$

for all $\varphi \in L^{2}(M, \Sigma, \mu)$ and all $1 \leq i \leq n$. If \mathcal{H} is separable, μ can be chosen to be a finite measure.

Proof: Step 0 (Reduction to self-adjoint operators):
By Fuglede's theorem (proven below), if the normal operators $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$ commute, then so do all of the operators $\left\{A_{1}, A_{2}, \cdots, A_{n}, A_{1}^{*}, A_{2}^{*}, \cdots, A_{n}^{*}\right\}$. Consequently we may restrict our attention to commuting, self-adjoint, bounded operators simply by replacing $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$ with $\left\{\operatorname{Re} A_{1}, \operatorname{Im} A_{1}, \operatorname{Re} A_{2}, \operatorname{Im} A_{2}, \cdots, \operatorname{Re} A_{n}, \operatorname{Im} A_{n}\right\}$. So from now on assume that $\left\{A_{1}, A_{2}, \cdots, A_{n}\right\} \subset \mathcal{L}(\mathcal{H})$ is a finite set of commuting, self-adjoint, bounded operators.

Step $1\left(f\left(A_{1}, \cdots, A_{n}\right)\right.$ for some simple functions $\left.f\right)$:
Set, for $1 \leq i \leq n, I_{i}=\left[-\left\|A_{i}\right\|,\left\|A_{i}\right\|\right]$ and then set $I=I_{1} \times I_{2} \times \cdots \times I_{n} \subset \mathbb{R}^{n}$. Define the set of "rectangles" in I to be

$$
\mathcal{R}=\left\{B_{1} \times B_{2} \times \cdots \times B_{n} \subset I \mid B_{i} \subset I_{i}, \text { Borel, for each } 1 \leq i \leq n\right\}
$$

There are quotation marks around "rectangles" because the sides of the "rectangles" are Borel sets rather than intervals. We are about to define $f\left(A_{1}, \cdots, A_{n}\right)$ for all simple functions $f: I \rightarrow \mathbb{C}$ that have the special form specified in

$$
\mathcal{S}=\left\{f(x)=\sum_{j=1}^{m} \alpha_{j} \chi_{R_{j}}(x) \mid \alpha_{j} \in \mathbb{C}, \quad R_{j} \in \mathcal{R}, 1 \leq j \leq m\right\}
$$

We have already defined, in the functional calculus version of the spectral theorem (Theorem 27 in the notes [spectralReview.pdf]), $\chi_{B_{i}}\left(A_{i}\right)$ for each Borel $B_{i} \subset I_{i}$ and $1 \leq i \leq n$. We also already know the following.

- $\chi_{B_{i}}\left(A_{i}\right)$ is an orthogonal projection. (This is an immediate consequence of [spectralReview.pdf, Theorem 27.a].)
- $\chi_{B_{i}}\left(A_{i}\right)$ and $\chi_{B_{j}}\left(A_{j}\right)$ commute for all measurable $B_{i} \subset I_{i}, B_{j} \subset I_{j}, 1 \leq i, j \leq n$. (This is an immediate consequence of [spectralReview.pdf, Theorem 27.g].)
- If the measurable sets $B_{i}, B_{i}^{\prime} \subset I_{i}$ are disjoint, then $\chi_{B_{i}}\left(A_{i}\right) \chi_{B_{i}^{\prime}}\left(A_{i}\right)=0$. (This is an immediate consequence of [spectralReview.pdf, Theorem 27.a,b].)
We define, for each $R=B_{1} \times B_{2} \times \cdots \times B_{n} \in \mathcal{R}$

$$
\chi_{R}\left(A_{1}, \cdots, A_{n}\right)=\prod_{j=1}^{n} \chi_{B_{i}}\left(A_{i}\right)
$$

and for each $f=\sum_{j=1}^{m} \alpha_{j} \chi_{R_{j}}(x) \in \mathcal{S}$

$$
f\left(A_{1}, \cdots, A_{n}\right)=\sum_{j=1}^{m} \alpha_{j} \chi_{R_{j}}\left(A_{1}, \cdots, A_{n}\right)
$$

From the above bullets

- $\chi_{R}\left(A_{1}, \cdots, A_{n}\right)$ is an orthogonal projection for each rectangle $R \in \mathcal{R}$.
- If the rectangles $R, R^{\prime} \in \mathcal{R}$ are disjoint, then $\chi_{R}\left(A_{1}, \cdots, A_{n}\right) \chi_{R^{\prime}}\left(A_{1}, \cdots, A_{n}\right)=0$. Here is the main property that we need of the operators $f\left(A_{1}, \cdots, A_{n}\right), f \in \mathcal{S}$.

Lemma 4 If $f \in \mathcal{S}$ then

$$
\left\|f\left(A_{1}, \cdots, A_{n}\right)\right\| \leq \sup _{x \in I}|f(x)|
$$

Proof. Let $f \in \mathcal{S}$. We may always write f in the form $f=\sum_{j=1}^{m} \alpha_{j} \chi_{R_{j}}(x)$ with all of the R_{j} 's disjoint (by possibly subdividing some of the R_{j} 's) and with $\bigcup_{j=1}^{n} R_{j}=I$ (by possibly having some of the α_{j} 's zero). Then every $x \in I$ is an element of exactly one R_{j} and the range of f is exactly $\left\{\alpha_{j} \mid 1 \leq j \leq m\right\}$. So

$$
\sup _{x \in I}|f(x)|=\max \left\{\left|\alpha_{j}\right| \mid 1 \leq j \leq m\right\}
$$

Now the $\chi_{R_{j}}\left(A_{1}, \cdots, A_{n}\right)$'s project onto mutually orthogonal subspaces of \mathcal{H} and, since $\bigcup_{j=1}^{n} R_{j}=I$, we have $\sum_{j=1}^{m} \chi_{R_{j}}\left(A_{1}, \cdots, A_{n}\right)=\mathbb{1}$. So, for every $\mathbf{v} \in \mathcal{H}$,

$$
\begin{aligned}
\mathbf{v} & =\sum_{j=1}^{m} \chi_{R_{j}}\left(A_{1}, \cdots, A_{n}\right) \mathbf{v} \\
\Longrightarrow\|\mathbf{v}\|^{2} & =\sum_{j=1}^{m}\left\|\chi_{R_{j}}\left(A_{1}, \cdots, A_{n}\right) \mathbf{v}\right\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(A_{1}, \cdots, A_{n}\right) \mathbf{v} & =\sum_{j=1}^{m} \alpha_{j} \chi_{R_{j}}\left(A_{1}, \cdots, A_{n}\right) \mathbf{v} \\
\Longrightarrow\left\|f\left(A_{1}, \cdots, A_{n}\right) \mathbf{v}\right\|^{2} & =\sum_{j=1}^{m}\left|\alpha_{j}\right|^{2}\left\|\chi_{R_{j}}\left(A_{1}, \cdots, A_{n}\right) \mathbf{v}\right\|^{2} \\
& \leq \max \left\{\left|\alpha_{j}\right| \mid 1 \leq j \leq m\right\}^{2} \sum_{j=1}^{m}\left\|\chi_{R_{j}}\left(A_{1}, \cdots, A_{n}\right) \mathbf{v}\right\|^{2} \\
& =\max \left\{\left|\alpha_{j}\right| \mid 1 \leq j \leq m\right\}^{2}\|\mathbf{v}\|^{2}
\end{aligned}
$$

The rest of the proof is identical to the corresponding parts of the proof of the multiplication operator version of the spectral theorem. Here is a very coarse outline of the remaining steps in the proof.

Step $2\left(f\left(A_{1}, \cdots, A_{n}\right)\right.$ for continuous functions $\left.f\right)$:
By the Stone-Weierstrass Theorem, every continuous function $f: I \rightarrow \mathbb{C}$, is a uniform limit of a sequence $\left\{f_{\ell}\right\}_{\ell \in \mathbb{N}}$ of simple functions in \mathcal{S}. So we can define

$$
f\left(A_{1}, \cdots, A_{n}\right)=\lim _{\ell \rightarrow \infty} f_{\ell}\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{L}(\mathcal{H})
$$

By Lemma 4 in Step 1, the right hand side converges in norm. Consequently the map $f \in C(I) \mapsto f\left(A_{1}, \cdots, A_{n}\right) \in \mathcal{L}(\mathcal{H})$ is

- continuous and
- linear and obeys
- $(f g)\left(A_{1}, \cdots, A_{n}\right)=f\left(A_{1}, \cdots, A_{n}\right) g\left(A_{1}, \cdots, A_{n}\right)$ and
- $f\left(A_{1}, \cdots, A_{n}\right)^{*}=(\bar{f})\left(A_{1}, \cdots, A_{n}\right)$.

Step 3 (Construction of $\mu_{\mathbf{v}}$):
Let $\mathbf{0} \neq \mathbf{v} \in \mathcal{H}$. Then

$$
\ell_{\mathbf{v}}(f)=\left\langle\mathbf{v}, f\left(A_{1}, \cdots, A_{n}\right) \mathbf{v}\right\rangle_{\mathcal{H}}
$$

is a positive linear functional on $C(I)$. So, by the Riesz-Markov Theorem, there is a unique, fnite, regular Borel measure $\mu_{\mathbf{v}}$ on I such that

$$
\left\langle\mathbf{v}, f\left(A_{1}, \cdots, A_{n}\right) \mathbf{v}\right\rangle_{\mathcal{H}}=\int_{I} f(x) d \mu_{\mathbf{v}}(x)
$$

for all $f \in C(I)$.
Step 4 (Construction of $\mathcal{H}_{\mathbf{v}}$ and $U_{\mathbf{v}}$):
Let $\mathbf{0} \neq \mathbf{v} \in \mathcal{H}$ and set

$$
\mathcal{H}_{\mathbf{v}}=\overline{\left\{f\left(A_{1}, \cdots, A_{n}\right) \mathbf{v} \mid f \in C(I)\right\}}
$$

Lemma 5 There is a unique unitary operator $U_{\mathbf{v}}: \mathcal{H}_{\mathbf{v}} \rightarrow L^{2}\left(\mu_{\mathbf{v}}\right)$ such that

$$
\begin{aligned}
U_{\mathbf{v}} \mathbf{v} & =1 \\
\left(U_{\mathbf{v}} A_{i} U_{\mathbf{v}}^{-1}\right) f(x) & =x_{i} f(x) \quad 1 \leq i \leq n
\end{aligned}
$$

Proof. Set

$$
\mathcal{D}_{\mathbf{v}}=\left\{f\left(A_{1}, \cdots, A_{n}\right) \mathbf{v} \mid f \in C(I)\right\}
$$

and define $\tilde{U}_{\mathbf{v}}: \mathcal{D}_{\mathbf{v}} \rightarrow L^{2}\left(\mu_{\mathbf{v}}\right)$ by

$$
\left(\tilde{U}_{\mathbf{v}} f\left(A_{1}, \cdots, A_{n}\right) \mathbf{v}\right)(x)=f(x)
$$

This operator is

- well-defined
- linear
- inner product preserving

As $\mathcal{D}_{\mathbf{v}}$ is dense in $\mathcal{H}_{\mathbf{v}}$, we can use the BLT theorem to define $U_{\mathbf{v}}$ as the continuous extension of $\tilde{U}_{\mathbf{v}}$ to $\mathcal{H}_{\mathbf{v}}$. Then $U_{\mathbf{v}}$ has the required properties and is indeed uniquely determined by those properties.

Step 5 (Completion of the proof by Zornification):
If $\mathcal{H}_{\mathbf{v}}=\mathcal{H}$, we are done. If not Zornify.

Theorem 6 Let $A, T \in \mathcal{L}(\mathcal{H})$. If A is normal and T commutes with A, then T commutes with A^{*}.

Proof: By induction $A^{n} T=T A^{n}$ for all $0 \leq n \in \mathbb{Z}$. As the exponential series $e^{\bar{\lambda} A}=$ $\sum_{n=0}^{\infty} \frac{1}{n!}(\bar{\lambda} A)^{n}$ converges in norm, we have

$$
e^{\bar{\lambda} A} T=T e^{\bar{\lambda} A} \Longrightarrow e^{\bar{\lambda} A} T e^{-\bar{\lambda} A}=T \Longrightarrow e^{-\lambda A^{*}} e^{\bar{\lambda} A} T e^{-\bar{\lambda} A} e^{\lambda A^{*}}=e^{-\lambda A^{*}} T e^{\lambda A^{*}}
$$

for all $\lambda \in \mathbb{C}$. As A is normal, we have that $e^{-\lambda A^{*}} e^{\bar{\lambda} A}=e^{-\lambda A^{*}+\bar{\lambda} A}$ and furthermore that $U(\lambda)=e^{-\lambda A^{*}+\bar{\lambda} A}$ obeys $U(\lambda)^{*}=U(-\lambda)=U(\lambda)^{-1}$. Thus $U(\lambda)$ is unitary and is hence of norm 1. So

$$
\left\|e^{-\lambda A^{*}} T e^{\lambda A^{*}}\right\|=\|U(\lambda) T U(-\lambda)\| \leq\|T\|
$$

This shows that the analytic operator valued function $e^{-\lambda A^{*}} T e^{\lambda A^{*}}$ is bounded uniformly on all of \mathbb{C}. So $e^{-\lambda A^{*}} T e^{\lambda A^{*}}$ has to be independent of λ and

$$
e^{-\lambda A^{*}} T e^{\lambda A^{*}}=\left.e^{-\lambda A^{*}} T e^{\lambda A^{*}}\right|_{\lambda=0}=T
$$

for all λ. Differentiating with respect to λ and then setting $\lambda=0$ gives

$$
-A^{*} T+T A^{*}=0
$$

as desired.

Q4) Apply the above on

$$
A=\operatorname{Re}\{A\}+i \operatorname{In}\{A\}
$$

Q6) Let $A=A^{*} \in \mathscr{B}(H)$ and $X_{0}(A)$ the proj.-real. moor, of A.
Claim: $\sigma(A)=\left\{\lambda \in \mathbb{R} \mid \forall \varepsilon>0, \mathcal{X}_{B_{\varepsilon}(\Delta)}(A) \neq 0\right\}$
Proof: We will show $\quad D(A)=\{\ldots\}^{c}$.
\equiv For $\mu_{A, 4}$ the spec. mar. of (A, ψ), we know $\operatorname{supp}\left(\mu_{A, \psi}\right) \subseteq \sigma(A)$. So if $\lambda \in P(A), \quad \mu_{A, 4}\left(B_{\varepsilon}(\lambda)\right)=0 \exists \varepsilon>$. But ψ is arbit and

$$
\mu_{A, \psi}\left(B_{\varepsilon}(\lambda)\right)=\left\langle\psi, \chi_{B_{\varepsilon}(\lambda)}(A) \psi\right\rangle=0 .
$$

Hence $X_{B_{\varepsilon}(\lambda)}(A)=0$ as this is a S.A. prog'.
\sum Let $\lambda \in\{\cdots\}^{c}$. Then $\exists \varepsilon>0$: $\forall \psi, \varphi \in \mathcal{H}, \quad\left\langle\psi, X_{B_{\varepsilon}(\lambda)}(\lambda) \varphi\right\rangle=0$.

Tee.,

$$
\langle\psi, \varphi\rangle=\left\langle\psi,\left(X_{B_{\varepsilon}(\lambda)}(\lambda)+\left[X_{B_{\varepsilon}(\lambda)}(\lambda)\right]^{\perp}\right) \varphi\right\rangle
$$

by hypo.

$$
\begin{aligned}
& \stackrel{b}{=}\left\langle\psi, \chi_{B_{\varepsilon}(\lambda)}(A) \perp \varphi\right\rangle \\
& \equiv\left\langle\psi, \chi_{B_{\varepsilon}(\lambda)^{c}}(A) \varphi\right\rangle
\end{aligned}
$$

Now, if $f(x):=\left\{\begin{array}{cl}\frac{1}{x-\lambda} & x \in B_{\varepsilon}(\lambda)^{c} \\ 0 & \text { else }\end{array}\right.$
and $g(x):=x-\lambda$ we get

$$
\begin{aligned}
&\langle\psi, f(A) g(A) \varphi\rangle=\langle\psi,(f g)(A) \varphi\rangle \\
&=\int_{\lambda \in \mathbb{R}}(f g)(\lambda) d \mu_{A, \psi, \varphi}(\lambda) \\
&=\int_{\lambda \in \mathbb{R}} f(\lambda) g(\lambda) d \mu_{A, \psi, \varphi}(\lambda) \\
& \begin{aligned}
(\varphi) \subseteq B_{\varepsilon}(\lambda)^{c} & \\
& =\int_{\lambda \in B_{\varepsilon}(\lambda)^{c}} f(\lambda) g(\lambda) d \mu_{A, \psi, \varphi}(\lambda)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
f g=1 \\
\text { on } B_{\varepsilon}(\lambda)^{c}
\end{array} \int_{\lambda \in B_{\varepsilon}(\lambda) c} d \mu A, \psi, \varphi(\lambda) \\
& =\left\langle\psi, \chi_{B_{\varepsilon}(A) c}(A) \varphi\right\rangle \\
& =\langle\psi, \varphi\rangle
\end{aligned}
$$

Since ψ, φ were arbitrary, $f(A) \equiv A-\lambda \mathbb{1}$ has an inverse. $\Leftrightarrow \lambda \in \rho(A)$.

Q7 Let H be a sep. Hill sp.
Claim! The only op-norm-closed *-ideals in $B(H)$ are $\{0\}, \mathcal{H}(H), B(H)$.

Proof: Let $I \subseteq \&(1)$ be some non-triv. *-closed ideal.
Claim: $h(J) \equiv I$.

Proof 1 Let f be a rank-1 prod.
Then $\forall A \in I \backslash\{0\}, P A \in I$ is a rank-1 op.

$$
P A=\varphi \otimes \psi^{*} \quad \exists \varphi, 4 \in \mathcal{H}
$$

By star-closelness, $\psi \otimes \varphi^{*} \in I$ too. From there by composing $w /$

$$
\begin{aligned}
& \varphi \mapsto \tilde{\varphi} \\
& \psi \mapsto \tilde{\psi}
\end{aligned}
$$

we get to any other rank-1 op,, and by lin. comb. to any tin. rank.
Norm closed \Rightarrow cpz. op.
Now, if $A \in I \backslash H(H)$, W.T.S. $\mathbb{N} \in I$.
Since A is NOT pt,, it is impossible that both $\operatorname{Re}\{A\}, \mathbb{I}_{m}\{A\}$ are copt., so by The, $9.60, \quad \sigma_{\text {less }}(B) \neq\{0\}$
for some $B=B^{*} \in I$.
This implies that B is a Fredholm op., so by Atkinsoris tum.
(The. 9.51) that $\exists G \in \mathcal{F}$

$$
\begin{array}{ll}
\text { s.t. } & \mathbb{1}-B G \\
& 1-G B
\end{array} \in \mathcal{H}(\mathcal{H})
$$

But since I is an ideal, that means $B G, G B \in I$, i.e.,

$$
\mathbb{1}-K_{1}, \mathbb{1}-K_{2} \in I
$$

for some pt. K_{1}, k_{2}. But $H E I$, so $\mathbb{1} \in I \Leftrightarrow I=\mathscr{C}(x)$.

Q8,Q9 will appear after Q10, Q1I:
(Q10) \mathcal{R} is the uni. shift on $l^{2}(N)$:

$$
\begin{gathered}
R \delta_{n} \equiv \delta_{n+1} \quad n \geqslant 1 . \\
\operatorname{ker}(R) \equiv\left\{\psi \in l^{2}(N) \mid R \psi=0\right\}
\end{gathered}
$$

$$
\begin{aligned}
& (R \psi)(n) \equiv \begin{cases}\psi(n-1) & n \geqslant 2 \\
0 & n=1\end{cases} \\
& \psi(n-1)=0 \quad \forall \quad n \geqslant 2 \\
& \Rightarrow \psi=0 . \quad \Rightarrow \quad \operatorname{ker}(R)=\{0\} . \\
& R^{*}=? \\
& \langle\varphi, R * \psi\rangle \equiv\langle R \varphi, \psi\rangle \equiv \sum_{n=2}^{\infty} \overline{\varphi(n-1)} \psi(n) \\
& =\sum_{n=1}^{\infty} \overline{\varphi(n)} \psi(n+1) \\
& \Rightarrow(R * 4)(n) \equiv \psi(n+1) \quad(n \geq 1) \text {. } \\
& \psi(n+1)=0 \quad \forall \quad n \geqslant 1 \quad \text { does NoT }
\end{aligned}
$$

imply $\psi=0$ since $\psi(1)$ is free!

$$
\Rightarrow \quad \operatorname{ker}\left(R^{*}\right)=\mathbb{C} \delta_{1}
$$

$$
\begin{aligned}
\operatorname{im}(R) & \equiv\left\{R \psi \mid \psi \in l^{2}\right\} \\
& =\left\{(0, \psi(1), \psi(2), \ldots) \mid \psi \in l^{2}\right\} \\
& \left.=\operatorname{spanc}\left\{\delta_{n}\right\}_{n=2}^{\infty}\right)
\end{aligned}
$$

Claim: $R \in \mathcal{F}$
Proof: $\operatorname{coker}(R) \equiv$ Je/im(R)

$$
\cong \mathbb{C} \delta_{1} \quad \text { finite dim. }
$$

$$
\begin{aligned}
& \operatorname{ker}(R)=\{0\} \quad \text { finite dim. } \\
& \Leftrightarrow R \in \mathscr{F}
\end{aligned}
$$

index $(R)=\operatorname{dim}$ kor $R-$

- dim coper R

$$
=-1 .
$$

Note: Can also show $i m(R)$ is closed and use index $(R)=\operatorname{dim}$ bern $R-$ - dim Kor R*.

Q(1) Claim! On $l^{2}(\mathbb{N}), \frac{1}{X}$ is NOT Frecholm even though it has index $\left(\frac{1}{x}\right)$ formally equal to zero (Though not well-def.).
Proof: We need to calculate $\operatorname{in}\left(\frac{1}{x}\right)$.
(Note we coulee have used Lemma 7.20 $w /\|X\|=\infty$ so $\left\|\frac{1}{x} \varphi\right\|$ is NoT bael. from below $\rightarrow \sin \left(\frac{1}{x}\right)$ NoT dosed.

$$
\begin{aligned}
\dot{\operatorname{im}}\left(\frac{1}{x}\right) & \equiv\left\{\left.\frac{1}{x} \psi \right\rvert\, \psi \in e^{2}\right\} \\
& =\left\{\left.\left(\psi(1), \frac{1}{2} \psi(2), \frac{1}{3} \psi(3), \ldots\right) \right\rvert\, \psi \in l^{2}\right\} \\
\psi(n):=\frac{1}{n} \psi(n) & \vdots\left\{\varphi:\left.N \rightarrow \mathbb{C}\left|\sum_{n=1}^{\infty} n^{2}\right| \varphi(n)\right|^{2}<\infty\right\}
\end{aligned}
$$

So $n \mapsto \frac{1}{n^{2}}$ is NOT in this set, but all its finite supp. approx. are. Hence it is not closed.

As such $\frac{1}{x}$ cannot be fredholm.

QP) $-\Delta$ on $e^{2}(\mathbb{Z})$ given by

$$
-\Delta \equiv 21-R-R^{*}
$$

bilateral shift
(a) Claim: $\forall x \in \mathbb{Z}, \quad \delta_{x}$ is NOT a cyclic vector for $-\Delta$.
Proof: $(-\Delta)^{k} \delta_{x}$ is even about x. So it cannot span δ_{x+1} e.g.

Claim: $f(z):=\left\langle\delta_{0},(-\Delta-z \mathbb{1})^{-1} \delta_{0}\right\rangle$ is green by

$$
f(z)=\frac{-1}{\sqrt{z(z-4)}} \quad(z \in \mathbb{C} \backslash[0,4]) .
$$

Prof: By the fourier series within f,
we get

$$
\begin{aligned}
& f(z)=\left\langle f \delta_{0}, f\left(-\Delta-z \mathbb{D}^{-1} f^{*} f \delta_{0}\right\rangle_{L^{2}\left(\mathbb{B}^{\prime}\right)}\right. \\
& =\frac{1}{2 \pi} \int_{\theta=0}^{2 \pi} \frac{1}{2-2 \cos (\theta)-z} d \theta \\
& \begin{array}{l}
\lambda:=e^{i \theta} \\
d \lambda=e^{i \theta} i d \theta \\
=\frac{1}{2 \pi i}
\end{array} \oint_{|\lambda|=1} \frac{1}{2-\lambda-\frac{1}{\lambda}-z} \frac{d \lambda}{\lambda} \\
& =i \lambda d \theta \\
& d \theta=\frac{1}{i \lambda} d \lambda=\frac{1}{2 \pi i} \oint_{|\lambda|=1} \frac{1}{(2-z) \lambda-\lambda^{2}-1} d \lambda
\end{aligned}
$$

$$
\begin{aligned}
\beta:= & \frac{1}{2}(2-z) \\
& =\frac{1}{2 \pi i} \oint_{|\lambda|=1} \frac{d \lambda}{\left(\lambda-\beta-\sqrt{\beta^{2}-1}\right)\left(\lambda-\beta+\sqrt{\beta^{2}-1}\right)} \\
& =\frac{1}{2 \pi i} \oint_{\partial B_{1}(\beta)} \frac{d \lambda}{\left(\lambda-\sqrt{\beta^{2}-1}\right)\left(\lambda+\sqrt{\beta^{2}-1}\right)}
\end{aligned}
$$

Claim: One of these rooks is inside the dircle and the other outside, if $\beta \in \mathbb{C} \backslash[-1,1]$.
Proof: TODO...

$$
\Rightarrow \quad f(z)=\frac{-1}{2 \sqrt{\beta^{2}-1}}=\frac{-1}{\sqrt{z(z-4)}}
$$

$$
\begin{aligned}
\operatorname{Im}\left\{-\frac{1}{z}\right\} & =\operatorname{In}\left\{-\frac{\bar{z}}{|z|^{2}}\right\}=\operatorname{I} m\left\{\frac{-x+i y}{x^{2}+y^{2}}\right\} \\
& =\frac{y}{x^{2}+y^{2}}=\frac{r \sin (\theta)}{r^{2}}=\frac{\sin (\theta)}{r} \\
& =\frac{\sin (\operatorname{Arg}(z))}{|z|}
\end{aligned}
$$

As $\varepsilon \rightarrow 0^{+}$

$$
\underbrace{\sin (\operatorname{Arg}(\sqrt{(E+i \varepsilon)(E+i \varepsilon-4)})}_{\frac{1}{2}(\operatorname{Arg}(E+i \varepsilon)+\operatorname{Arg}(E-4+i \varepsilon))}
$$

\[

\]

By Lemma 10.11 , we find

$$
d \mu_{-\Delta_{1} \delta_{0}}(\lambda)=\frac{1}{\pi}(\lambda(\lambda-4))^{-1 / 2} d \lambda
$$

i.e., it is arc. w.r.t. Lebesgue.

More precisely,

$$
\begin{gathered}
d \mu_{-\Delta \int_{0}}(\lambda)=\frac{1}{\pi}(\lambda(\lambda-4))^{-1 / 2} \chi_{(0,4)}(\lambda) d \lambda+ \\
+d \partial_{\text {singular }}(\lambda)
\end{gathered}
$$

But since the first measure already tutegrates to $1\left(=\left\|\delta_{0}\right\|\right)$, we must have $\partial_{\text {sing, }}=0$.
(a) δ_{x} cannot be a cyclic rector for $V(x)$ since any power lies in $\mathbb{C} \delta_{x}$.

$$
\text { (b) } \begin{aligned}
f_{x}(z) & :=\left\langle\delta_{x},(V(x)-z \mathbb{1})^{-1} \delta_{x}\right\rangle \\
& =\left\langle\delta_{x},(V(x)-z)^{-1} \delta_{x}\right\rangle \\
& =(V(x)-z)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (C) } \mathbb{I}_{m}\{f x(z)\}=\frac{\mathbb{I}_{m}\{z\}}{(V(x)-\operatorname{Re}\{\xi\})^{2}+\mathbb{I}_{m}\{\rightarrow\}^{2}} \\
& \lim _{\varepsilon \rightarrow 0^{+}} \mathbb{I}_{m}\{f(E+i \varepsilon)\}=0 \quad \text { if } \quad E \neq V(x) . \\
& \lim _{\varepsilon \rightarrow 0^{+}} \mathbb{I}_{m}\{f(V(x)+i \varepsilon)\}=\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon}{\varepsilon^{2}}=\infty .
\end{aligned}
$$

BUT $\lim _{\varepsilon \rightarrow 0} \varepsilon \mathbb{I}_{m}\{f(V(x)+i \varepsilon)\}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\varepsilon^{2}}{\varepsilon^{2}}=1$.
(d) By Lemma 10.11, $\mu_{V(x), \delta_{x}}$ is pure
point supported exactly on $V(x)$:

$$
d \mu_{V(x), \delta_{x}}(\lambda)=d \delta_{V(x)}(\lambda)
$$

