SEP $23 \quad 2023$
MAT520 - Func-al Anally. HW1 Sol-ns
Q1 Claim: In \mathbb{C}^{n}, vector addition and scalar mil. are cont.

Proof: WTS $+:\left(\mathbb{C}^{n}\right)^{2} \rightarrow \mathbb{C}^{n}$

$$
(n, v) \longmapsto u+v
$$

Suffice to take some $B_{r}(z) \in Q p a n\left(\mathbb{C}^{n}\right)$ and show $t^{-1}\left(B_{r}(z)\right) \in Q p e n\left(\left(f^{\prime \prime}\right)^{2}\right)$. Since open sets in the prod. top. are unions of procluits of epos balls.

$$
+^{-1}\left(B_{r}(z)\right) \equiv\left\{(u, v) \in\left(\mathbb{C}^{n}\right)^{2} \mid \quad\|u+v-z\|<n\right\}
$$

Let $(u, u) \in f^{-1}\left(B_{r}(z)\right)$, i.e., $u+u \in B_{r}(z)$.
Since $B_{r}(z) \in O_{p o n}\left(\mathbb{C}^{n}\right), \exists \varepsilon>0: B_{\varepsilon}(u+2) \subseteq B_{r}(2)$.
Claim: $B_{\varepsilon / 3}(u) \times B_{\varepsilon / 3}(u) \subseteq+^{-1}\left(B_{\varepsilon}(u+r)\right)$
Proof: If $(\tilde{u}, \tilde{v}) \in B_{\varepsilon / 3}(u) \times B_{\varepsilon / 3}(v)$,

$$
\|\tilde{h}+\tilde{e}-u-v\| \leqslant v \varepsilon / 3<\varepsilon
$$

$$
\begin{aligned}
\Longrightarrow B_{\varepsilon / 3}(u) \times B_{\varepsilon / 3}(v) & \in N b h d(u+u) \\
\text { and } \quad B_{\varepsilon / 3}(u) \times B_{\varepsilon / 3}(u) & \subseteq+^{-1}\left(B_{\varepsilon}(u+u)\right) \\
& \subseteq+^{-1}\left(B_{r}(z)\right) .
\end{aligned}
$$

$\Rightarrow \quad t^{-1}\left(B_{r}(z)\right) \in \operatorname{Qpen}\left(\left(\mathbb{C}^{n}\right)^{2}\right)$ and hence t is cont.

Next, W.T.S. $\quad: \mathbb{C} \times \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ is cont.

$$
(\alpha, u) \longmapsto \alpha u
$$

Again W.T.S. $:^{-1}\left(B_{r}(z)\right) \in \operatorname{Qpen}\left(\mathbb{C} \times \mathbb{C}^{n}\right)$.
Let $(\alpha, u) \in e^{-1}\left(B_{r}(z)\right) \Leftrightarrow \quad\|\alpha u-z\|<r$.

$$
\begin{aligned}
& \Leftrightarrow \quad \alpha u \in B_{r}(z) \\
& \text { So } \exists \varepsilon>0: \quad B_{\varepsilon}(\alpha u) \subseteq B_{r}(z) \text {. } \\
& \text { Want } \quad\|\tilde{\alpha} \tilde{u}-\alpha u\|<\varepsilon: \\
& \|\tilde{\alpha} \tilde{u}-\alpha u\|=\|\tilde{\alpha} \tilde{u}-\tilde{\alpha} u+\tilde{\alpha} u-\alpha u\| \\
& \leqslant|\tilde{\alpha}|\|\tilde{u}-u\|+|\tilde{\alpha}-\alpha|\|u\| \\
& \leqslant(|\alpha-\tilde{\alpha}|+|\alpha|)\|\tilde{u}-u\|+|\tilde{\alpha}-\alpha|\|u\| \\
& \leqslant(1+|\alpha|)\|\tilde{u}-u\|+|\tilde{\alpha}-\alpha|\|u\| \stackrel{!}{<} \frac{2 z}{3}<\varepsilon \text {. }
\end{aligned}
$$

So pick $\quad U \quad:=B \frac{1}{\|n\|} \frac{\varepsilon}{3}(\alpha) \times B_{\left.\operatorname{minc}\left\{1, \frac{1}{1+k i} \frac{\varepsilon}{3}\right\}\right)}(u)$.

This guarantees $\quad(a, u) \in U \subseteq \cdot-1\left(B_{\varepsilon}(\alpha \mu)\right)$ and hence.$^{-1}(\operatorname{br}(z)) \in Q_{p e n}\left(\mathbb{C} \times \mathbb{C}^{x}\right)$.

Q2 Claim: \mathbb{C} w/ the French metro metric is NOT homoomorphic to $\mathbb{C} w /$ Euclidean metric.
Pf:: Example 2 in lecture notes.
Since we know \exists only one TVS (up to homeomorphisms) in $\operatorname{dim} n<\infty$, the french metro metric's top. cannot make a TVS out of \mathbb{C}.
Q3 Claim: $\bar{A}+\bar{B} \subseteq \overline{A+B}$
Proof: Let $a \in \bar{A}, b \in \bar{B}$.
W.Tis. $a+b \in \overline{A+B}$.

Let $W \in N b h d(a+b)$. So $W \cdot T_{1} S . \quad W_{n}(A+B) \neq \varnothing$.
Since addition is cont.,

$$
\exists\left(u, v_{\in} \in \operatorname{Nbh}(a) \times N \text { Whale } b_{j}^{\prime}: u+v \subseteq W\right. \text {. }
$$

Since $a \in \bar{A}, \exists \tilde{a} \in A \cap n$

$$
b \in \bar{B}, \quad G \in B \cap V
$$

and so $\tilde{a}+\tilde{b}^{2} \in A+B$ and

$$
\tilde{a}+b^{2} \in U+V \subseteq W
$$

Q4 Claim: If $A \subseteq X$ is a velslsp. Then so is \bar{A}.

Proof: By Rudin pp. 6., $S \subseteq X$ is a vislep $\Leftrightarrow\left\{\begin{array}{l}O_{x} \in S \\ \alpha S+\beta S \subseteq S \\ \forall \alpha, \beta \in \mathbb{C}\end{array}\right.$
Clearly since $O_{x} \in A$ and $A \subseteq \bar{A}, O_{x} \in \bar{A}$. UTS $\quad \alpha \bar{A}+\beta \bar{A} \subseteq \bar{A} \quad \forall \alpha, \beta \in \mathbb{C}$.

Claim: $\alpha \bar{A}=\overline{\alpha A} \quad \forall \quad \alpha \in \mathbb{C}$
Proof: If $\alpha=0$ true.
$E C$ se: $\operatorname{Let} \quad \bar{A} \equiv \bigcap_{F \in C \operatorname{cosed}(x)} F$

$$
\begin{gathered}
f(u):=\frac{1}{\alpha} u \\
\alpha \bar{A} \stackrel{\sigma}{=} f^{-1}(\bar{A})=f^{-1}\left(\bigcap_{F \in \operatorname{Closed}(x)} F\right) \\
F \supseteq A
\end{gathered}
$$

$$
\begin{aligned}
& =\bigcap_{F \in C l o s e d}(x) \\
G:=f^{-1}(F) & f^{-1}(F) \\
& \stackrel{ }{F \supseteq A} \\
& \bigcap_{F \in \operatorname{Closed}(x)} \quad F \supseteq f^{-1}(A) \\
& =\overline{\alpha A} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\alpha \bar{A}+\beta \bar{A} & =\overline{\alpha A}+\overline{\beta A} \\
\text { vidsp: } & =\bar{A}+\bar{A} \\
& =\bar{A}+A \\
& =\bar{A} .
\end{aligned}
$$

Claim: $\quad 2 A \subseteq A+A$
Proof: Let $a \in A$. Then $2 a=a+a \in A+A$.
Q61 Claim: Unions and intersections of balanced are balanced.
Proof: Let $\left\{B_{\alpha}\right\}_{\alpha}$ be balanced, i.e.,

$$
z B_{\alpha} \subseteq B_{\alpha} \quad \forall \alpha, \quad|z| \leq 1
$$

Let now zecilz|sc. WiTis,

$$
\begin{aligned}
& Z \bigcup_{\alpha} B_{\alpha} \subseteq \bigcup_{\alpha} B_{\alpha} \text { and } \\
& Z \bigcap_{\alpha} B_{\alpha} \subseteq \bigcap_{\alpha} B_{\alpha} .
\end{aligned}
$$

If $z=0, \quad z B_{\alpha}=\{0\}$ so $O_{x} \in B_{\alpha} \quad \forall \alpha$ and $\#$ anything to prove.
Else, Let $v \in Z \cap_{\alpha} B_{\alpha}$. Than

$$
\frac{1}{z} \mathscr{V} \in B_{\alpha} \quad \forall \alpha .
$$

Since B_{α} is balanced, $\forall \in B_{\alpha} \forall \alpha \cdot \sqrt{ }$ Similarly for the union.

QT
Claim: If A, B are balanced, so is $A+B$.
Proof: Let $z \in \mathbb{C}:|z| \leqslant 1$ and $v \in z(A+B)$.
Then $\quad v=z(a+b) \quad \exists \quad a \in A, b \in B$.
So $V=z a+z b \in A \in B$ as A, B are bal.

Q88 Claim: If A, B ure dod. then $A+B$ is bell:

Pf: Let $N \in N b h d\left(\theta_{x}\right)$. UTS.

$$
(A+B) \subseteq t N
$$

for all $t>0$ large enough.
By cont. $\underset{\text { aft }}{ } \exists M \in N$ hd $\left(\theta_{\infty}\right): M+M \cong N$.

$$
\begin{aligned}
& \text { Then } A \subseteq t M \\
& B \subseteq t M \\
& \Rightarrow A+B \subseteq t M+t M \subseteq t(M+M) \subseteq t M .
\end{aligned}
$$

Claim: If A, B are pt then $^{t} A+B$ is c^{t}. Pf: $\quad+: X^{2} \rightarrow X$ is cont.
$A \times B \in \operatorname{Cpt}\left(X^{2}\right)$ by def. of prod. top. $A+B \equiv+(A \times B)$ and cont. image of opt. is cpl.

Q9) Claim: $\exists A, B \in C_{\text {closed }}(X): A+B \notin C_{\text {osed }}(X)$.

Proof: Let $A \subseteq \mathbb{C}$ be gireen by

$$
\begin{aligned}
& A:=\mathbb{N} \in \operatorname{Cosed}(\mathbb{C}) \\
& B:=\left\{\left.-n+\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\} \in \operatorname{Cosed}(\mathbb{C}) . \\
& \frac{1}{n} \in A+B \quad \forall n \in \mathbb{N} \text { and } O \notin A+B!
\end{aligned}
$$

Claim: X,y TVS w/ $\operatorname{dim}(y)<\infty$.
$\Lambda: X \rightarrow Y$ lin. \& surj.
Then (1) $\hat{\text { is opan and }}$
(2) $\operatorname{ker}(\lambda) \in \operatorname{Closed}(x) \Rightarrow \lambda$ is cont.

Proof: By Rulin Thm. 1.21 (a), $Y=\mathbb{C}^{n}$ Whos.
Let $\left\{e_{j}\right\}_{j=1}^{n}$ be the stel basis.
Since Λ is sufj, $\exists f_{j} \in X: \Delta f_{j}=e_{j}$.
Define $\quad \Gamma: \mathbb{C}^{n} \rightarrow X_{n}$ zia

$$
v \mapsto \sum_{j=1}^{n} v_{j} f_{j}
$$

By def. Γ is lin.
By Ruliws Lemma 1.20, r is cont.

By L.N. Claim 3,31, suffice to show that if $N \in N b h d\left(\theta_{x}\right)$ then $N N$ contains some $M \in \operatorname{Nbhd}\left(O_{\mathbb{C}^{n}}\right)$.
Study $\quad \Gamma^{-1} N$: Since $N \Gamma v=v \quad \forall v \in \mathbb{C}^{n}$:

$$
\Gamma^{-1} N=\Lambda \Gamma \Gamma^{H-1} N \subseteq \Lambda N .
$$

But Γ is cont., so $\Gamma^{-1} N \in \operatorname{Qpen}\left(\mathbb{C}^{n}\right)$ and by linearity, $O_{\mathbb{C}^{n}} \in \Gamma^{[-1} N$.

Hence Λ is indeed eger. \Rightarrow (1).
Next, assume kern $\in \operatorname{Closed}(x)$ and QTS $\quad \Lambda_{i} x \rightarrow \mathbb{B}^{n}$ is cont.

Unfortunately, the easiest way to do This seems to involve quotient TVS, so no pts. will be deducted for mistakes bare.
$\hat{\Lambda}: X / \operatorname{ker}(\Lambda) \leadsto \mathbb{C}^{n}$ is a VS isomorphism and hence a TVS isomorphic.

Note $x / k e r(a)$ orly makes sense if $k \operatorname{er}(\lambda)$ is closed, and $V S \Rightarrow$ TVS iso. bes. of finite dimensions.

QI

$$
\begin{aligned}
& C:=\{f:[0,1] \rightarrow \mathbb{C} \mid f \text { is cont },\} \\
& d(f, g) \quad=\int_{0}^{1} \frac{|f(x)-g(x)|}{1+|f(x)-g(x)|} d x
\end{aligned}
$$

Claim: d is a metric on G.
Pf:: (1) If $d(f, g)=0$,

$$
\int_{0}^{1} \frac{|f(x)-g(x)|}{1+|f(x)-g(x)|} d x=0
$$

Since integrand $\geqslant 0$ and cont., it must equal zero $\Rightarrow f=g \cdot v$
(2) d is symm.
(3) Triangle ineq. follows from
the fact

$$
\tilde{d}(a, b) \quad:=\frac{|a-b|}{1+|a-b|}
$$

obeys $\Delta \neq$ on \mathbb{C}^{n}.

$$
\begin{equation*}
\text { Note }[0, \infty) \ni \alpha \stackrel{r}{\mapsto} \frac{\alpha}{1+\alpha} \tag{is}
\end{equation*}
$$

increasing, and we're trying to show

$$
r(|a-b|) \leqslant r(|a-c|)+r(|c-b|)
$$

Note $r(\alpha)+r(\beta) \geqslant r(\alpha \beta \beta)$.
Inched,

$$
\begin{aligned}
\frac{\alpha}{1+\alpha}+\frac{\beta}{1+\beta} & \geqslant \frac{\alpha+\beta}{1+\alpha+\beta} \\
\frac{\alpha(1+\beta)+\beta(1+\alpha)}{(1+\alpha)(1+\beta)} & =\frac{\alpha+\beta+2 \alpha \beta}{1+\alpha+\beta+\alpha \beta} \\
& \geqslant \frac{\alpha+\beta+\alpha \beta}{1+\alpha+\beta+\alpha \beta} \\
& \geqslant \frac{\alpha+\beta}{1+\alpha+\beta} .
\end{aligned}
$$

So this follows wis ordinary $\Delta \neq$

Claim: C is a V .
Pf: Obvious.
Claim: (C, d) is a TVS.
Pf:0 (1) All metric spaces are T1.
(t) We note d is transl-inear:

$$
d(f, g)=d(f+h, g+h) .
$$

Hence

$$
\begin{aligned}
d(f+g, \tilde{f}+\tilde{g}) & =d(f-\tilde{f}, \tilde{g}-q) \\
& \leqslant d(f-\tilde{f}, 0)+d(0, \tilde{g}-\underline{q})
\end{aligned}
$$

and the rest of of the proof follows as in QQ.
(.) We don't have homogeneity, but

$$
d(\alpha f, \alpha g) \leqslant(1+|\alpha|) d(f, g) .
$$

Inched,

$$
\begin{aligned}
& \frac{|\alpha z|}{1+|\alpha z|}=|\alpha| \frac{|z|}{1+|\alpha||z|} \\
& 1+|\alpha||z| \geqslant|+|z| \quad \text { if } \quad| \alpha \mid \geqslant 1 .
\end{aligned}
$$

But if $|\alpha|<1$,

$$
\begin{aligned}
\frac{1+|\alpha||z|}{|\alpha|} & \geqslant 1+|z| \\
\text { So } \frac{|\alpha z|}{1+|\alpha z|} & \leqslant \max \{\{1,|\alpha|\}) \frac{|z|}{1+|z|} \\
& \leqslant(1+|\alpha|) \frac{|z|}{1+|z|}
\end{aligned}
$$

The rest of the proof fallows similarly to Q1.

Countable basis w/ $\left\{B_{y_{n}}(0)\right\}_{n \in N}$.
Q12 Claim: Let $V \in N b h d\left(O_{x}\right)$. Then \exists

$$
f: x \rightarrow \mathbb{R} \quad \text { cont. w/ } \quad f(0)=0 . ~ f(x)=1 \forall x \in V C .
$$

Proof: Let $\left\{V_{n}\right\}_{n}$ be a seq. in Nbhd $\left(0_{x}\right)$ which are all balanced and obey:

$$
V_{n}+V_{n} \subseteq V_{n-1}
$$

$$
V_{1}+V_{1} \subseteq V
$$

Define

$$
D:=\left\{q \in \mathbb{Q} \mid \quad q=\sum_{n=1}^{\infty} \alpha_{n} 2^{-n}\right.
$$

and $\alpha: N \rightarrow\{0,1\}$ is sit. $\left.\left|\alpha^{-1}(\{1\})\right|<\infty\right\}$.
$\forall q \in D$, lat $\alpha(q)$ be the arrosp. finite seq.

Then $q \geqslant 0$ and

$$
q \leqslant 1
$$

Define $A: D \cup[1, \infty) \rightarrow \rho^{3}(x)$

$$
\left.\begin{array}{l}
\quad q \mapsto\left\{\begin{array}{ll}
x & q \geqslant 1 \\
\sum_{j=1}^{\infty} \alpha_{j}(q) & V_{j}
\end{array}\right\} \in D
\end{array}\right\} \begin{aligned}
& x \mapsto \inf \left(\left\{r \in D_{u}[1, \infty) \mid x \in A(r)\right\}\right) .
\end{aligned}
$$

Since $O_{x} \in V_{n} \quad \forall n, O_{x} \in A(r) \forall r$.

$$
\Rightarrow \quad f\left(0_{x}\right)=0
$$

If $x \in V^{c}$, want $\quad \begin{gathered}f(x)=1 \text {. } \\ \Uparrow\end{gathered}$

$$
x \notin A(r) \forall r \in D .
$$

But if $X \in \mathbb{V}^{C}, x$ cannot lie in any V_{n}, and hence not in an of its sums.
Cain: f is cont.
Pf: (1) f is com. (a) O_{x} :

$$
\forall \varepsilon>0, l_{0} t N: 2^{-N}<\varepsilon .
$$

$$
\text { Then } \operatorname{spl} f\left(V_{N}\right) \mid \leqslant \Sigma^{N}<\varepsilon
$$

(2) $|f(x)-f(y)| \leqslant f(x-y)$
which follows as in the proof of Rubin 1.24 .

$$
\begin{aligned}
X:= & \{f:(0,1) \rightarrow \mathbb{C} \mid f \text { conic. }\} \text { Vs. } \\
& V(f, r):=\{g \in X| | \lg (x)) f(x) \mid<r \quad \forall x \in(0,1,)\}
\end{aligned}
$$

Claim: $\{V C f, r)\}_{f \in X_{1} T>0}$ is NOT a basis.
Pf:: Need $\forall f, g \in X, r, s>0$:

$$
V(f, r) \cap V(g, s) \neq \varnothing,
$$

some $V(h, t) \subseteq V(f, r) \cap V(g, s)$.
Take $V(x, 1) \cap V(-x, 1)$ which intersect at the zaro f^{n}. But it is impossible to find $V(h, r)$ inside this as

area tends to zero.

So this is a sub-basis.

Glim: + is cont.
Pain Define for $f, g \in X: f<g$:

$$
R(f, g):=\{h \in X \mid f<h<g\} .
$$

Then $V(f, r) \equiv\{g \in x||g-p|<r\}$

$$
\begin{aligned}
& =\{g \in x \mid f-r<g<f+r\} \\
& =R(f-r, f+r)
\end{aligned}
$$

Actually $R(\beta, g)$ is peen
Then if $g^{t h} \in V(f, r)$,

$$
\begin{aligned}
& g t h \in \underbrace{R(\underbrace{\min _{j} f_{j}-r_{j}}_{L},}_{\bigcap_{j=1}^{n} V \underbrace{V\left(f_{j}-r_{j}, f_{j}+r_{j}\right)}_{R\left(f_{j}, r_{j}\right)}} \underbrace{\left.\max _{j} f_{j}+r_{j}\right)}_{H} \\
& L_{1}:=g-\frac{1}{2}(g+h-L) \\
& L_{2}:=h-\frac{1}{2}(g+h-L)
\end{aligned}
$$

$$
\begin{aligned}
& H_{1}:=g+\frac{1}{2}(H-(g+h)) \\
& H_{2}:=h+\frac{1}{2}(H-(g+h))
\end{aligned}
$$

Then $(g, h) \in R\left(L_{1}, H_{1}\right) \times R\left(L_{2}, H_{2}\right)$

$$
\subseteq t^{-1}(R(L, H)) \text {. }
$$

To see scalar mut is NهT cont., Consider $\left(x \mapsto \frac{1}{x}\right) \in X \quad \omega /$ mil. by 0 , which yields the zero p^{n}.
How over, \nexists nih of $\left(0, x-\frac{1}{x}\right)$ which will land in an arbitrarily small ball of the zero f^{n}.
(*) To see $R(f, \gamma)$ are open, write $\quad R(f, g)=\bigcup_{\alpha} \bigcap_{l=1}^{n_{\alpha}} V\left(f_{l}^{\alpha}, r_{e}^{\alpha}\right)$.

