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1. Show that if Xn → X in total variation (see the lecture notes footnote for a definition) then Xn → X in distribution.

2. Show that if Xn → X in probability then Xn → X in distribution.

3. Show that Xn → X in distribution iff P [Xn < t] → P [X < t] pointwise in t ∈ R.

4. Show that if E
[
eitXn

]
→ E

[
eitX

]
pointwise in t then Xn → X in distribution.

5. (Høffding’s lemma) Using Taylor and Jensen, show that if X is a real-valued random variable such that a ≤ X ≤ b
almost-surely, then

E
[
etX
]
≤ exp

(
tE [X] +

t2 (b− a)
2

8

)
(t ∈ R) .

Also show the trivial lower bound from Jensen,

E
[
etX
]
≥ etE[X] (t ≥ 0) .

6. (Paley–Zygmund inequality) Let X ≥ 0 be an L2 random variable. Show that then

P [X ≥ θE [X]] ≥ (1− θ)
2 E [X]

2

E [X2]
(θ ∈ [0, 1]) .

7. (Hölder’s equality)

(a) Let 0 < r < s < 1 and Y ≥ 0 be a random variable. Show that

E [Y r] = (E [Y s])
r
s exp

(
−
∫ s

q=0

fr,s (q)Varq [log (Y )] dλ (q)

)
where

fr,s (q) :=
1

s
min ({ r, q }) (s−max ({ r, q })) (q ∈ (0, s))

and for any random variable X,

Varq [X] ≡ Eq

[
(X − Eq [X])

2
]
, Eq [·] :=

E
[
·eqX

]
E [eqX ]

.

(b) Now let { Yn }n∈N be a sequence of non-negative random variables such that for any s ∈ (0, 1) there exists some
Cs < ∞ such that

sup
n∈N

E [Y s
n ] ≤ Cs

and such that for any s ∈ (0, 1) there exists some cs > 0 with which

inf
q∈(0,s)

Varq [log (Yn)] ≥ csn (n ∈ N) .
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Conclude that for any r ∈ (0, 1),

E [Y r
n ] ≤ Dr exp (−drn) (n ∈ N) .

Find optimal Dr < ∞ and dr > 0.

8. (The Layer-Cake Representation revisited (cf. HW4Q6)) Let X ≥ 0 be a random variable. Show that

E [Xs] = s

∫ ∞

t=0

P [X > t] ts−1dλ (t) (s > 0) .

9. Let X be a real-valued random variable such that there are 0 < α < a, ε ∈ (0, 1), β ∈ (0,∞) with which

P [|X| < α] ≤ β
√

P [X ≥ a]P [X ≤ −a] + ε .

Show that then, the following lower bound holds

E
[
X2
]
≥ 1− ε

1 + 1
2β

α2 .

10. Let A > 0 be some n×n matrix with entries in F ∈ { R,C } (recall that A > 0 means ⟨v,Av⟩ > 0 for all v ∈ Cn\{ 0 };
with this notation we mean please carry out the calculation for both real and complex cases). Calculate the following
integrals:

(a) The Gaussian normalization factor:

ZA :=

∫
x∈Fn

e−
1
2 ⟨x,Ax⟩dλ (x) .

(b) The unnormalized Gaussian MGF: For some v ∈ Fn,

ZAEA

[
e⟨v,X⟩

]
≡
∫
x∈Fn

e−
1
2 ⟨x,Ax⟩+⟨v,x⟩dλ (x) .

(c) The Gaussian two point function: For some v1, v2 ∈ Fn,

EA [⟨v1, X⟩ ⟨X, v2⟩] .

11. Let {Xn }n∈N be an IID sequence of Bernoulli random variables, each with parameter p ∈ (0, 1).

(a) Calculate the asymptotic distribution of the random variable

AN :=
1

N

N∑
n=1

Xn

as N → ∞ by invoking the central limit theorem.
(b) Repeat this exercise by proving (using Striling) and then invoking the “De Moivre–Laplace theorem”:(

n
k

)
pkqn−k ∼=

1√
2πnpq

e−
(k−np)2

2npq (n ∈ N, p+ q = 1; p, q > 0) .

12. Let Z be a standard normal random variable distributed in N (0, 1) and µ ∈ R, σ > 0. Define a new random variable

X := eµ+σZ .

We say that X is a log-normal random variable with distribution parameters µ, σ.

(a) Calculate E [Xn] for all n ∈ N≥0 (there is a simple closed-form formula) and show

E [Xn] = enµ+
1
2σ

2n2

(n ∈ N) .

(b) Show that

E
[
etX
]

= ∞ (t > 0) .
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(c) Define a measure

ν :=

∞∑
k=1

pkδxk

where { xk }k∈N ⊆ (0,∞) is some sequence and { pk }k∈N ⊆ (0,∞) is chosen so that
∑∞

k=1 pk = 1 and

∞∑
k=1

pkx
n
k = E [Xn] (n ∈ N) .

Conclude that ν and PX have the same sequence of moments but they are not the same measure.
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