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Question 1

Construct a measure p : B(R") — C and a point € R" for which the limit
below does not exist. B
L p(Bx))

=0t A(Bc(z)

Solution. We will take x = 0 and give a example that works uniformly for all
n. Define £ C R" by

E:={x € R"\{0} | the integer |—logs||z|/] is even}

One checks that E € @(R”)E Define p by du = x g d\. That is u(S) = AM(SNE)
for all S € B(R™). Consider the limit above with e taking the values 37" for
m € N. If e = 37™ with m is odd, we have B(0) N E C B./3(0)F] So

p(B(0)) = N(B.(0) N B) < A(Bys(0)) = A (B(0)

If € = 37™ with m even, then B(0) — B/3(0) C E. Hence

W(B0) = A(BO) N E) 2 A(BL0) = NBys0) = (1= 1) ABLO)

1

Thus the ratio 22O can be as small as & and as large as 1 — =

for arbitrarily

X(B(0)) 3n T3
small € > 0. Since 1 — 5= > - holds (for all n > 1), these bounds are
incompatible with the existence of the limit above. O

LE is in fact locally-closed. That is, it is the intersection of an open and a closed subset of
R™.
2We write B (z) to denote the closed ball of radius r > 0 centred at = € R™.



Question 2

Let 4 : B(S') — C be a complex measure on the unit circle, which by abuse
of notation we will identify with the topological quotient of the interval [0, 27]
obtained by identifying the two endpoints via the map ¢ — (cost,sint). We
define i : Z — C via

()= [ e du)
St
(a) Show that if ji(n) — 0 as n — +oo then also ji(n) — 0 as n — —oo.
(b) Give a criterion which guarantees that fi is periodic.

Solution to (a). We define a good subset of L}(S' — C,pu) = LY(S* — C, |u|)
by

g:{feLl(Slﬁ(C,u)

lim /Sl e () du(t) = 0}

n—-+oo
Note that if f,g € G and z,w € C are arbitrary, then

lim e "M (2 frwg)(t) du(t) = z lim e "M () du(t)+w lim e g(t) du(t) = 2-04+w-0 = 0

n——4oo st n—-4o0o st n—+4oo st

It follows that G is a C-vector subspace of L'(S! — C, u). In fact, G is a closed
subspace of L'(S! — C,u). To see this, suppose fi, fa,... is a sequence of
L(|u])-functions converging in G to a function f € L!(|u|). For each k € N,

[ o - ) du<t>]

S

/ emtf(t)du(t)‘é / e fi(t) dp(t)| +
st st !
<[ n@ant)|+ [ 170 = ol dinco)

_ /S e L (t) du(t)| + 1 = Frll o

Taking limit suprema as n — 400, the last integral vanishes because f; € G
and we get

lim sup
n—-+oo

/Sl et £ (1) d/,L(t)‘ < = Felleru

Since ||f — frllz1(u)) gets arbitrarily small as we let k& — 400, we conclude
that f € G.

We now exhibit sufficiently many elements of G to be able to conclude that
G = LY(S' = C,p). For m € N, define Ty, : St — C by T, (¢) :==e"™t. Then

lim e T (t) du(t) = lim et gut) = lim a(n—m) = lim f(n) =0

n—-+o0o st n—-+oo st n—-+o0o n——+oo

It follows that T),, € G for all m € N. Note that T}, is continuous on S' since
it is continuous on [0, 27] and satisfies T,,,(0) = T, (27). Let A be the C-vector



subspace of C(S') ¢ L'(S* — C,p) generated by {T,, | m € N}. Note that
A C G by our observations above. Since Ty, T, = Ty +m,, We see that A is
actually a subalgebra of C(S!). Since T is injective, A separates points. Since
Ty is the constant 1, A vanishes nowhere. Finally, since T}, = T_,, for each
m, A is closed under complex conjugation. It then follows from the Complex
Stone-Weierstrass Theorem (Theorem 4.51 in Folland’s Real Analysis) and the
compactness of S! that A is dense in C(S') (equipped with the sup-norm).

Consider the closure of A in L*(S! — C,p) (which we know is contained
in G). Since any function in C(S') is a uniform limit of functions in A (and
since |y is a finite measure) it is a fortiori an L'(|u|) limit of functions in A. So
C(S') C A C G. But by HW5Q15 we have that C(S?) is dense in L (S! — C, p).
It follows that G = L(S! — C, u).

2

Now let f = ( d(TZI) . Then f has constant absolute value 1, so certainly

feLY(S' = C,u). Hence f € G, so

0= lim e (1) dult)

n—+oo st

Jim [ (jﬁ(t)) () alul 0

. i du
= lim e mt(t)du t
i [ e (o a0

du
I int 2 (t)d | (¢
e dlu\() [l (#)

= lim emtdy(t)

n—-+oo st

= lim e~ mtdu(t)

—
= lim j(n)
where in an intermediate step we used Theorem 5.62 in the lecture notes. We
deduce lim,,, _ fi(n) = 0. O
Solution to (b). Consider the subset of S! determined by
U:=[0,2r] N7 Q = {t € [0,2x] | t/ is rational}

We claim that if p is concentrated on a finite subset of ¥ then [ is k-periodic
for some k. To see this, choose t1,...,t,, in [0,27] such that ¢;/7 is rational
for each j and p is supported on {t1,...,ty E| Let N be a positive integer
such that Nty/m, ..., Nt,,/m are all integersé Then the functions t + e~2/V?

3This implies that u= ZT:I ajth for some ay,...,am € C.
4For instance, one can take the least-common-multiple of the denominators of
t1/m, ..., tm/m expressed in lowest terms.



and t — 1 are equal |u|-almost everywhere—because they agree on {t1,...,tm}.
This is because for each j, n;:= Nt;/7 is an integer, so we get

_2iNt; —2mie . _omin i\ — 1
e 2iNt; _ e 2mi- (Nt /7)) _ e 2ming (627”) i1

Since integrals relative to p do not change when we change the integrand by a
|p|-almost everywhere equivalent function, it follows that letting k = 2N, we
have for all n € N

ﬂ(n+k) — / efi(nJrk)t du(t) _ / efintefilct du(t) _ /
st St

St

O

Question 3

If f e LY(R" — C,\) and € R" is a Lebesgue point of f then |f(z)| <
(M f)(x).

Solution. For any € > 0, we have, using the definition of 11, f followed by the
triangle inequality

SAE /B i
1

= XB@) /Bem F@HAG) = 33wy /B o W) = F@] )

1
- 1@ - 5507 /B e @l

Taking the limit as ¢ — 0T, the last integral term has limit 0 by hypothesis,
giving (M f)(z) = [f(x)]. O

(M f) ()

v

Question 4

Construct a continuous monotonic function f : R — R which is not constant on
any interval but whose derivative vanishes A-almost-everywhere.

Solution. Let c¢: [0,1] — [0, 1] be the Cantor function constructed in HW3Q12.
Recall the following properties of c:

e ¢(0)=0,c(1)=1.
e c(t)>0ift>0and c(t) < 1ift < 1.
e cis (weakly) increasing.

e ¢ is continuous on its domain.

efint672iNt du(t) _ / efint_]_ du(t)
st

i

(n)



e ¢ is constant on every subinterval of its domain which lies in the comple-
ment of the Cantor set C.

We extend ¢ to a function ¢ : R — R by letting

0 ift <0
ét):=<c(t) ifo<t<1
1 ift>1

Then ¢ satisfies all the above properties of ¢ and also still takes values in [0, 1].
Let v : B(R) — R be the Lebesgue-Stieltjes measure of ¢ (c.f. HW3Q5).
Then ~ satisfies:

e ¥([0,¢€)) > 0 for all € > 0.
e v is concentrated on the Cantor setE|
e Consequently, v L A.

Let q1,q2,... be an enumeration of Q. For each j, let v; be the pushforward
measure under the homeomorphism ¢ — t 4+ ¢; of R. In other words, v; is the
Lebesgue-Stieltjes measure of the function é; : t — ¢&(t — g;).

Define o
VYoo = Z 27]"Yj
k=1

Then v, is the Lebesgue-Stieltjes measure of
o0

fi=> 27
j=1

Since each ¢; is pointwise bounded by 1 in absolute value, the series defining
f converges uniformly. Since each summand is continuous, it follows that f is
continuousﬂ Since f is a sum of (weakly) monotonic functions, it too is (weakly)
monotonic. Also, for any x < y in R we can find a rational number g, such that
x < qi <y. Then

F)=f(@) = 7o (2, 9]) > 27 el(2,9]) = 27 " nellaw, ) = 27" 9([0,y—ax)) > 0

So f is not constant on any intervals (i.e. strictly monotonic).

Since «y is concentrated on the Cantor set C, each +y; is concentrated on the
translated copy C + ¢;. It follows that 7. is concentrated on the countable
union U;';I(C’ + ¢;). In particular, this is a A-measure 0 set. So 7o L A. By

5This is seen by noting that any point in the complement of the Cantor set is contained in
an open interval where c is constant, hence an open interval of «-measure 0.
6This can also be seen on the measure side: a sum of atomless measures is again atomless.



the form of the Lebesgue Differentiation Theorem found as Theorem 7.15 in
Rudin’s Real and Complexr Analysis, one has

Yoo([x — Ty +7])

D~ =1 =0
Yoo () Ti%h 2r
for A-almost all € R. This forces
r—0+ 2r r—0+ 2r

Multiplying by 2 and writing things in terms of f, we get

o 1@ = S@=n) L et~ fa@)

r—0+ T r—0+ r
Thus we conclude that f’(z) = 0 holds A\-almost everywhere. O

Question 5

Construct an everywhere-differentiable monotonic function f : R — R whose
derivative is not continuous.

Solution. Define

2z + 22 - (1 +sin(z™Y)) ifz >0
f(@):=¢ —f(~x) ifz <0
0 ifx=0

Then on (0, c0) the function f is visibly differentiable and
f'(x) =24 2x(1 +sin(z™1)) — cos(z™!)

Since z, 1 +sin(z~!) and 1 — cos(z~!) are all non-negative on this interval, we
see that f/(x) > 1 for z > 0. For z < 0, we have

fl@) = (=f(=2))" = f'(-2) > 1

It follows that f is strictly monotonic on each of the intervals (—oo,0) and
(0, 00).

Since f(z) = 2z + O(2?) as * — 0% and also f(0) = 0, it follows that f
admits a right-derivative at 0 with value f/ (0) = 2. Since f(—z) = —f(x) (by
construction), we also get f’ (0) = 2. Thus f is differentiable—in particular
continuous—at 0. It follows that f is differentiable and (strictly) monotonic on
R.

Now to see that f’ is not continuously differentiable at 0, note that the term
2 + 2z(1 + sin(z~1)) has limit 2 as  — 0. Therefore, if f'(x) had a limit as
x — 0T then so would the remaining term cos(x~!). However, this last term
clearly does not have a limit as x — 07 since it takes both values 4-1 arbitrarily
close to 0. (Specifically, this happens at the points z,, := 1n for n € N.) O

T



Question 6

Let f be a non-zero element of L'(R"™ — C, \). Show that M, f ¢ L*(R™ — C).

Solution. By assumption [p. |f| dA # 0. It follows (e.g. by monotone conver-
gence) that Cy.:= [ ) |f] dX\ > 0 for some large enough radius r > 0. For any

x € R", we have B,.(0) C B,z (z) (by the triangle inequality). Hence

U XL K ) A L AR A »
(M f)(x) _Zﬁ%’ A(Bc(x)) Z B+ 10 (1)) > By 1oy @) )\(Bl(O))(H_Hx”)
d\(z)

Now note that the integral [ on R™ does not have finite value. We

llzl>1 =]
can see this by applying the change-of-variables formula for the scaling function

x +— 2z. We get

/ d\(x) B 2n/ d\(x) _/ dA(x) _/ d\(x) +/ dA(x)
lzi>1 1zl t2z)>1 1221 Sygpz2 (=)™ lziz1 12" Jicpap<a 2™

1
2

Since the last term is clearly positive, this forces the first integral to be infinite.

Now observe that the expression for 171, f is, up to a positive scalar, asymp-
totic to the function z — ||z||~™. It then follows from the above discussion that
M, f is not in L'. O

Question 7

Define f : R — R by

1 : 1
f(l‘) .— J z(logx)? if v € (O’ 5)
0 otherwise
Then f € L*(R — R). Show that moreover

1 1
m > il
(M f)(x) > 22 Tog 21| for x € (0, 4)

and deduce

1
/ My f d) = oo
0

Solution. To see that f € L*(R — R), it of course suffices to show f €
L'((0,1/2) — R). We start by noting that for € > 0,

1/2 12 g 1 1e=12 1 1
/ fdx= / SN _ _
. . xz(logx)? logz |, _. log2 loge




Taking the limit as e — 07 and using the monotone convergence theorem, we
get
1/2 1
= ——
0 ! log 2

So f € L'. For the second claim, we use the definition of 171, f to get (for any
z €(0,1/4))

1 1 [ 1 [  at 1 T
m > A\ = — A= — = |-
(M f)(z) = A(Bg(x)) /Bz(m) ! 2z Jo ! 2z Jo t(logt)? 2z [ logtL_O

For the final conclusion, we write (for € > 0)

1 1/4 d
/0 (M f)(x) dA(z) > /6 thj' = [~ log|log 21’\]2/4 = log |log 2¢|—log log 2
Since log |log 2¢| is unbounded as e — 07, it follows that 171, f ¢ L*. O

Question 8

Calculate the symmetric derivative and Hardy-Littlewood maximal functions
for the following measures:

(a) 0, for some xy € R™.
(b) The counting measure ¢ on R".
(c) ¢,y defined by doy 5 = fdA.

Solution to (a). Let B, be the volume of the unit ball in R". We claim that

B! if
(M) () = { o 7o
00 if £ =g

To see this, note that for z € R™ and € > 0

1 / 5 - 0 if e < ||z — x|

A(Be(z)) B (z) o Brte™ ife> ||z — ao
Clearly, this value is maximized by letting € be ever-so-slightly greater than
|z — xo||. This gives the values above. As for the symmetric derivative, we get

0 ifx#ux

oo if x = xg

(@)\5350)(33) = {

Since §,, is a positive measure, this is seen by simply letting ¢ — 0+ in the
formula above. O

- 1
2z [log 2|



Solution to (b). For all € > 0 and z € R", we have

1
A(B.(z)) /Bgm o

since every open ball contains infinitely many points. It follows that both 1Mc
and Dyc are identically infinite. O

Solution to (c¢). We have

1
Madrs =M f = <x oo [ 10 dA(t))

and

. 1
Dagrf =Drf = <9€ = lim, o /Br(z) ft) d)\(t)>

If f is continuous at € R" (e.g. if f is a continuous function) then for any
fixed € > 0 we can find r > 0 such that |f(t) — f(x)| < e for all t € B,.(z). Then

1
Brrm

1
Brrm

1
IR CR CEUE =y RCORE

Since € can be made arbirarily small, we conclude

<

/ F(8) dA(E) — ()
B, (x)

(Drgxrp)(z) = lim !

r—0+ B,r"

/ F(B)dA(H) = f(z)
B, (x)

Question 9
Define

¢ :[0,00) x [0,27) — R?
(r,0) — (rcosf,rsin)

(a) Show that ¢ is continuously differentiable and injective when restricted to
(0,00) x [0, 27).

Solution. The continuous-differentiability of ¢ follows from the fact that its
component functions are smooth.

For injectivity, suppose ¢(r1,01) = ¢(rq, 2) where 71,79 > 0 and 61,05 €
[0,27). This means

ricosfy =rocosfy and risinf; = rosinfy



Then
72 = (r1cos6)? + (r1sin6;)% = (ro cosf2)? = (rosinfy)? = r2

So 1 = 19 since they are both positive. It then follows from the equations
above that cosf; = cosfy and sinf; = sinfsy. Since the cosine function is
strictly monotonic (hence injective) on each of the intervals [0, 7] and [, 27]
and since cos(2m — ) = cos(f), the equality cosf; = cos s forces

01 =0, or 60;=2w—0
If 0, = 27 — 05 then
sin(fs) = sin(01) = sin(2w — 02) = sin(—02) = — sin(62)
forces sin(fz) = 0. But given 05 € [0, 27) this means 02 € {0, 7}. The first
is impossible since then #; = 2w. The latter gives #; = 8 = 7. In all cases

01 = 0. O

(b) The total derivative of ¢ is given by

D — <[%rcost9 %rcos@) _ <cos€ —rsin9>

5,rsinf  gprsinf sinf rcos6
Hence

|det(D¢)| = (cos)(rcosf) — (sinh)(—rsin@) = r(cos® § 4 sin? ) = r

(c) Let f:]0,00) x [0,27) — C be given. Calculate the right-hand-side of the
change-of-variables formula

fdr= / (f © 0)(r.0) [det(D)| (1. 6) dA(r. 0)
R2 [0,00) % [0,27)

Solution. Substituting gives

fd)\:/ r- f(rcos@,rsinf)dA(r,0)
R2 [0,00) x[0,27)

Question 10

A map ¢ : R" — R" is called a contraction if it satisfies

s 160) = 001

<1
sy e =yl

10



(a) Let 1: R"™ — R"™ be the identity map. Show that if 1 — ¢ is a contraction
then ¢ is injective.

(b) Show that if ¢ is differentiable and ||1 — D¢| < 1 holds pointwise on R"
then ¢ is injective.

Solution to (a). Let x # y be distinct points in R™. Then the assumption on
1 — ¢ implies

[(1=¢)(z) — (1 =) <[z -yl
That is,

(@ —y) = (d(z) — s < [z =yl

Using the triangle inequality, we deduce
[o(x) = oWl = llz —yll = l(z —y) = (6(x) — o(y))]| >0
So ¢(x) # ¢(y). Since x,y we arbitrary, the injectivity of ¢ results. O

Solution to (b). Fix x # y in R". We will show f(z) # f(y). Consider the
function f: R — R" given by

f@t):=9¢(tz + (1 —t)y)
The (multivariate) chain rule gives
f'(t) = Dotz + (L= t)y) - (x —y) = (x —y) — (L = Do(tx + (1 — t)y)) - (z — y)
Define g : R — R by g(t):= (z — y, f(¢)). Then
g ()= (x—y, /(1) = |z —y|* = (x —y,(1 = Do(tz + (1 = t)y)) - (x = y))

If we can show that ¢'(¢) > 0 for ¢ € (0,1), then (by the mean value theorem)
this will imply that g is strictly increasing on [0, 1] which then implies that

( =y, 0(y)) = (x—y, f(0)) <(x—y,f(1)) = (x—y,¢(x))
which in turn implies ¢(x) # ¢(y).
All that now remains is to prove the inequality

lz = ylI* > (z -y, (1 = Do(te + (1 — t)y)) - (z — y))

pointwise for ¢ € (0,1). Thinking of (z — y) as a column vector, and writing
A:=1- Dotz + (1 —t)y)

(€ =y, (1= Dot + (1 = t)y)) - (x —y)) = (x —y) " A(z — y)
< llz =yl Allllz -yl
<z -yl
Here T is the transpose operator, and the last inequality is obtained from the
hypothesis || 4] < 1[] O

"The second step requires some justification. The justification depends on the precise norm

11



Question 11

Let (X, 1) be a measurable space. If u : 9T — C is a complex measure satisfying
p(X) = |p| (X) then p = |pl.

Solution. It suffices to show that u takes values in [0, 00) (c.f. Theorem 5.54(3)
in the lecture notes).

For any complex number z, we write 2T for the positive part of the real part
of z. That is, 2T = R(2) if N(z) > 0 and z* = 0 otherwise. Note that |z| > 2T
with equality if and only if z is a non-negative real. Also for z,w € C we have
zF+wt > (z4+w)t.

Let S € 9 be arbitrary. We will show that p(S) is a non-negative real
number. Let T'= X — S. Then S,T,2,9,... is an admissible partition of X.
It follows by definition of || that

|1 (X) = [u(S)|+1(T)] = ()T +(T)T > (u(S)+u(T)" = p(X) " = [u(X)]

Since the first and last terms of this sequence of inequalities are equal, each
inequality must in fact be an equality. In particular, we must have |u(S)| +
(T)] = p(S)* + u(T)*. Since u(S)] > p(S)* and [u(T)| > p(T)*, we are
forced to conclude |u(S)| = u(S)* and |p(T)| = pw(T)*. It follows that w(S) is

a non-negative real number. O

Question 12

Let p: 9 — C be a complex measure on a measurable space (X, 91). Then for
all A € 9,

|u| (A) = sup {Z | (As)] ' Ay, As, ..., A, form a partition of A, and A; € M for each z}
i=1

zsup{

Solution. We prove the first equality first. Suppose Aq,..., A, form a finite
partition of A. Then Ay,...,A,,d,d,... form a countable partition of A and

/ fdu’ ‘ lf1<1 pointwise}
A

that is used for A. One possibility is that this is the usual Euclidean norm on Mat,xy,. In
this case, we argue via

(@—y) T A(z—y) = tr((z—y) " A(z—y)) = tr(A(z—y)(z—y) ") < \/tr(AAT)\/tr((x —yE -y (@ —y)e-yT) = |Alle—yl?

where in the second-to-last step we used the Cauchy-Schwartz inequality in Maty, x». Note
that the usual Euclidean norm on Mat,, xn is given by M — tr(MMT) where tr is the trace
operator. Also, in the above we used the linear-algebraic fact tr(XY) = tr(Y X).

One could instead consider the (more natural) operator norm on Maty, x». In this case, we
get ||A(z — y)|| < [JA|lllxz — y|| by definition and then using Cauchy-Schwartz in R™ we get

(@ —y, Az —y)) < llz = yllllAG@ =9Il < llz =yl Allllz =yl = [|Alllz - y]*

12



this gives
A)| > (A
i=1

Since this holds for all finite partitions of A, we get that |u(A)| is at least as
large as the first supremum.

For the opposite direction, fix e > 0. The definition of |u| ensures we can
find a countable partition A1, As,... of A such that

|l (A <Z|M )+ e

Since this sum converges, we can choose n € N such that

o0
> A |<Zlu )+ e
=1

Combining the two, we get

|l (A <Z|u )|+ 2e

Since € can be made arbitrarily small, we get that || (A) is no less than the
first supremum.
Now for the second supremum, note that

| e G| 1] =
[ sand =|[ st avd < [ sl aw = [ 11dinl < [ va =1

This shows that |u|(A) is at least as big as the second supremum. For the
reverse inequality, let f:= C‘l“ I then

IRCE =| [ vatu| =1l )

So the second supremum is actually a maximum, and the maximum value is
|ul (A). O

2
N T

d|ﬂ| ’
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