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Syllabus
• Main source of material for the lectures: this very document (to be published and weekly updated on the course

website–please do not print before the course is finished and the label “final version” appears at the top).

• Official course textbook: No one, main official text will be used but in preparing these notes; I will probably make
heavy use of [Rud86] and [SS05].

• Other books one may consult are [Fol99, FR10, Sim15].

• Two lectures per week: Tue and Thur, 1:30pm–2:50pm in Fine Hall 314.

• People involved:

– Instructor:
Jacob Shapiro shapiro@math.princeton.edu
Office hours: In Fine 603, Thursdays 4pm-5pm starting Feb 13th, before that over zoom on Mondays at 4pm
(send email beforehand).

– Assistants:
Serban Eugen Cicortas cicortas@princeton.edu
Office hours: TBD
Hyungjun Choi hc9325@princeton.edu
Office hours: Tuesdays from 4:30pm - 5:30pm in the common area in front of Jadwin A10.
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• HW will be published on a regular basis but is NOT to be submitted: do it for your own good. Sample solutions
will be published one week later.

• Grade: 50% midterm (written in-person) scheduled-midterm; 45% final exam (oral, in person), 5% bonus.

• Attendance policy: some extra credit to students who attend lectures regularly and ask questions or point out
mistakes.

• Anonymous Ed discussion enabled. Use it to ask questions or to raise issues (technical, academic, logistic) with the
course.

• If you alert me about typos and mistakes in this manuscript (unrelated to the sections marked [todo]) I’ll grant you
some extra credit. In doing so, please refer to a version of the document by the date of typesetting.

– Thanks goes to: Akshat Agarwal, Heyu Li (×3), Natalia Khotiaintseva, Vernon Hughes.

Semester plan
List of (big) theorems and topics aimed at being included:

• Abstract measure theory.

• The Lebesgue integral.

• Radon-Nikodym derivative.

• Fubini, dominated convergence, monotone convergence, Fatou.

• Borel-Cantelli.

• Ergodic theorems.

• Carathéodory’s theorem.

• The Lebesgue-Stieltjes integral.

• Tempered distributions.

• Hilbert space theory and applications to Fourier Transforms, and partial differential equations.

• Some probability theory?

• Introduction to fractals? Maybe.

Semester plan by date:

• Jan 28th 2025: introduction and abstract measure theory

• Jan 29th 2025:

1 Soft introduction

1.1 The Riemann integral and its inadequacies
In a single-value analysis class we are introduced to the rigorous definition of the Riemann integral, which is a C-linear
map from functions

f : [a, b] → R

into numbers. In particular, the integral is interpreted in multiple ways as:

1. The average value the function takes:

f =
1

b− a

∫
[a,b]

f .

2



2. The (signed) area enclosed between the graph of f , the horizontal axis, and the vertical lines x = a, x = b.

3. The appropriate continuum generalization to the discrete sum
N∑

n=1

f (n)

understood in some appropriate sense.

There are various ways to rigorously define the Riemann integral [Rud76]. Let us proceed somewhat informally. The
minimal assumption we make on f is that it is bounded (otherwise we do not even ask whether it is Riemann integrable
or not). To avoid the complication of partitions1, let us always consider regular subdivisions of [a, b]. Then the lower /
upper Riemann sum at N subdivisions is given by

LN (f) :=
b− a

N

N−1∑
n=0

inf

({
f (x)

∣∣∣∣ x ∈
(
a+ [n, n+ 1]

b− a

N

)})
and

UN (f) :=
b− a

N

N−1∑
n=0

sup

({
f (x)

∣∣∣∣ x ∈
(
a+ [n, n+ 1]

b− a

N

)})
.

Definition 1.1. If the limits limN LN (f) and limN UN (f) exists and are equal, we say that f is Riemann integrable
on [a, b] and define its Riemann integral as equal to the result of these equal limits:∫

[a,b]

f := lim
N

LN (f) = lim
N

UN (f) .

We remind the reader of Lebesgue’s theorem. For it we need the notion of measure zero set:

Definition 1.2 (Zero measure sets). Let S ⊆ R be given. We say that S has zero measure iff for any ε > 0 there
exists a countable collection of open intervals { Un }n∈N such that both conditions below hold:∑

n

|Un| < ε

S ⊆
⋃
n∈N

Un .

Theorem 1.3 (Lebesgue’s theorem). The bounded function f : [a, b] → R is Riemann integrable iff its set of discon-
tinuities on [a, b] has measure zero.

Armed with this theorem, it is easy to come up with some examples and counter-examples of Riemann integrable
functions:

1. Any continuous function is Riemann integrable.

2. The indicator function on the cantor Set C, χC : [0, 1] → R, is Riemann integrable. Its set of discontinuities is the
Cantor set C which has measure zero (though it is uncountable).

3. The indicator function on a fat Cantor set is not Riemann integrable.

4. The indicator function onto the rationals χQ : [0, 1] → R is not Riemann integrable since it is discontinuous every-
where.

This last example is especially heinous: the set on which χQ is different than zero is countable, it should somehow integrate
to zero, since the countable set should not interfere with the uncountablity of the whole interval. Hence, already we see
some deficiencies of the Riemann integral: what if the function we are trying to integrate doesn’t have zero measure?
Couldn’t we still say something about its average value? This brings us to the study of just which sets are measurable
at all, which we will get to eventually. Another question is what about unbounded functions? The improper Riemann
integral addresses this to an extent.

1We note in passing that while we are allowed to restrict to regular subdivisions, we are not allowed to restrict to both regular subdivisions
and always sample at the starting / ending point of each sub-interval.
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Example 1.4. Consider the function f : (0, 1) → R given by x 7→ 1√
x

which is clearly unbounded. However, we may
make sense of it formally by defining fn :

[
1
n , 1
]
→ R by x 7→ 1√

x
. For finite n ∈ N, the function fn is bounded and

Riemann integrable, and ∫
[ 1
n ,1]

fn =

∫
x∈[ 1

n ,1]

1√
x
dx = 2x

1
2

∣∣∣1
x= 1

n

= 2− 2√
n
→ 2 .

If we had a finite number of integrable blow ups like this we could somehow manage. But this approach can go horribly
wrong:

Example 1.5. Since (0, 1) ∩ Q is countable, let η : N → (0, 1) ∩ Q be the bijection which enumerates this set. Define
then a sequence of functions fn : [0, 1] → R via

fn (x) :=

{
(x− ηn)

− 1
2 x > ηn

0 x ≤ ηn
(n ∈ N, x ∈ [0, 1]) .

Then define f : [0, 1] → [0,∞] via

f (x) :=

∞∑
n=1

fn (x)

2n
(x ∈ [0, 1]) .

f has the weird property that it is unbounded on every open subinterval of [0, 1], since each one contains a rational
number. Hence f is not Riemann integrable on every subinterval of [0, 1] which is not a singleton.

But somehow we still feel like we should be able to assign an area under the graph of f , since we can do so for
each fn: ∫

[0,1]

fn = lim
ε→0+

∫
[0,ηn−ε]

fn +

∫
[ηn+ε,1]

fn

= lim
ε→0+

∫
x∈[ηn+ε,1]

(x− ηn)
− 1

2 dx

= lim
ε→0+

2 (x− ηn)
+ 1

2

∣∣∣1
x=ηn+ε

= 2
√
1− ηn .

and somehow it should equal∫
[0,1]

f =

∞∑
n=1

2−n

∫
[0,1]

fn =

∞∑
n=1

2−n+1
√

1− ηn ≤
∞∑

n=1

2−n+1 < ∞ .

From the more practical and less theoretical perspective, a much more severe limitation of the Riemann integral is
how it behaves with limits. Namely, we have

Theorem 1.6. Let fn : [a, b] → R be a sequence of bounded Riemann integrable functions which converges uniformly
to the bounded function limn fn : [a, b] → R. Then limn fn : [a, b] → R is also Riemann integrable, and

lim
n

∫
[a,b]

fn =

∫
[a,b]

lim
n

fn .

However, establishing uniform converges is notoriously difficult, in fact it is false in many interesting applications. For
instance, letting let η : N → (0, 1) ∩ Q again be the bijection which enumerates its codomain, define

fn := χ{ ηj | j∈[1,n]∩Z } .

Clearly each fn is bounded and Riemann integrable. Also, limn fn = χQ∩[0,1] pointwise. But as we saw above, this limit
is not Riemann integrable. We are looking for a way to exchange integration and limit without uniform convergence. We
shall see that to do so we need to invent a new, more robust notion of integration.

1.2 Intuitive difference between Riemann and Lebesgue integration
We will see that the conceptually, while the Riemann integral divides the domain into small pieces and measures the area
of each small rectangle, the Lebesgue integral does things somewhat sophisticatedly. To calculate the Lebesgue integral,
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we first need the notion of a measure which generalizes volume on Euclidean space to arbitrary spaces. Then we divide
the codomain into small chunks and ask what is the measure of the preimage of that chunk in the domain. This turns
out to give a more robust definition of the integral, which is not so susceptible to discontinuities and behaves better with
limits. For that reason we now turn to abstract measure theory.

2 Abstract measure theory (Rudin RCA Chapter 1)
We now want to define the concept of measurability and ultimately assign a measure to measurable sets. This will be
useful when we define the Lebesgue integral, and furthermore, this has applications in probability theory where measurable
sets may be considered as those events for which a probability can be calculated.

2.1 Measurable sets and measurable functions
On a set X, we now want to define a system of subsets much like Open (X) is a system of subsets with certain ax-
ioms.

Definition 2.1 (σ-algebra). Let X be a set. A collection M ⊆ P (X) is called a σ-algebra in X iff M obeys the
following conditions:

1. X ∈ M (contains the whole space).

2. X \A ∈ M for each A ∈ M (closed under complements).

3. If {An }n∈N is a sequence of subsets such that An ∈ M for each n ∈ N then⋃
n∈N

AN ∈ M .

(closed under countable unions).

The tuple (X,M) where M is a σ-algebra on X, is together called a measure space.

Note that this definition automatically implies: (1) closure with respect to countable intersections via De Morgan and
(2) ∅ ∈ M.

Remark 2.2 (Etymology). The prefix σ denotes the closure w.r.t. countable unions. If we had merely closure wr.t.
finite unions this would be called an algebra.

Contrast this with the notion of a topology on a given set X:

Definition 2.3 (Topology). Let X be a set. A collection T ⊆ P (X) is called a topology on X iff T obeys the
following conditions:

1. X,∅ ∈ T (contains the whole space and the empty set).

2.
⋂n

j=1 Uj ∈ T if U1, · · · , Un ∈ T (closed under finite intersections).

3.
⋃

α∈I Uα ∈ T if Uα ∈ T for any α ∈ I, where I is an arbitrary set (not necessary countable) (closed under
arbitrary unions).

The tuple (X,T), if T is a topology on X, is together called a topological space.

When dealing with a topological space X, it is often convenient to denote its (already defined) topology as Open (X).
Similarly, we given a measure space X, we denote by Measurable (X) the σ-algebra in it, should it be understood from
the context.

Definition 2.4 (Measurable function). Let f : X → Y be given where X,Y are two measure spaces. We say that f
is measurable iff f−1 (A) ∈ Measurable (X) for each A ∈ Measurable (Y ).

Note that Rudin [Rud86] defines measurable function slightly differently (his codomains are always topological spaces).
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Claim 2.5. The composition of two measurable functions is again measurable.

Proof. Let f : X → Y and g : Y → Z be two measurable functions between measure spaces. Let A ∈ Measurable (Z).
Then g−1 (A) ∈ Measurable (Y ). But then f−1

(
g−1 (A)

)
∈ Measurable (X). But f−1

(
g−1 (A)

)
= (g ◦ f)−1

(A) so
we conclude g ◦ f is measurable.

Example 2.6 (The trivial σ-algebra). Given a set X, we may consider its power set P (X) as a σ-algebra on it. It
is called the trivial or largest σ-algebra on X. The smallest one is of course {∅, X }.

Example 2.7. Take X := { 1, 2, 3, 4 }. Then a possible σ-algebra is {∅, { 1, 2 } , { 3, 4 } , { 1, 2, 3, 4 } }.

Example 2.8. Let A ∈ P (X). Then {∅, A,X \A,X } is the smallest σ-algebra which contains A.

We may consider the category of measure spaces, in which measurable functions are precisely the morphisms.

Remark 2.9. A topology need not be a σ-algebra: it could fail to contain complements.

Claim 2.10. An arbitrary intersection of σ-algebras is again a σ-algebra. Not so for unions.

Proof. TODO, fix this: (even though a-priori it lies within an intersection of σ-algebras). Let then An ∈ σ (F) for
every n ∈ N. Let M ∈ Ω. Then An ∈ M by definition, so

⋃
n An ∈ M, as M is itself a σ-algebra. But since M ∈ Ω

was arbitrary, the union lies in the intersection σ (F). The other two properties, complements and the entire space,
are verified in the same manner.
TODO : provide a counter-example.

Definition 2.11 (σ-algebra generated by a function). Let f : X → Y with Y a measure space and X a set. Then
the σ-algebra generated by f is a σ-algebra on X, denoted by σ (f), given by

σ (f) :=
{
f−1 (A)

∣∣ A ∈ Measurable (Y )
}
.

One may then rephrase and say that, if X already had a measure space structure, then f is measurable w.r.t. it iff
σ (f) ⊆ Measurable (X). Cf. with initial topology.

Theorem 2.12 (σ-algebra generated by a collection of subsets). Let F ⊆ P (X) with X some set. Then, there exists
a smallest (in the sense of set inclusion) σ-algebra σ (F) in X such that F ⊆ σ (F). We call σ (F) the σ-algebra
generated by F.

Proof. (See [Rud86] Theorem 1.10) Let Ω be the family of all σ-algebras in X which contain F. Of course P (X) is
in Ω, so it is not empty. Define the set

σ (F) :=
⋂

M∈Ω

M .

Clearly F ⊆ σ (F) by construction. The fact that σ (F) is itself a σ-algebra and not just a set follows via Claim 2.10.

Definition 2.13 (Borel sets). Given a topology on X, by Theorem 2.12 there is a σ-algebra generated by Open (X):
σ (Open (X)). The elements of σ (Open (X)) are called the Borel sets of X. In particular:

• Closed sets are also Borel sets, since they are the complements of open sets.

• Countable unions of closed sets are also Borel sets. These are called Fσ’s (F=closed, σ=union (summe)). For
example [a, b) is a Fσ set of R with its standard topology.

• Countable intersections of open sets are also Borel sets. These are called Gδ’s (G=open, δ=intersection (durch-
schnitt)). For example [a, b) is also a Gδ set of R with its standard topology.

We denote this special σ-algebra of Borels sets by B (X) := σ (Open (X)).
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Thus, given a topology on X we are automatically provided with the Borel σ-algebra on it! If we don’t specify any
other σ-algebra on a (otherwise topological) space, we shall always mean the Borel σ-algebra.

Claim 2.14. Let f : X → Y be a mapping between two topological spaces such that f−1 (U) ∈ B (X) for any
U ∈ Open (Y ). Then f is measurable w.r.t. the Borel σ-algebras on both of these spaces.

Proof. We may consider the set
M :=

{
A ∈ P (Y )

∣∣ f−1 (A) ∈ B (X)
}
.

Cf. with final topology. We may verify it is stable under complements and countable unions, so it is itself a σ-algebra
in Y . By hypothesis, Open (Y ) ⊆ M and so actually

Open (Y ) ⊆ B (Y ) ⊆ M

by construction of B (Y ) ≡ σ (Open (Y )). But by B (Y ) ⊆ M we learn that f is measruable w.r.t. B (Y ).

This then coincides with Rudin’s definition of measurable function.

Theorem 2.15 (Rudin’s Theorem 1.8). Let u, v : X → R be two measurable functions (R is considered a measure
space w.r.t. B (R)). Let φ : R2 → Y be continuous where Y is some topological space. Let h : X → Y be given by

X ∋ x 7→ φ (u (x) , v (x)) ∈ Y .

Then h is measurable w.r.t. Measurable (X) and B (Y ).

Proof. The function f : X → R2 given by u× v. We have h = φ ◦ f , so we only have to show f is measurable. Let R
be any open rectangle on the plane with sides parallel to the axes: R = I1 × I2 for two open intervals I1, I2 and so

f−1 (R) = u−1 (I1) ∩ v−1 (I2)

which is measurable by assumption on u, v. Since every open set V ∈ Open
(
R2
)

is the countable union of such
rectangles Ri, we find

f−1 (V ) = f−1

( ∞⋃
i=1

Ri

)
=

∞⋃
i=1

f−1 (Ri)

and hence f−1 (V ) is measurable and so is f .

Theorem 2.16 (Rudin’s Theorem 1.9). Let X be a measure space. Then

1. If u, v : X → R are measurable then f : X → C defined by f := u+ iv is measurable.

2. If f : X → C is measurable then Re {f} , Im {f} and |f | are measurable functions from X → R.

3. If f, g : X → C are measurable then f + g and fg are too.

4. If A ∈ Measurable (X) then χA : X → R is a measurable function.

5. If f : X → C is measurable then there exists some α : X → C measurable such that f = α |f |.

Proof. We only prove the last statement. Set E := f−1 ({ 0 }) (a measurable set) and Y := C \ { 0 }. Let

φ : Y → C

z 7→ z

|z|
.

Define
α (x) := φ (f (x) + χE (x)) (x ∈ X) .
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Show that φ is continuous on Y to conclude.

In what follows, it will be convenient to consider the extended real line [−∞,∞], see Appendix A. In particular we shall
always consider it as a measure space w.r.t. B ([−∞,∞]) unless otherwise specified.

Theorem 2.17. Let f : X → [−∞,∞] be a map with X a measure space. Here we consider [−∞,∞] as the extended
real line with its topology, see Appendix A. Then if

f−1 ((α,∞]) ∈ Measurable (X) (α ∈ R)

then f is measurable w.r.t. Measurable (X) and B ([−∞,∞]).

Proof. The set (α,∞] is already open in [−∞,∞] so our goal is to build any of the basis elements of [−∞,∞] using
this basic open set. To that end, let

Ω :=
{
E ⊆ [−∞,∞]

∣∣ f−1 (E) ∈ Measurable (X)
}
.

Let α ∈ R and { αn }n → α from below. Then (αn,∞] ∈ Ω by hypothesis, and we have

[−∞, α) =
∞⋃

n=1

[−∞, αn] =

∞⋃
n=1

(αn,∞]c

so we get the other type of basic open set, [−∞, α). Next, using

(α, β) = [−∞, β)
⋂

(α,∞]

we see that since every open set of [−∞,∞] is a countable union of segments of the above types, so that Ω contains
all open sets of [−∞,∞] and hence f is measurable.

2.2 Limits of measurable functions
Recall the definition of the lim inf and lim sup: Let { an }n∈N ⊆ R be a given sequence. Then

lim inf
n→∞

an ≡ lim
n→∞

(
inf
m≥n

am

)
= sup

n∈N
inf
m≥n

am .

Similarly,

lim sup
n→∞

an ≡ lim
n→∞

(
sup
m≥n

am

)
= inf

n∈N
sup
m≥n

am .

Evidently, we always have
lim inf
n→∞

an ≤ lim sup
n→∞

an

and if the limit of { an }n actually exists then both are equal to that limit.

Theorem 2.18. If fn : X → [−∞,∞] is a sequence of measurable functions then supn∈N fn : X → [−∞,∞] defined
by

X ∋ x 7→ sup
n∈N

fn (x)

and lim supn→∞ fn : X → [−∞,∞] defined by

X ∋ x 7→ lim sup
n→∞

(fn (x))

are both measurable.
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Proof. Let us denote g := supn∈N fn and h := lim supn→∞ fn. Then, from the definition of g it follows that

g−1 ((α,∞]) =

∞⋃
n=1

f−1
n ((α,∞]) .

Indeed, let us show this. If x ∈ g−1 ((α,∞]) then g (x) > α. That means supn∈N fn (x) > α so in particular there
must exist n ∈ N so that fn (x) > α. Alternatively, if x ∈

⋃∞
n=1 f

−1
n ((α,∞]) then there exists some n ∈ N for which

fn (x) > α. This in particular implies g (x) > α.
We conclude that g is measurable. We write

h = inf
k≥1

sup
i≥k

fi

so that h is also measurable by similar representations.

Corollary 2.19. We have

1. The limit of every pointwise convergent sequence of complex measurable functions is measurable.

2. If f, g : X → R are measurable then so are max ({ f, g }) and min ({ f, g }).

3. In particular, so are f+ ≡ max ({ f, 0 }) and f− = −min ({ f, 0 }).

We may always decompose any R-valued function into its positive and negative parts as follows

f = f+ − f−

with f± the positive and negative parts of f , and |f | = f+ + f− 2.

2.3 Simple functions
We shall build a theory of integration starting from primitive functions and then take limits. This will proceed as follows.
Given any function

f : X → C

we write it as
f = Re f + i Im {f} .

Then we write
Re f = Re f+ − Re f−

and similarly for the imaginary part, so that any complex function is the (complex) linear combination of four nonnegative
functions. Measurability is inherited by all four. Then we want to approximate each nonnegative function with even
simpler objects, simple functions.

Definition 2.20 (Simple function). Let X be a measure space and s : X → C. If |im (s)| < ∞ then s is called a
simple function. If in addition, im (s) ⊆ [0,∞) then s is called a nonnegative simple function. We are not including
±∞ as part of C so that simple functions, by definition, cannot take on the values ±∞.

Clearly simple functions always take on the form

s =

n∑
i=1

αiχAi

for some n ∈ N, αi ∈ C and Ai ≡ { x ∈ X | s (x) = αi }.

Claim 2.21. A simple function X → C of the form s =
∑n

i=1 αiχAi
is measurable iff Ai ∈ Measurable (X) for

i = 1, . . . , n.

2Note a certain minimal property for these objects: Note that if f = g − h with g, h ≥ 0 then f+ ≤ g and f− ≤ h. This is because f ≤ g
and 0 ≤ g clearly implies max ({ f, 0 }) ≤ g.
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Proof. (We consider C w.r.t. the Borel sigma algebra, as usual). By Claim 2.14 we only need to check that the
pre-image of closed sets is msrbl. Hence let F ⊆ C be closed. If F does not contain any of the points αi then
s−1 (F ) = ∅ ∈ Measurable (X). If F contains αi1 , . . . , αik then

s−1 (F ) =

k⋃
j=1

Aij

and the union of measurable sets is measurable. Conversely, if s is measurable, take the (closed) singleton { αi } to
verify that Ai ∈ Measurable (X).

Now we want to establish that any nonnegative measurable function may be approximated by simple functions from
below.

Theorem 2.22 (Approximation by simple functions). Let f : X → [0,∞] be measurable. Then there exist simple
measurable functions sn : X → [0,∞) such that

1. 0 ≤ s1 ≤ s2 ≤ · · · ≤ f .

2. sn → f pointwise.

Proof. For every n ∈ N, define

φn : R → [0,∞]

t 7→

{
2−n ⌊2nt⌋ 0 ≤ t < n

n t ∈ [n,∞]

which is depicted, at n = 3 in Figure 1. The function φn converges to t 7→ t as n → ∞. It is doing that in two ways
simultaneously:

1. Th region over which it does not resemble the identity function, [n,∞] keeps shrinking.

2. The region over which it does resemble the identity function, it becomes finer and finer at approximation the
identity function there by subdividing [0, n] into 2n sub-intervals and being saw-toothed there.

First, note that at each fixed n ∈ N, φn is a Borel function. Indeed, it is a simple function that takes on basically
2n values on intervals and as such it is measurable. Moreover, we have

φn (t) ≤ φn+1 (t) (t ∈ [0,∞] , n ∈ N) .

Indeed, we observe that

t− 2−n < φn (t) ≤ t (t ∈ [0, n])

which leads to the purported monotonicity. Now we set

sn := φn ◦ f

which automatically fulfills both of our constraints, using the fact that the composition of measurable functions is
measurable Claim 2.5.

2.4 Measures
We now come to the notion of measure which for us is to be understood as a generalization of volume in Rn to much more
exotic sets (yet they still have to be measurable).

10
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Figure 1: The function φ3 approximating the identity.

Definition 2.23 (Measure). A complex measure is a map

µ : Measurable (X) → C ∪ {∞ }

which is countably additive, i.e.,

µ

( ∞⋃
n=1

An

)
=

∞∑
n=1

µ (An) (An ∈ Measurable (X) : An ∩Am = ∅∀n ̸= m) (2.1)

and for which ∃A : µ (A) < ∞ (otherwise it is not very interesting). If im (µ) ⊆ [0,∞] then we say µ is a positive
measure.

Note: it is customary when using the term complex measure to assume µ never takes on the value ∞ (unlike when we
use the phrase positive measure).

Theorem 2.24. Let µ : Measurable (X) → [0,∞] be a positive measure. Then

1. µ (∅) = 0 (so in particular (2.1) holds also for finitely many unions).

2. (monotonicity) A ⊆ B implies µ (A) ≤ µ (B) for all A,B ∈ Measurable (X).

3. µ may be approximated from “inside” as follows:

lim
n→∞

µ (An) = µ

( ∞⋃
n=1

An

)
for all increasing sequences An ∈ Measurable (X): A1 ⊆ A2 ⊆ A3 ⊆ · · · .

4. µ may be approximated from “outside” as follows:

lim
n→∞

µ (An) = µ

( ∞⋂
n=1

An

)
for all decreasing sequences An ∈ Measurable (X): A1 ⊇ A2 ⊇ A3 ⊇ · · · with µ (A1) assumed finite.

Proof. By assumption, there exists B ∈ Measurable (X) with µ (B) < ∞. Define now a sequence A1 := B, Aj := ∅
for all j ≥ 2. This sequence obeys the conditions of (2.1) since it is pairwise disjoint. Hence we find

∞ > µ (B) = µ (B) +

∞∑
j=2

µ (∅)

11



and the only way this equation could hold is if µ (∅) = 0.
For monotonicity, given A,B ∈ Measurable (X) with A ⊆ B, let us decompose B = A ∪ (B \A) which are now

disjoint. Hence additivity implies
µ (B) = µ (A) + µ (B \A)

and using positivity of the measure, we find this is larger than or equal to µ (A).
Let us now establish the approximation properties. To do so, given any increasing sequence A1 ⊆ A2 ⊆ A3 ⊆ · · · ,

we decompose it into disjoint parts as follows:

B1 := A1

Bn := An \An−1 (n ≥ 2) .

Note that An =
⋃n

j=1 Bj . So by (2.1) we find

µ (An) =

n∑
j=1

µ (Bj)

and moreover, since
⋃

n An =
⋃

n Bn, we get

µ

(⋃
n

An

)
=

∞∑
n=1

µ (Bn) .

The result now follows by taking the limit n → ∞ on the penultimate displayed equation.
For approximation from outside, we make the following new variables.

Cn := A1 \An (n ≥ 1) .

This implies C1 ⊆ C2 ⊆ C3 ⊆ · · · and
µ (Cn) = µ (A1)− µ (An) .

Moreover, A1 \ (
⋂
An) =

⋃
n Cn, so now we may invoke the previous statement on the sequence Cn to get

µ (A1)− µ

(⋂
n

An

)
= µ

(
A1 \

⋂
n

An

)

= µ

(⋃
n

Cn

)
= lim

n
µ (Cn)

= lim
n

(µ (A1)− µ (An))

= µ (A1)− lim
n

µ (An)

from which our result follows.

Our main example for a positive measure will be the Lebesgue measure on Rn, but it will be a little while before we can
define it.

Example 2.25 (Counting measure). Let Measurable (X) = P (X) and define c : Measurable (X) → [0,∞] via

S 7→ |S|

(the cardinality of a set, ∞ if it is countable or higher). c is called the counting measure.

Example 2.26 (Unit mass). Let Measurable (X) = {∅, X, { x0 } , X \ { x0 } } be a σ-algebra and define δx0
:

Measurable (X) → [0,∞] by

S 7→

{
1 x0 ∈ S

0 x0 /∈ S
.
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δx0
is called the unit mass concentrated at x0. It is closely related to the Dirac delta function.

Example 2.27. If we take the counting measure c on N and set An := N≥n then
⋂

n An = ∅ and yet µ (An) = ∞.
This does not violate the theorem above since the assumption µ (A1) < ∞ is clearly violated here.

2.5 Integrating positive functions
Given a positive measure µ : Measurable (X) → [0,∞], we now proceed to define the Lebesgue integral associated to
µ.

Definition 2.28 (The Lebesgue integral of positive simple measurable functions). Let s =
∑n

i=1 αiχAi
be a positive

measurable simple function. Then we define the integral of s on a set w.r.t. µ as∫
E

sdµ :=

n∑
i=1

αiµ (Ai ∩ E) (E ∈ Measurable (X)) .

We use the convention 0 · ∞ = 0 in case αi = 0 yet µ (S) = ∞.

Definition 2.29 (The Lebesgue integral of positive functions). Let f : X → [0,∞] be measurable. Then∫
E

fdµ := sup
s

∫
E

sdµ

where the supremum ranges over all simple measurable functions s which obey 0 ≤ s ≤ f . Note if f is simple the two
definitions coincide.
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A The extended real line
We shall frequently use the symbol [−∞,∞] or R to denote the extended real line. As a set it is given by

R := R ∪ { ±∞ }

and topologically we add the neighborhoods of ±∞ as those sets which contain the basic open sets

(a,∞]

and
[−∞, a)

respectively.

Lemma A.1. test lemma

Proposition A.2. test proposition

B Glossary of mathematical symbols and acronyms
Sometimes it is helpful to include mathematical symbols which can function as valid grammatical parts of sentences. Here
is a glossary of some which might appear in the text:

• im (f) is the range or image of a function: If f : X → Y then

im (f) ≡ { f (x) ∈ Y | x ∈ X } .

• The bracket ⟨·, ·⟩V means an inner product on the inner product space V . For example,

⟨u, v⟩R2 ≡ u1v1 + u2v2
(
u, v ∈ R2

)
and

⟨u, v⟩C2 ≡ u1v1 + u2v2
(
u, v ∈ C2

)
.

• Sometimes we denote an integral by writing the integrand without its argument. So if f : R → R is a real function,
we sometimes in shorthand write ∫ b

a

f

when we really mean ∫ b

t=a

f (t) dt .

This type of shorthand notation will actually also apply for contour integrals, in the following sense: if γ : [a, b] → C
is a contour with image set Γ := im (γ) and f : C → C is given, then the contour integral of f along γ will be denoted
equivalently as ∫

Γ

f ≡
∫
Γ

f (z) dz ≡
∫ b

t=a

f (γ (t)) γ′ (t) dt

depending on what needs to be emphasized in the context. Sometimes when the contour is clear one simply writes∫ z1

z0

f (z) dz

for an integral along any contour from z0 to z1.

• iff means “if and only if”, which is also denoted by the symbol ⇐⇒.

• WLOG means “without loss of generality”.

• CCW means “counter-clockwise” and CW means “clockwise”.

• ∃ means “there exists” and ∄ means “there does not exist”. ∃! means “there exists a unique”.
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• ∀ means “for all” or “for any”.

• : (i.e., a colon) may mean “such that”.

• ! means negation, or “not”.

• ∧ means “and” and ∨ means “or”.

• =⇒ means “and so” or “therefore” or “it follows”.

• ∈ denotes set inclusion, i.e., a ∈ A means a is an element of A or a lies in A.

• ∋ denotes set inclusion when the set appears first, i.e., A ∋ a means A includes a or A contains a.

• Speaking of set inclusion, A ⊆ B means A is contained within B and A ⊇ B means B is contained within A.

• ∅ is the empty set { }.

• While = means equality, sometimes it is useful to denote types of equality:

– a := b means “this equation is now the instant when a is defined to equal b”.

– a ≡ b means “at some point above a has been defined to equal b”.

– a = b will then simply mean that the result of some calculation or definition stipulates that a = b.

– Concrete example: if we write i2 = −1 we don’t specify anything about why this equality is true but writing
i2 ≡ −1 means this is a matter of definition, not calculation, whereas i2 := −1 is the first time you’ll see this
definition. So this distinction is meant to help the reader who wonders why an equality holds.

B.1 Important sets
1. The unit circle

S1 ≡ { z ∈ C | |z| = 1 } .

2. The (open) upper half plane

H ≡ { z ∈ C | Im {z} > 0 } .
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