Claim: In \mathbb{C}^n, vector addition and scalar multiplication are continuous.

Proof: We prove $(\mathbb{C}^n)^2 \rightarrow \mathbb{C}^n$ is continuous.

$$(u, v) \mapsto u + v$$

It suffices to take some $B_r(z) \subseteq \text{Open}(\mathbb{C}^n)$ and show $+^{-1}(B_r(z)) \subseteq \text{Open}(\mathbb{C}^n)^2$. Since open sets in the product topology are unions of products of open balls,

$$+^{-1}(B_r(z)) = \bigcap \{ (u, v) \in (\mathbb{C}^n)^2 \mid \|u + v - z\| < r \}$$

Let $(u, v) \in +^{-1}(B_r(z))$, i.e., $u + v \in B_r(z)$.

Since $B_r(z) \subseteq \text{Open}(\mathbb{C}^n)$, there exists $\varepsilon > 0 : B_{\varepsilon}(u + v) \subseteq B_r(z)$.

Claim: $B_{\varepsilon/3}(u) \times B_{\varepsilon/3}(v) \subseteq +^{-1}(B_{\varepsilon}(u + v))$

Proof: If $(\hat{u}, \hat{v}) \in B_{\varepsilon/3}(u) \times B_{\varepsilon/3}(v)$, then

$$\|\hat{u} + \hat{v} - u - v\| \leq \varepsilon/3 < \varepsilon$$
\[\Rightarrow B_{\epsilon/3}(u) \times B_{\epsilon/3}(w) \subseteq \text{NEbd}(u \cup w) \]

and \[B_{\epsilon/3}(u) \times B_{\epsilon/3}(w) \subseteq +r(B_{\epsilon}(u \cup w)) \subseteq +r(B_{r}(\tilde{z})). \]

\[\Rightarrow +r(B_{r}(\tilde{z})) \in \text{Open}(C^n) \times C^n) \text{ and hence } +r \text{ is cont. } \]

Next, W.T.S. \(\bullet : C \times C^n \rightarrow C^n \) is cont.

\((x, u) \mapsto xu \)

Again W.T.S. \(+r(B_{r}(\tilde{z})) \in \text{Open}(C \times C^n) \).

Let \((x, u) \in +r(B_{r}(\tilde{z})) \iff \|xu - z\| < r, \)

\[\iff xu \in B_{r}(\tilde{z}) \]

So \(\exists \epsilon > 0 \) : \(B_{\epsilon}(xu) \subseteq B_{r}(\tilde{z}) \).

Want \(\|xu - xu\| < \epsilon \).

\[\|xu - xu\| = \|xu - xu + xu - xu\| \]

\[\leq \|x\| \|u - u\| + \|x - x\| \|u\| \]

\[\leq (\|x - x\| + \|x\|) \|u - u\| + \|x - x\| \|u\| \]

\[\leq (1 + \|x\|) \|u - u\| + \|x - x\| \|u\| \|u\| \leq \frac{\|x\|}{2} < \epsilon. \]

So pick \(U := B_{\min\{1, \frac{\|x\|}{2}\}}(x) \times B_{\min\{1, \frac{\|x\|}{2}\}}(u). \)
Claim: \(C \) w/ the French metro metric is NOT homeomorphic to \(C \) w/ Euclidean metric.

Pf.: Example 2 in lecture notes.

Since we know \(\exists \) only one TVS (up to homeomorphisms) in \(\dim n < \infty \), the French metro metric's top. cannot make a TVS out of \(C \).

Claim: \(\overline{A + B} \subseteq \overline{A + B} \)

Proof: Let \(a \in \overline{A}, b \in \overline{B} \).

W.T.T.S. \(a + b \in \overline{A + B} \).

Let \(\mathcal{W} \in \text{Nhd}(a + b) \). So W.T.T.S. \(\mathcal{W} \cap (A + B) \neq \emptyset \).

Since addition is cont., \(\exists (U, V) \in \text{Nhd}(a) \times \text{Nhd}(b) : U + V \subseteq W \).

Since \(a \in \overline{A}, \exists \tilde{a} \in A \cap U \)

\(\tilde{a} \in \overline{U} \subseteq \overline{A} \), \(b \in \overline{B} \).

Since \(\overline{U} \subseteq \overline{A} \cap \overline{B} \), \(\tilde{a} + b \in \overline{A + B} \).
Claim: If $A \subseteq X$ is a subspace, then so is \overline{A}.

Proof: By Rudin pp. 6, 7.

$S \subseteq X$ is a subspace $\iff \forall x \in S \left\{ \begin{array}{l} \alpha S + \beta S \subseteq S \\ \forall \alpha, \beta \in \mathbb{C} \end{array} \right.$

Clearly since $0_x \in A$ and $A \subseteq \overline{A}$, $0_x \in \overline{A}$.

WTS $\alpha \overline{A} + \beta \overline{A} \subseteq \overline{A} \implies \forall \alpha, \beta \in \mathbb{C}.$

Claim: $\alpha \overline{A} = \overline{\alpha A}$ $\forall \alpha \in \mathbb{C}$

Proof: If $\alpha = 0$ true.

Else: Let $\overline{A} = \bigcap F_{\in \text{Closed}(X)} F$

$f(u) := \frac{1}{\alpha}u$

$\alpha \overline{A} = f^{-1}(\overline{A}) = f^{-1}\left(\bigcap_{F \in \text{Closed}(X)} F \right) \implies A
\[f^{-1}(F) = \bigcap_{F \in \text{Closed}(X) \land F \supseteq A} F \supseteq aA. \]

Hence \(\alpha \bar{A} + \beta \bar{A} = \bar{\alpha A} + \bar{\beta A} \)

\[\alpha \bar{A} + \beta \bar{A} = \bar{\alpha A} + \bar{\beta A} \]

\[\bar{\alpha A} + \bar{\beta A} = \bar{\alpha A} + \bar{\beta A} \]

\[\bar{\alpha A} + \bar{\beta A} = \bar{\alpha A} + \bar{\beta A} \]

\[\bar{\alpha A} + \bar{\beta A} = \bar{\alpha A} + \bar{\beta A} \]

Claim: \(2A \subseteq A + A \)

Proof: Let \(a \in A \). Then \(2a = a + a \in A + A \).

Claim: Unions and intersections of balanced are balanced.

Proof: Let \(\exists B \subseteq A \) be balanced, i.e.,
\[\pm B_\alpha \subseteq B_\alpha \quad \forall \alpha, \mid \alpha \mid \leq 1. \]

Let now \(\exists \in C : \mid \exists \mid \leq 1 \). With \(\exists \),
\[\pm \bigcup \alpha B_\alpha \subseteq \bigcup \alpha B_\alpha \quad \text{and} \]
\[\pm \bigcap \alpha B_\alpha \subseteq \bigcap \alpha B_\alpha . \]

If \(\exists = 0 \), \(\pm B_\alpha = \emptyset \) so \(\exists \in B_\alpha \forall \alpha \)
and \(\exists \) anything to prove.

Else, let \(\forall \in \bigcap \alpha B_\alpha \). Then
\[\frac{1}{2} \forall \in B_\alpha \forall \alpha . \]

Since \(B_\alpha \) is balanced, \(\forall \in B_\alpha \forall \alpha \).

Similarly for the union. \(\square \)

Claim: If \(A, B \) are balanced, so is \(A + B \).

Proof: Let \(\exists \in C : \mid \exists \mid \leq 1 \) and \(\forall \in Z(A + B) \).
Then \(\forall \in Z(A + B) \exists \alpha \in A, B \).
So \(\forall = zA + zB \in A + B \) as \(A, B \) are balanced. \(\square \)
Claim: If $A \subset B$ are odd, then $A \cup B$ is odd.

Pf. Let $N \in \text{Nbd}((X))$. WTS.

$(A \cup B) \subseteq tN$

for all $t > 0$ large enough.

by cont. $\exists M \in \text{Nbd}((X)) : M \cup M \subseteq N$. for t

Then $A \subseteq tM$

$b \subseteq tM$

$\Rightarrow A \cup B \subseteq tM + tM \subseteq t(M + M) \subseteq tN$. \[\square\]

Claim: If A, B are opt. then $A \cup B$ is opt.

Pf. $+$: $X^2 \rightarrow X$ is cont.

$A \times B \in \text{Cpt}(X^2)$ by def. of prod. top. $A \cup B \equiv + (A \times B)$ and cont. image of cpt. is cpt. \[\square\]

Claim: $\exists A, B \in \text{Closed}(X) : A \cup B \notin \text{Closed}(X)$.

[88]
Proof: Let \(A \subseteq C \) be given by
\[
A := N \in \text{Closed}(C)
\]
\[
B := \left\{ -n + \frac{1}{n} \mid n \in \mathbb{N} \right\} \in \text{Closed}(C).
\]
\[
\frac{1}{n} \in A + B \quad \forall \ n \in \mathbb{N} \text{ and } \Omega(\mathbb{E}A+B).
\]

Claim: \(X, Y \) TVS w/ \(\dim(C_{Y}) < \infty \).

\(\Lambda : X \to Y \) lin. & surj.

Then (1) \(\Lambda \) is open and

(2) \(\text{ker}(\Lambda) \in \text{Closed}(X) \Rightarrow \Lambda \) is cont.

Proof: By Rudin Thm. 1.21 (a), \(Y = \mathbb{C}^{n} \) WOT.

Let \(\{e_{j} : j = 1\} \) be the std. basis.

Since \(\Lambda \) is surj., \(\exists f_{j} : e_{j} \in X : \Lambda f_{j} = e_{j} \).

Define \(\Gamma : \mathbb{C}^{n} \to X \) via
\[
\tau_{\Lambda} \to \sum_{j=1}^{n} \tau_{j} f_{j}
\]

By def., \(\Gamma \) is lin.

By Rudin’s Lemma 1.20, \(\Gamma \) is cont.
By L.N. Claim 3.21, suffice to show that if \(N \in \text{Nbd}(0, x) \) then \(\Lambda N \) contains some \(M \in \text{Nbd}(0, y). \)

Study \(\Pi^{-1}N \). Since \(\Lambda \Pi \mathcal{U} = \emptyset \quad \forall \mathcal{U} \in \mathcal{C} \):

\[
\Pi^{-1}N = \Lambda \Pi \mathcal{U}^{-1} N \subseteq \Lambda N.
\]

But \(\Pi \) is cont., so \(\Pi^{-1}N \in \text{Open}(\mathcal{C}^n) \) and by linearity, \(O_{\mathcal{C}^n} \in \Pi^{-1}N \).

Hence \(\Lambda N \) is indeed open. \(\Rightarrow \) (1).

Next, assume \(\ker \Lambda \in \text{Closed}(X) \) and WTS \(\Lambda : X \to \mathcal{C}^n \) is cont.

Unfortunately, the easiest way to do this seems to involve quotient TVS, so no pts. will be deducted for mistakes here.

\(\hat{\Lambda} : X / \ker(\Lambda) \to \mathcal{C}^n \) is a VS isomorphism and hence a TVS isomorphism.
Note $\mathbb{R}/\ker{\alpha}$ only makes sense if $\ker{\alpha}$ is closed, and $V_S \rightarrow TVS$ iso. bcs. of finite dimensions.

All

$$G := \{ f : [0, 1] \rightarrow \mathbb{C} \mid f \text{ is cont.} \}$$

$$d(f, g) = \int_0^1 \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} \, dx$$

Claim: d is a metric on G.

Pf.:

1. If $d(f, g) = 0$,

$$\int_0^1 \frac{|f(x) - g(x)|}{1 + |f(x) - g(x)|} \, dx = 0$$

 Since integrand ≥ 0 and cont.,

 it must equal ≥ 0 and cont.,

 it must equal zero $\Rightarrow f = g$. \(\square\)

2. d is symm. \(\checkmark\)

3. Triangle ineq. follows from
The fact
\[d(a,b) := \frac{|a-b|}{1 + |a-b|} \]
obey \Delta \neq \text{ on } \mathbb{C}^n.

Note \([0,\infty) \ni \alpha \mapsto \frac{\alpha}{1 + \alpha} \] is increasing, and we're trying to show
\[r(1a-b1) \leq r(1a-c1) + r(1c-b1) \]

Note \[r(\alpha) + r(\beta) \geq r(\alpha \beta) . \]

Indeed,
\[\frac{\alpha}{1 + \alpha} + \frac{\beta}{1 + \beta} \geq \frac{\alpha + \beta}{1 + \alpha \beta} \]
\[\frac{\alpha (1 + \beta) + \beta (1 + \alpha)}{(1 + \alpha) (1 + \beta)} = \frac{\alpha + \beta + 2\alpha \beta}{1 + \alpha \beta} \]
\[\geq \frac{\alpha + \beta + \alpha \beta}{1 + \alpha \beta + \beta} \]
\[\geq \frac{\alpha + \beta}{1 + \alpha \beta + \beta} . \]

So this follows from ordinary \(\Delta \neq \) on \(\mathbb{C} \).
Claim: \(C \) is a VS.

\textbf{Pf.} Obvious.

Claim: \((C,d) \) is a TVS.

\textbf{Pf.} (1) All metric spaces are T1. \(\checkmark \)

(4) We note \(d \) is transl.-linear:

\[d(p,g) = d(p+h, g+h). \]

Hence

\[d(f+g, \hat{f}+\hat{g}) = d(f-f, g-g) \]

\[\leq d(f-f, 0) + d(0, g-g) \]

and the rest of the proof follows as in \(\text{[Q1]} \).

(1) We don't have homogeneity, but

\[d(\lambda f, \lambda g) \leq (1+|\lambda|) d(f, g). \]

Indeed,
\[
\frac{|a|}{1 + |a|^2} = \frac{|a|}{1 + |a|^2} \leq \max\{1, |a|^2\} \frac{|a|}{1 + |a|^2}
\]

But if \(|a| < 1 \),

\[
\frac{1 + |a|^2}{|a|} \geq 1 + |a|^2
\]

So

\[
\frac{|a|}{1 + |a|^2} \leq \max\{1, |a|^2\} \frac{|a|}{1 + |a|^2} \leq (1 + |a|) \frac{|a|}{1 + |a|^2}
\]

The rest of the proof follows similarly to \([\Box]\).

Claim: Let \(V \in \text{Nbhd}(0) \). Then \(\exists \ f: X \to \mathbb{R} \) cont. \(\forall x \in V \) such that \(f(0) = 0 \) and \(f(x) = 1 \) \(\forall x \in V \).

Proof: Let \(\{V_n\} \) be a seq. in \(\text{Nbhd}(0) \) which are all balanced and obey:

\[
V_n + V_n \subseteq V_{n-1}
\]
Define
\[D := \left\{ q \in \mathbb{Q} \mid q = \sum_{n=1}^{\infty} \alpha_n 2^{-n} \right\} \]
and \(\alpha : \mathbb{N} \to \{0, 1\} \) is s.t. \(|\alpha^{-1}(1)| < \infty \).

For \(q \in D \), let \(\alpha(q) \) be the corresponding finite seq.

Then \(q > 0 \) and \(q \leq 1 \).

Define \(A : D \cup [1, \infty) \to \mathbb{P}(X) \)
\[q \mapsto \left\{ \sum_{j=1}^{\infty} \alpha_j(q) \mathcal{V}_j \mid q \in D \right\} \]

\[f : X \to [0, 1] \]
\[x \mapsto \inf \left(\sum_{n \in \mathbb{N}} 1 \mathcal{V}_n \mid x \in A(r) \right) \].

Since \(0_x \in \mathcal{V}_n \) \(\forall \ n \), \(0_x \in A(r) \) \(\forall \ r \),
\[\Rightarrow f(0_x) = 0. \]
If $x \in V^c$, want $\int_{\Delta} f(x) = 1$.

But if $x \in V^c$, x cannot lie in any V_m, and hence not in any of its sums.

Claim: f is cont.

\[\begin{array}{l}
\text{Pf: } \text{1) } f \text{ is cont. @ } 0_X : \\
\quad \forall \varepsilon > 0, \text{ let } N : 2^{-N} < \varepsilon . \\
\quad \text{Then } \| f(V_N) \| < 2^N < \varepsilon . \\
\text{2) } |f(x) - f(y)| \leq |f(x-y)| \\
\quad \text{which follows as in the proof of Roulins 1.24.}
\end{array} \]

\[X := \left\{ f : (0,1) \to \mathbb{C} \mid f \text{ cont. } \right\} \text{ vs. } \]

\[V(f,r) := \left\{ g \in X \mid |g(x) - f(x)| < r \forall x \in (0,1) \right\} \]
Claim: \(\{ V(f, r), f \in X, r > 0 \} \) is NOT a basis.

Pf: Need \(\forall f, g \in X, r, s > 0; \)

\[V(f, r) \cap V(g, s) \neq \emptyset, \]

some \(V(h, t) \subseteq V(f, r) \cap V(g, s) \).

Take \(V(x, 0) \cap V(-x, 0) \) which intersect at the zero point.

But it is impossible to find \(V(h, r) \) inside this as

area tends to zero.

So this is a sub-basis.
Claim: \(f \) is cont.

Pf. Define for \(f, g \in X \):
\[
R(f,g) := \{ h \in X \mid f < h < g \}.
\]

Then \(V(f,r) = \{ g \in X \mid g - f < r \} = \{ g \in X \mid f - r < g < f + r \} = R(f - r, f + r) \).

Actually \(R(f,g) \) is open \(\Box \).

Then if \(g + h \in V(f,r) \),

\[
g + h \in \bigcap_{j=1}^{n} V(f_j, r_j) \subseteq V(f,r)
\]

\[
R(f_j - r_j, f_j + r_j)
\]

\[
R(\min_{j} f_j, \max_{j} f_j) + r_j
\]

\[
L = H
\]

\[
L_1 := g - \frac{1}{2}(g + h - L)
\]

\[
L_2 := h - \frac{1}{2}(g + h - L)\]
\[H_1 := y + \frac{1}{2} (H - (y+h)) \]
\[H_2 := h + \frac{1}{2} (H - (y+h)) \]

Then
\[(g, h) \in R(C_1, H_1) \times R(C_2, H_2) \subseteq t^{-1} (R(C, H)). \]

To see scalar mul. is not cont., consider \((x \mapsto \frac{1}{x}) \in X \) w/ mul. by 0, which yields the zero fn. However, \(\mathcal{N} \) nbhd of \((0, x \mapsto \frac{1}{x}) \) which will land in an arbitrarily small ball of the zero fn.

\[\Box \]

To see \(R(f, g) \) are open, write
\[R(f, g) = \bigcup_{\alpha} \bigcap_{e=1}^{m} V (f^e, r^e), \]

\[\mathcal{N} \]