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Problem 1.

Solution. Let µ, ν : M → C be two measures, and let α ∈ C. We first have that αµ(∅) = 0 and (µ+ν)(∅) = 0.

Also for any sequence {Ej} of disjoint sets in M we have:

αµ
(⋃

j

Ej

)
= α

∑
j

µ(Ej) =
∑
j

αµ(Ej)

(µ+ ν)
(⋃

j

Ej

)
= µ

(⋃
j

Ej

)
+ ν

(⋃
j

Ej

)
=

∑
j

µ(Ej) +
∑
j

ν(Ej) =
∑
j

(µ+ ν)(Ej)

We conclude that αµ and µ+ ν are also measures.

Problem 2.

Solution. (See Proposition 3.9 in Folland) Let η ≪ ν ≪ µ. Let any E ∈ M such that µ(E) = 0. Since ν ≪ µ

we get that ν(E) = 0. Then using η ≪ ν, we also get that η(E) = 0. Thus, η ≪ µ.

We claim that for any g ∈ L1(ν) we have g dν
dµ ∈ L1(µ) and:∫
gdν =

∫
g
dν

dµ
dµ

To prove this we first see that for any E ∈ M and g = 1E , by the definition of the Radon-Nikodym derivative

we have: ∫
1Edν = ν(E) =

∫
E

dν

dµ
dµ =

∫
1E

dν

dµ
dµ

By linearity, the above is true for simple functions and we can then apply the monotone convergence theorem

to prove it for nonnegative integrable functions. Finally, we then get that the claim holds for all g ∈ L1(ν).
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We apply our claim for g = 1E
dν
dµ to get:∫

E

dν

dµ
dµ =

∫
E

dν

dµ

dµ

dλ
dλ

We then get that: ∫
E

dν

dµ

dµ

dλ
dλ =

∫
E

dν

dµ
dµ = ν(E) =

∫
E

dν

dλ
dλ

Since this holds for any E ∈ M, we conclude that dν
dµ

dµ
dλ = dν

dλ a.e. w.r.t. λ.

Problem 3.

Solution. We assume that µ ≪ ν ≪ µ. We first notice that dµ
dµ = 1 by the definition of the Radon-Nikodym

derivative. Applying the chain rule proved in the previous exercise we conclude that:

dµ

dν

dν

dµ
=

dµ

dµ
= 1

Problem 4.

Solution. Let νi ≪ µ for all i ∈ {1, . . . , n}. Let any E ∈ M such that µ(E) = 0. We have that νi(E) = 0 for

all i ∈ {1, . . . , n}. Thus,
∑n

i=1 νi(E) = 0, so
∑n

i=1 νi ≪ µ.

For any E ∈ M we have that:

n∑
i=1

νi(E) =

n∑
i=1

∫
E

dνi
dµ

dµ =

∫
E

n∑
i=1

dνi
dµ

dµ

By uniqueness of the Radon-Nikodym derivative we obtain that:

d
∑n

i=1 νi
dµ

=

n∑
i=1

dνi
dµ

Problem 5.

Solution. We note that it suffices to prove the problem for n = 2, as in general one can iterate this result

for finite n. We assume that ν1 ≪ µ1 and ν2 ≪ µ2. Consider any E which has measure zero with respect to

µ1 × µ2. For any x2 ∈ X2 we denote Ex2
= {x1 ∈ X1 : (x1, x2) ∈ E}. By Fubini’s theorem we have that:

µ1 × µ2(E) =

∫
X2

∫
X1

1E(x1, x2)dµ1dµ2 =

∫
X2

µ1(Ex2
)dµ2.

Since µ1×µ2(E) we get that µ1(Ex2
) = 0 for a.e. x2 w.r.t. µ2. Using ν2 ≪ µ2, this implies that µ1(Ex2

) = 0

for a.e. x2 w.r.t. ν2. By absolute continuity we also get that ν1(Ex2
) = 0 for a.e. x2 w.r.t. ν2. Applying

Fubini as above for ν1 × ν2, we then obtain that ν1 × ν2(E) = 0, so ν1 × ν2 ≪ µ1 × µ2.
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For any E measurable we have by Fubini and our claim in Problem 2:

ν1 × ν2(E) =

∫
X2

ν1(Ex2
)dν2(x2) =

∫
X2

ν1(Ex2
)
dν2
dµ2

(x2)dµ2(x2)

We also have by the definition of the Radon-Nikodym derivative for any x2 ∈ X2:

ν1(Ex2) =

∫
Ex2

dν1
dµ1

(x1)dµ1(x1)

As a result we get:

ν1 × ν2(E) =

∫
X2

∫
Ex2

dν1
dµ1

(x1)
dν2
dµ2

(x2)dµ1(x1)dµ2(x2) =

∫
E

dν1
dµ1

(x1)
dν2
dµ2

(x2)dµ1(x1)dµ2(x2)

Thus, we conclude that:
d(ν1 × ν2)

d(µ1 × µ2)
(x1, x2) =

dν1
dµ1

(x1)
dν2
dµ2

(x2)

Problem 6.

Solution. Since δ0 is concentrated at {0} and λ({0}) = 0 (so λ is concentrated on {0}c), we get δ0 ⊥ λ.

Problem 7.

Solution. The counting measure of a set is given by the number of elements in the set. Thus, if c(E) = 0

then E = ∅ so λ(E) = 0. This implies λ ≪ c.

We notice that c is not σ-finite, since [0, 1] is uncountable and counting measure of a set is finite iff the

set has finitely many elements. Thus, we cannot apply the Radon-Nikodym derivative theorem.

Finally, we show that dλ
dc does not exist. We assume the contrary, so let f ∈ L1(c) such that for any E

measurable:

λ(E) =

∫
E

f(x)dc(x) =
∑
x∈E

f(x),

where we also used the definition of the counting measure. If E = {x0} for any x0 ∈ [0, 1] we have that

λ({x0}) = 0, so the above implies that f(x0) = 0. We get that f ≡ 0 on [0, 1], which of course contradicts

the fact that λ([0, 1]) = 1.

Problem 8.

Solution. (See Teschl. Mathematical methods in quantum mechanics.) We have that µ is a finite Borel

measure, so we set M = µ(R). We first prove the growth estimate for the Stieltjes transform:

|Hµ(x+ iϵ)| ≤
∫
R

1

|x− y + iϵ|
dµ(y) ≤ 1

Im(x− y + iϵ)

∫
R
dµ(y) ≤ µ(R)

ϵ
=

M

ϵ
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We recall the lecture notes definition of the symmetric derivative:

Dµ(x) = lim
ϵ→0+

µ(Bϵ(x))

λ(Bϵ(x))

We similarly define Dµ(x) and Dµ(x) by considering lim inf respectively lim sup in the above definition. Our

first claim is (See Theorem A.37 of Teschl) that Dµ exists a.e. w.r.t. Lebesgue measure and:

µac(E) =

∫
E

Dµ(x)dx

To prove this we use the Lebesgue decomposition µ = µac + µs, and note that N = supp(µs) has λ(N) = 0.

In the lecture notes we prove that Dµac =
dµac

dλ . To prove the claim it suffices to show that Dµs(x) = 0 a.e.

on N c. We note this is the content of Lemma A.33 in Teschl and it’s an application of Theorem 6.4 in the

lecture notes.

Next, we claim that (See Theorem A.38 of Teschl):

supp(µs) =
{
x : (Dµ)(x) = ∞

}
, supp(µac) =

{
x : (Dµ)(x) ∈ (0,∞)

}
It suffices to show that for every k ∈ N we have that the set Ok = {x ∈ supp(µs) : Dµ(x) < k} satisfies

µ(Ok) = 0. Let K ⊂ Ok be compact and Vj an open set s.t. λ(K\Vj) ≤ 1/j. For every x ∈ K there exists

ϵ > 0 such that Bϵ(x) ⊂ Vj and µ(Bϵ(x)) ≤ kλ(Bϵ(x)). Since K is compact we can cover it with a finitely

many Bϵi(xi) and we also have µ(K) < k
∑

i λ(Bϵi(xi)). Using Vitali’s covering, we can select disjoint balls

Bϵl(xl) such that µ(K) < k3n
∑

l λ(Bϵl(xl)) ≤ k3nλ(Vj). Letting j → ∞ we proved that µ(K) < k3nλ(K).

This implies that µ is absolutely continuous on Ok ⊂ supp(µs), so µ(Ok) = 0 as desired. We conclude that

supp(µs) =
{
x : (Dµ)(x) = ∞

}
. Additionally, we also get that supp(µac) =

{
x : (Dµ)(x) ∈ [0,∞)

}
. Using

the above formula we also have µac

(
{(Dµ)(x) = 0}

)
= 0, so finally supp(µac) =

{
x : (Dµ)(x) ∈ (0,∞)

}
.

Our next claim is that (See Theorem 3.22 of Teschl):

Dµ(x) ≤ lim inf
ϵ→0+

1

π
Im(Hµ(x+ iϵ)) ≤ lim sup

ϵ→0+

1

π
Im(Hµ(x+ iϵ)) ≤ Dµ(x)

To prove this we first note that:

Im(Hµ(x+ iϵ)) =

∫
R

ϵ

|y − x− iϵ|2
dλ(y) =

∫
R
Kϵ(y)dλ(y), Kϵ(t) :=

ϵ

t2 + ϵ2

We denote Iδ = (x− δ, x+ δ) and split the integral as:

Im(Hµ(x+ iϵ)) =

∫
Iδ

Kϵ(y − x)dλ(y) +

∫
R\Iδ

Kϵ(y − x)dλ(y)

The second integral is bounded by Kϵ(δ)µ(R) = M ·Kϵ(δ) → 0 as ϵ → 0+. For the first integral we notice

that: ∫ δ

0

µ(Is)K
′
ϵ(s)ds =

∫
Iδ

Kϵ(δ)−Kϵ(y − x)dµ(y) = µ(Iδ)Kϵ(δ)−
∫
Iδ

Kϵ(y − x)dλ(y)
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Suppose there are constants cδ, Cδ > 0 such that cδ ≤ µ(Is)/2s ≤ Cδ for all s ∈ [0, δ]. We note that:

2δKϵ(δ)−
∫ δ

0

2sK ′
ϵ(s)ds = 2arctan(δ/ϵ) → π as ϵ → 0+

As a result, we conclude the claim since we get that:

lim inf
ϵ→0+

1

π
Im(Hµ(x+ iϵ)) ≥ lim inf

δ→0+
inf

0<s<δ

µ(Is)

2s
≥ Dµ(x)

lim sup
ϵ→0+

1

π
Im(Hµ(x+ iϵ)) ≤ lim sup

δ→0+
sup

0<s<δ

µ(Is)

2s
≤ Dµ(x)

Combining our previous claims we get that:

supp(µac) =

{
x : lim

ϵ→0+

1

π
Im(Hµ(x+ iϵ)) ∈ (0,∞)

}
, supp(µs) =

{
x : lim

ϵ→0+

1

π
Im(Hµ(x+ iϵ)) = ∞

}
Finally, we also use the above claim that Dµ = dµac

dλ to conclude that:

dµac

dλ
(x) = lim

ϵ→0+

1

π
Im(Hµ(x+ iϵ))
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