Princeton University Spring 2025 MAT425: Measure Theory HW8 Apr 6th 2025

April 15, 2025

- 1. (Egorov's theorem) Let $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d), \lambda)$ be the usual measure space and $\{f_n : \mathbb{R}^d \to \mathbb{C}\}_{n \in \mathbb{N}}$ be a sequence of measurable functions. Show that if there exists some $S \in \mathfrak{B}(\mathbb{R}^d)$ such that $\lambda(S) < \infty$ such that $\{f_n\}_n$ converges λ -almost-everywhere on S to some function $f : S \to \mathbb{C}$, then for any $\varepsilon > 0$ there exists some $M \in \mathfrak{B}(\mathbb{R}^d)$ with $M \subseteq S$ such that $\lambda(M) < \varepsilon$ and $\{f_n\}_n$ converges uniformly to f on $S \setminus M$.
- 2. Find a counter-example of the above theorem that is violated because $\lambda(S) < \infty$ is violated.
- 3. (Luzin's theorem) Take the same $(\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d), \lambda)$ and let $f : \mathbb{R}^d \to \mathbb{C}$ be a measurable function. Show that
 - (a) For any $\varepsilon > 0$ and any $S \in \mathfrak{B}(\mathbb{R}^d)$ such that $\lambda(S) < \infty$, there exists $F \in \text{Closed}(\mathbb{R}^d)$ such that $\lambda(S \setminus F) < \varepsilon$ and such that $f|_F : F \to \mathbb{C}$ is continuous.
 - (b) For any $\varepsilon > 0$ and any $S \in \mathfrak{B}(\mathbb{R}^d)$ such that $\lambda(S) < \infty$ and such that S is *locally compact*, there exists $F \in \operatorname{Cpt}(\mathbb{R}^d)$ such that $\lambda(S \setminus F) < \varepsilon$, and such that $f|_F : F \to \mathbb{C}$ is continuous. Moreover, there exists a *continuous* function $g : \mathbb{R}^d \to \mathbb{C}$ with compact support such that $f|_F = g|_F$ and such that

$$\sup_{x \in \mathbb{R}^{d}} |g(x)| \le \sup_{x \in \mathbb{R}^{d}} |f(x)|$$

4. Let a measure be given by

$$\mu = \sum_{x \in S} c_x \delta_s$$

where $S \subseteq X$ is countable and (X, Msrbl(X)) is a measurable space, and $\{c_x\}_{x \in S} \subseteq \mathbb{C}$ is some sequence. Calculate $|\mu|$.

5. Let the Hermitian matrices be denoted by

$$\operatorname{Herm}_{N}(\mathbb{C}) \equiv \{ A \in \operatorname{Mat}_{N}(\mathbb{C}) \mid A = A^{*} \}$$

and the unitary matrices

$$\mathcal{U}(N) \equiv \left\{ U \in \operatorname{Mat}_{N}(\mathbb{C}) \mid U^{*} = U^{-1} \right\}$$

With the notation $\mathbb{T} := \mathbb{S}^1$, we denote by \mathbb{T}^N all $N \times N$ diagonal unitary matrices, which is an Abelian subgroup of $\mathcal{U}(N)$. We note that as real vector spaces,

$$\operatorname{Herm}_{N}(\mathbb{C}) \cong \mathbb{R}^{N^{2}}$$

Moreover, as real manifolds, $\dim_{\mathbb{R}} (\mathcal{U}(N)) = N^2$. As such, when we unitarily diagonalize a Hermitian matrix $A = A^*$ to factorize it as

$$A = U^* \Lambda U$$

with $U \in \mathcal{U}(N)$ the matrix of orthonormal eigenvectors and $\Lambda = \text{diag}(\Lambda_1, \dots, \Lambda_N) \in \mathbb{R}^N$ the eigenvalues, the matrix U is not fully determined, since U determines the eigenvectors of A, but each of these eigenvectors is still free to have a phase gauge degree of freedom: If $A\psi = a\psi$ then also $Ae^{i\theta}\psi = ae^{i\theta}\psi$. As such, $U\text{diag}(e^{i\theta_1}, \dots, e^{i\theta_N})$ (for some $\theta_1, \dots, \theta_N \in \mathbb{R}$) is also a "valid" unitary which diagonalizes A. If we want to work towards a change of variable

formula, we need the diagonalization map to be well-defined. One way to deal with this is to rather work with the quotient space

 $\mathcal{U}(N)/\mathbb{T}^N$,

i.e., equivalence classes of unitary matrices up to diagonal unitary matrices (which are precisely the phases of the eigenvectors). Since both $\mathcal{U}(N)$ and \mathbb{T}^N are Lie groups, we need to establish that the quotient $\mathcal{U}(N)/\mathbb{T}^N$ is also one and consider it as a real manifold of dimension $N^2 - N$. We then need to find a chart for this manifold. Once this is done, we define a map

$$\varphi : \operatorname{Herm}_{N}(\mathbb{C}) \to \mathbb{R}^{N} \times (\mathcal{U}(N) / \mathbb{T}^{N})$$

by

$$A \mapsto (\Lambda, [U]) \equiv (\varphi_{\Lambda} (A), \varphi_{[U]} (A))$$

where $U \in \mathcal{U}(N)$, $\Lambda \in \mathbb{R}^N$ and $A \equiv U^* \Lambda U$.

Work out the change of variable formula in this case for φ , i.e., find some measurable $\delta : \mathbb{R}^N \to \mathbb{C}$ measurable so that the following equation holds for any measurable $f : \mathbb{R}^N \to \mathbb{C}$:

$$\int_{A \in \operatorname{Herm}_{N}(\mathbb{C})} f(\varphi_{\Lambda}(A)) \, \mathrm{d}\lambda(A) = \int_{\Lambda \in \mathbb{R}^{N}} f(\Lambda) \, \delta(\Lambda) \, \mathrm{d}\lambda(\Lambda) \, .$$

We identify

$$\delta\left(\Lambda\right) = \int_{[U] \in \mathcal{U}(N)/\mathbb{T}^{N}} \left|\det\left(\left(\mathcal{D}\varphi\right)\left(\Lambda, [U]\right)\right)\right| \mathrm{d}H\left([U]\right)$$

where H: Msrbl $(\mathcal{U}(N)/\mathbb{T}^N) \to [0,1]$ is the appropriate measure.

- 6. Let $(\Omega, \operatorname{Msrbl}(\Omega), \mathbb{P})$ be a probability space. Find a sequence $\{E_{\alpha}\}_{\alpha \in A} \subseteq \operatorname{Msrbl}(\Omega)$ which is merely *pairwise* independent yet not fully independent according to the definition.
- 7. Let $X, Y, Z : \Omega \to [0, \infty)$ be independent identically distributed random variables, all with the distribution μ : Msrbl $(\Omega) \to [0, 1]$. Define

$$F(t) := \mu((0, t])$$
 $(t > 0)$

Show that the probability of the event

 $\{ \omega \in \Omega \mid X(\omega) t^2 + Y(\omega) t + Z(\omega) = 0 \text{ for the unknown } t \text{ has real roots } \}$

equals

$$\int_{t=0}^{\infty} \int_{s=0}^{\infty} F\left(\frac{t^2}{4s}\right) \mathrm{d}\mu\left(t\right) \mathrm{d}\mu\left(s\right).$$

8. Let $X: \Omega \to \mathbb{R}$ be a random variable with $\frac{\mathrm{d}\mathbb{P}_X}{\mathrm{d}\lambda}(-x) = \frac{\mathrm{d}\mathbb{P}_X}{\mathrm{d}\lambda}(x)$ for all $x \in \mathbb{R}$. Calculate $\frac{\mathrm{d}\mathbb{P}_{X^2}}{\mathrm{d}\lambda}$ in terms of $\frac{\mathrm{d}\mathbb{P}_X}{\mathrm{d}\lambda}$.

9. (*The Hausdorff moment problem*) Let $\{m_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ be given. We seek necessary and sufficient conditions on this sequence for there to exist a random variable $X : \mathbb{R} \to [0, 1]$ such that

$$\mathbb{E}\left[X^n\right] = m_n \quad (n \in \mathbb{N}) \ .$$

A sequence m is called *completely monotonic* iff

$$(-1)^k \left((L-1)^k m \right)_n \ge 0 \qquad (n,k \in \mathbb{N}_{\ge 0})$$

where L is the left shift operator on sequences, $(Lm)_n \equiv m_{n+1}$. Show that m is the moments of a random variable iff m is completely monotonic.

10. One could also ask which functions $f : [0, \infty) \to [0, \infty)$ are the Laplace transform of some positive Borel measure, i.e., so that there exists a positive Borel measure

$$\mu:\mathfrak{B}\left([0,\infty)\right)\to\left[0,\infty
ight)$$

so that

$$f(t) = \int_{x=0}^{\infty} e^{-tx} d\mu(x) \qquad (t \in [0,\infty))$$

Define a function $f:[0,\infty) \to [0,\infty)$ to be *completely monotone* iff it is continuous on $[0,\infty)$, smooth on $(0,\infty)$ and satisfies

$$(-1)^n f^{(n)}(t) \ge 0 \qquad (n \in \mathbb{N}, t > 0) .$$

Show that f is completely monotone iff it is the Laplace transform of some non-negative finite Borel measure on $[0,\infty)$.