SEP 23 2023

MAT520 - Func-al Analy. - HW1 Sol-ns

QII (louim: In C, rector addition and scalar mul. are cont. $P_{roo}f: WTS + :(C^{n})^{2} \rightarrow C^{n}$ is cont. (11,10) bir U+10 Suffice to take some Br(Z) & Open(Cn) and show $f'(B_r(2)) \in Qpen((C^n)^2)$. Since open sets in the prod. top. are unions ef products of epon balls. $+^{-1}(B_{r}(2)) \equiv \int (u, v) \epsilon(\mathbb{C}^{n})^{2} \int ||u+v-2|| < n \}$ Let $(\mathcal{U}, \mathcal{U}) \in f'(\mathcal{B}_r(\mathcal{Z}))$, i.e., $\mathcal{U} \in \mathcal{B}_r(\mathcal{Z})$. Since $B_r(z) \in Open(\mathbb{C}^n)$, $\exists \varepsilon > 0 : B_{\varepsilon}(une) = B_{r(z)}$ $(\underline{laim}: B_{\epsilon_{13}}(u) \times B_{\epsilon_{13}}(u) \subseteq +^{-1}(B_{\epsilon}(u+u))$ $Proof: If (\tilde{\mathcal{U}}_{1}, \tilde{\mathcal{U}}) \in B_{\varepsilon_{1}}(\mathcal{U}) \times B_{\varepsilon_{3}}(\mathcal{U}),$ lh +ie - u - 2011 ≤ 2€/3 < €

 $\implies B_{\epsilon/3}(u) \times B_{\epsilon/3}(v) \in Nbhol (utre)$ and $B_{E/3}(h) \times B_{E/3}(h) \subseteq t^{-1}(B_{E}(htre))$ $\subseteq +^{-1}(B_r(z))$. $\implies t^{-1}(B_r(2)) \in Open((\mathbb{C}^n)^2)$ and hence tis cont. Next, W.T.S. $\bullet: \mathbb{C} \times \mathbb{C}^n \longrightarrow \mathbb{C}^n$ is cont. $(\alpha, n) \mapsto \alpha n$ Again W.T.S. · (Br(z)) & Qpen(C×Cⁿ). Let $(\alpha, u) \in \mathcal{CB}_{r(2)} \iff || \alpha u - 2 || < r$. \notin $\alpha n \in B_{r}(z)$ $\int_{\Theta} \exists \xi > 0 ; B_{\xi}(\alpha u) \subseteq B_{r}(z).$ Want $\|\tilde{\chi}\tilde{u} - \chi u\| < \varepsilon$. $\|\widetilde{\mathcal{X}}\widetilde{\mathbf{u}}-\mathbf{x}\mathbf{u}\| = \|\widetilde{\mathcal{X}}\widetilde{\mathbf{u}}-\widetilde{\mathbf{x}}\mathbf{u}+\widetilde{\mathbf{x}}\mathbf{u}-\mathbf{x}\mathbf{u}\|$ 5 12 11 - UII + 12 - X1 1111 $\leq (|\alpha - \alpha| + |\alpha|) \|\tilde{u} - u\| + |\tilde{\alpha} - \alpha| \|u\|$ $\leq (1+|\alpha|) ||\widehat{u} - u|| + |\widehat{\alpha} - \alpha||u|| < \frac{1}{2} < \varepsilon.$ So pick $II := B_{II} \stackrel{\epsilon}{=} (\alpha) \times B_{\min\{II, \frac{1}{3}\}}(\alpha).$

This guarantees $(a,u) \in U \subseteq -^{-1}(B_{\varepsilon}(au))$ and hence · ((ler (2)) & Open (C × Cⁿ). / Ø Claim: C w/ The French metro metric G2 is NOT homeomorphic to C w/ Euclidean metric. Pf.: Example 2 in Pecture notes. Since we know 3 only one TVS (np to Romeomorphisms) in dim $n < \infty$, the French metro metric's top. cannot make a TVS out of C. Chaim: $\overline{A} + \overline{B} \subseteq \overline{A} + \overline{B}$ Q31Proof: Let acA, beB. WITIS, atbeats, Let WENDHella+b). So W.T.S. Wn(A+B) #0. Since addition is cont. ∃ (U, VE Nohd (G) × Nohdcbs: U+V⊆W. Since REA, J GEANN beb, 6 eBaV

and so atb & A+B and $\tilde{\alpha} + \tilde{b} \in \mathcal{U} + \mathcal{V} \subseteq \mathcal{W}$. Q4 Claim: If ASX is a refslop. Then so is A. Proof: By Rudin pp. 6., SEX is a rolslap () Oces XSFBS≡S ∀ «iße C Clearly since $O_X \in A$ and $A \subseteq \overline{A}, O_X \in \overline{A}$. WTS $\overrightarrow{A} + \overrightarrow{B} \overrightarrow{A} = \overrightarrow{A} + \overrightarrow{A}, \overrightarrow{B} \in \mathbb{C}.$ $Claim: \Delta \overline{A} = \overline{\Delta A} \quad \forall \quad \Delta \in \mathbb{C}$ Proof: If $\alpha = 0$ true. Else: Let $\overline{A} \equiv \bigcap_{F \in Closed(X)} F$ $f(u) := \frac{1}{\alpha} u \qquad F \supseteq A$ $\alpha \bar{A} \stackrel{e}{=} f^{-1}(\bar{A}) = f^{-1}(\bigcap_{F \in Closed}(\bar{x}) F)$ $F \supseteq A$

 $= \bigcap_{F \in Closed (X)} f^{-1}(F)$ $G_{i} := f^{-1}(F) \xrightarrow{F \supseteq A} = \bigcap_{F \in Closed(X)} F \in Closed(X)$ F F⊇f-l(A) $= \overline{\alpha}A$, $\alpha \widehat{A} + \beta \widehat{A} = \overline{\alpha} \widehat{A} + \overline{\beta} \widehat{A}$ Hence 10/dsp. = A + A E A + A Ø = \overleftarrow{A} . Claim: $2A \subseteq A + A$ Proof: Let a $\in A$. Then $2\alpha = \alpha + \alpha \in A + A$. $2A \subseteq A + A$ Ŋ Q6 Cleann: Unions and intersections of balanced are balanced. Proof: Let 2Bx3x be balanced, i.e.,

 $2B_{\alpha} \subseteq B_{\alpha} \quad \forall \alpha, 121 \leq 1.$ Let nous ZEC: 12151. WITIS. $2 \bigcup B_{\alpha} \subseteq \bigcup B_{\alpha}$ and $\mathcal{L} \bigcap_{\mathcal{A}} \mathcal{B}_{\mathcal{A}} \subseteq \bigcap_{\mathcal{A}} \mathcal{B}_{\mathcal{A}}.$ If 2=0, $2B_{x} = \{p\}$ so $Q_{x} \in B_{x}$ $\forall \alpha$ and \$ anything to prove. Else, Let 1262 Br. Then 116Bx V X. Since Bx is balanced, 12EBx Vx.V fimilarly for the Union. Claim: IF A, B are balanced, so is AtB. Proof: Let ZEC: 12161 and DEZ(ATR). So $12 = 2\alpha + 2b \in A + B$ as A, B are bal.

12

Proof: Let A = C be given by $A := N \in Closed(\mathbb{C})$ $B := \left\{ -n + \frac{1}{n} \right\} \text{ nen } \left\{ E \text{ Closed}(\mathbb{C}) \right\}.$ $\frac{1}{n} \in A + B$ \forall $n \in N$ and $O \notin A + B!$ QID Claim: X, Y TVS w/ Mincy) < 00. $\Lambda: \chi \rightarrow \varphi$ -lin. ξ Surj. Then (1) Λ is open and (2) ker(Λ) \in Closed(X) \Rightarrow Λ is cont. By Raulin Thm. 1.21 (a), $Y = \mathbb{C}^n$ Whole. Proof: Let Le; y be the std. basis. Since A is Ship,] fiex: Afine. Define $\Gamma: \mathbb{C}^n \to X$ via $12 \mapsto \sum_{j=1}^n 2j f_j$ By def. 1° is lin. By Rudin's Lemma 1.20, N is cont.

By L.N. Claim 3, 21, suffice to show that if NENbhollox) then M Contains some MENbhd(Ocn). Study MIN: Since NTV = 19 Y DEC": $\int^{n-1}N = \Lambda \nabla \nabla^{n-1}N \subseteq \Lambda N.$ But Γ is cont., so $\Gamma^{-1}N \in Open(\mathbb{C}^n)$ and by linearity, OcnETTN. Hence Λ is indeed open. \Longrightarrow (1). Next, assume her A & Closed (X) and WTS $\Lambda: X \to \mathbb{C}^n$ is cont. Unfortunately, the easiest way to do This seems to involve quotient TVS, so no pts. will be deduited for mistahes have. A: X/ker(M) ~ Ch isomorphism and hence is a VS a TVS isomorphy

Note X/kerth only makes sense if kerch is closed, and VS => TVS iso. bcs. of finite dimensions. $G := \int f: [o, i] \rightarrow \mathbb{C} \int f \text{ is cont.} \}$ QII $d(f,g) := \int_{0}^{l} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx$ Claim: d is a metric on G. $\frac{Pf.}{1} \quad (1) \quad Tf \quad d(f.g) = 0,$ $\int_{0}^{1} \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} dx = 0$ Since integrand 70 and cont., it must equal zero => f=g. / (2) d is symm.
(2) Triangle ineq. follows from

The fact $d(a,b) := \frac{1a-b1}{1+1a-b1}$ They $\Delta \neq$ on \mathbb{C}^n . Note $[0,\infty) \ni \alpha \mapsto \frac{\alpha}{1+\alpha}$ is Increasing, and we're trying to show $\gamma(1a-b1) \leq \gamma(1a-c1) + \Gamma(1c-b1)$ Note $\Gamma(\alpha) + \tau(\beta) \ge \tau(\alpha \beta)$. Indeed, d + p > d+p 1+a + 1+p > d+p 1+a+p $\frac{\alpha(H\beta) + \beta(H\alpha)}{(H\alpha)(H\beta)} = \frac{\alpha + \beta + 2\alpha\beta}{1 + \alpha + \beta + \alpha\beta}$ > dtBtaß ItatBtaß > atp. itatp. So this follows lois ordinary A7 on C. 1

Claim: C is a VS. <u>Pf.o</u> Obraious. Claim: (C, d) is a TVS. Pf.: (1) All metric spaces are T1. / (f) We note d is transl. -invear: d(p,q) = d(p+h, g+h).Hence $d(f+g), \tilde{f}+\tilde{g}) = d(f-\tilde{f}, \tilde{g}-g)$ $\leq d(p-\hat{p}, 0) + d(0, \hat{g} - g)$ and the rest of of the proof follows as in QI. (.) We don't have homogeneity, but $d(\alpha \beta, \alpha g) \leq (1+|\alpha|) d(\beta, g).$ Indeed,

 $\frac{|\alpha \neq |}{|t|\alpha \neq |} \approx |\alpha| \frac{|2|}{|t|\alpha \neq |}$ $|+|\alpha||\mathcal{Z}| \geqslant |+|\mathcal{Z}| \quad \text{if } |\alpha| \geqslant |.$ But if IdI<1, $\frac{|+|\alpha||z|}{|\alpha|} \ge |+|z|$ $S_{0} = \frac{|\alpha \neq 1|}{|t|\alpha \neq 1} \leq \max(\{1, |\alpha|\}) = \frac{|2|}{|t|2|}$ < (1+121) 1+121 . The rest of the proof follows similarly to [21]. Ø Countable basis w/ LByn (0) Jnen. Q12 Claim: Let VENbhd (Ox). Than 3 $f: X \to A \quad \text{cont.} \quad \forall f(0) = 0$ $f(x) = 1 \quad \forall x \in V^{c}.$ $P_{\text{roof}}: \quad \text{Let} \quad \{V_{n} \mathcal{G}_{n} \quad be \quad a \quad \text{seq. in Nbhd(0x)}$ which are all balanced and obay! $V_n + V_n \subseteq V_{n-1}$

 $V_t + V_t \subseteq V$ Define $D := \begin{cases} q \in Q \\ q = \sum_{n=1}^{\infty} \alpha_n 2^n \end{cases}$ and d:N-horiz is s.t. $\left| \alpha^{-1}(f_{1}) \right| < \infty \right\}$ V gED, let xiq; be the arrosp. finite seq. Then 97,0 and 961. Define A: $D \cup [1, \infty) \rightarrow \mathcal{P}(X)$ $q \mapsto \int X \quad q \ge 1$ $\int_{j=1}^{\infty} \alpha_{j}(q) V_{j} \quad q \ge D$ $f: X \to [o,i]$ $X \mapsto \inf(f \cap E D \cup [1, \infty) | x \in A(r) \}).$ Since OxEVn V n, OxEACT) Vr. $\implies f(0_x) = 0.$

If $X \in V^{c}$, want f(x) = 1. But if XEV^C, X cannot lie in any Vn, and hence not in any of its pums. Claim: f is cont. f_{c}° (1) f is com. (2) O_{x} : $\forall \in 0$, let $N: 2^{N} \leq \varepsilon$. Then $sept f(V_N) | \leq 2^N < \epsilon$. (2) $|f(x) - f(y)| \leq f(x-y)$ which follows as in the proof of Rudin 1.24. $X := \left\{ f: (0, 1) \rightarrow \mathbb{C} \right\} f \text{ cont. } YS.$ $V(f,r) := \begin{cases} g \in X \mid |g(x) - f(x)| < r \forall x \in (0,1) \end{cases}$

Q13

Claim: {V(f, M) fex, r>0 is NOT a basis. Pf.: Need V figEX, risto: $V(f,r) \cap V(g,s) \neq \emptyset$, some $V(h,t) \subseteq V(f,r) \cap V(g,s)$. Take V(x, 1) nV(-x, 1) which intersect at the zero pr. But it is impossible to find V(h,r) inside this as area tends to zero. So this is a sub-basis.

(laim: + is cont. Pfin Debus for figex: f<g: R(f,g) := { h E X | f < h < g } Then $V(f,r) \equiv \{g \in X \mid |g - f| < r\}$ $= \int g_{f} x \left[f - r < g < f + r \right]$ = R(f-r, f+r)Actually R(f,g) is open . Then if Athe V(F, F), gth $\in \bigcap_{j=1}^{n} V(f_j, r_j) \subseteq V(f, \tau)$ $R(f_j-r_j,f_j+r_j)$ $R(\min_{j} f_{j} - r_{j}, \max_{j} f_{j} + r_{j})$ Ĺ H $L_1 := g - \frac{1}{2} \left(g + h - L \right)$ $L_2 := h - \frac{1}{2} (g + h - L)$

 $H_{l} := \int t^{1} \frac{1}{2} (H - (J + h))$ Hz := h+ 2(H-(g+h)) Then $(g,h) \in \mathbb{R}(L_1,H_1) \times \mathbb{R}(L_2,H_2)$ $\subseteq t^{-1}(\mathbb{R}(L_2,H_2))$. To see scalar mul. is NOT cont., consider (XH) + X W/ mul. by O, which yields the Zero pⁿ. However, A nobel of (0, X++==) which will land in an arbitrarily small ball of the zoro fr.

()

To see R(f,g) are open,

write $R(f,g) = \bigcup_{\alpha \in I} \bigwedge_{e=1}^{M_{\alpha}} \nabla(f_{e}^{\alpha}, r_{e}^{\alpha}).$