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Question 1

Let a, b ∈ R with a < b. Let f : [a, b] → C be bounded.

(a) Prove that if f is Riemann integrable then it is measurable with respect to
the σ-algebras L([a, b]) and B(C) on its domain and codomain respectively.

Solution. See (the proof of) Claim 4.12 in the lecture notes.

(b) Prove that if f is Riemann integrable then its Riemann integral
∫ b

a
f(x) dx

and its Lebesgue integral
∫
[a,b]

f dλ are equal.

Solution. See (the proof of) Theorem 4.13 in the lecture notes.

(c) Find a Lebesgue integrable function which is bounded but not Riemann
integrable.

Solution. See Theorem 1.3 in the lecture notes and examples (3) and (4)
that immediately follow.

Question 2

Let f : I → C where I ⊆ R is a (possibly unbounded, not necessarily proper)
interval. We say that f is improperly Riemann integrable on I iff there exists
an increasing sequence {In}n∈N of bounded intervals such that

• I =
⋃

n∈N In

• The restriction of f to In is bounded and Riemann integrable for each
n ∈ N
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• limn→∞
∫
In
f exists and is finite.

(a) Show that if the image of f lies in [0,∞) and f is improperly Riemann
integrable then it is Lebesgue measurable with finite Lebesgue integral.1

Solution. We apply to a general setting the ideas of Example 4.14 in the
lecture notes.

Define fn := f · χIn . By part (a) of the previous problem, the second as-
sumption implies that each fn is Lebesgue measurable. These functions
converge to f pointwise by the first assumption. Hence f is measurable by
Corollary 2.23(1).

By part (b) of the previous problem, the Lebesgue integrals
∫
fn coincide

with the corresponding Riemann integrals. The non-negativity of f and the
fact that the intervals are increasing imply that f1, f2, . . . is an increasing
sequence of non-negative functions. Hence, by the monotone convergence
theorem, the Lebesgue integrals

∫
In
f =

∫
fn converge to the Lebesgue

integral
∫
I
f . By the third assumption, this limit is finite.

(b) Construct a function f : I → C (for some I) such that f : I → C is
improperly Riemann integrable but f /∈ L1(I → C, λ).

Solution. See Example 4.15 in the lecture notes. The second example, there
defined on N, can be “continuized” by replacing it with the function x 7→
(−1)⌊x⌋

⌊x⌋ with domain [1,∞).

Question 3

Let x0 ∈ R and let δx0
be the Dirac measure on B(R). Let ϕ : R → R be

measurable. Then the push-forward measure (δx0)ϕ is equal to δϕ(x0).

Solution. By definition, we have, for every S ∈ (R)

(δx0)ϕ(S) = δx0(ϕ
−1(S))

=

{
1 if x0 ∈ ϕ−1(S)

0 otherwise

=

{
1 if ϕ(x0) ∈ S

0 otherwise

= δϕ(x0)(S)

1It is then also true that its Lebesgue and Riemann integrals are equal.
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Question 4

Let c be the counting measure on N with respect to the σ-algebra P(N). Let
ϕ : N → N be a bijection.2 Then the push-forward measure cϕ is just c again.

Solution. Since ϕ−1 is an injective function, it satisfies |ϕ−1(S)| = |S| for all
S ⊆ N. Hence for any S ∈ P(N),

cϕ(S) = c(ϕ−1(S)) = |ϕ−1(S)| = |S| = c(S)

2Note that every function with domain N is measurable if we allow all subsets of N to be
measurable.
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Question 5

Let ϕ : (a, b) → R be convex. Then ϕ is Lebesgue measurable.

Solution. In fact, any convex function on an open interval of R is continuous,
as we show below. Any continuous function is measurable by HW1Q9. C.f.
Theorem 3.2 in Rudin’s Real and Complex Analysis.

Claim. Let f : (a, b) → R be convex. Then f is left- and right-differentiable at
each point x ∈ (a, b). It follows that f is continuous on (a, b).

Proof. By symmetry, it suffices to prove right-differentiability.3 Fix x ∈ (a, b)
and consider the difference quotient

∆(y) :=
f(y)− f(x)

y − x
(y ∈ (x, b))

Convexity implies that ∆(y) < ∆(y′) for x < y < y′ < b. This means that ∆
is an increasing function on (x, b). The limit f ′+(x) := limy→x+ ∆(y) therefore
exists in R∪{−∞}.4 To see that it is finite, choose some (arbitrary) z ∈ (a, x).

Then convexity gives ∆(y) ≥ f(x)−f(z)
x−z for all y ∈ (x, b).

Question 6: Jensen’s Inequality

Let (X,M, µ) be a finite measure space.5 Let ϕ : (a, b) → R be convex (a, b ∈ R).
Suppose f ∈ L1(X → (a, b), µ).

(a) Show that6

ϕ

(
1

µ(X)

∫
X

f dµ

)
≤ 1

µ(X)

∫
X

ϕ ◦ f dµ

Solution. The inequality is invariant under multiplying µ by a constant.
Since µ is finite, we may therefore suppose µ(X) = 1.7 With this assump-
tion we are in the situation of Theorem 3.3 in Rudin’s Real and Complex
Analysis. See the proof there.

(b) Show that if µ(X) ̸= 1 then it is possible to get

ϕ

(∫
X

f dµ

)
>

∫
X

ϕ ◦ f dµ

3For left-differentiability, one can consider t 7→ f(−t) to reduce to this case.
4It is equal to infy∈(x,b) ∆(y).
5That is, µ(X) < ∞.
6In particular, that the integral

∫
X ϕ ◦ f dµ has a well-defined value in R.

7Simply replace µ with 1
µ(X)

µ.
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Solution. Let X :=[−1, 1] with µ = λ the Lebesgue measure, (a, b) :=R.
Let f(x) := 1 and let ϕ(x) :=x2. Since ϕ is smooth and has positive second
derivative, it is convex. However,

ϕ

(∫
X

f dµ

)
=

(∫ 1

−1

1 dµ

)2

= 4 > 2 =

∫ 1

−1

12 dµ =

∫
X

ϕ ◦ f dµ

(c) Show that it is possible to have 1
µ(X)

∫
X
ϕ ◦ f dµ = +∞.

Solution. Let X :=[0, 1] with µ = λ the Lebesgue measure, (a, b) :=R. Let
f(x) = x−1/2 and let ϕ(x) = x2 as above.8 We are in the situation of
Q2(a), so we can assume all integrals are Riemann integrals. As is well-

known,
∫ 1

0
x−1/2 dx is finite9 so indeed f ∈ L1([0, 1] → R, λ). However,∫ 1

0
ϕ(f(x)) dx =

∫ 1

0
x−1 dx = +∞.

8The reader who insists that functions ought to be defined everywhere can set f(0) to be
their favourite real number.

9More precisely, it is equal to 2.
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Question 7 : Minkowski

Let p ∈ (1,∞) and (X,M, µ) be a measure space. Let f, g : X → C be
measurable. Prove

∥f + g∥p ≤ ∥f∥p + ∥g∥p
where

∥h∥p :=
(∫

X

|h|p dµ
)1/p

(h : X → C measurable)

Solution. The case where f, g are non-negative is handled in Theorem 3.5 of
Rudin’s Real and Complex analysis.10 See the proof there. In general, we have
|f + g| ≤ |f |+ |g| pointwise and thus

∥f+g∥p =

(∫
X

|f + g|p dµ
)1/p

≤
(∫

X

(|f |+ |g|)p dµ
)1/p

= ∥|f |+|g|∥p ≤ ∥|f |∥p+∥|g|∥p = ∥f∥p+∥g∥p

using that we know the inequality in the non-negative case.

Question 8 : Hölder

Let (X,M, µ) be a measure space.

(a) Let p ∈ (1,∞) and let q := p
p−1 be its conjugate. Prove that

∥fg∥1 ≤ ∥f∥p∥g∥q (f, g : X → C measurable)

Proof. We may assume without loss of generality that f and g are non-
negative functions. This case is handled in Theorem 3.5 of Rudin’s Real
and Complex analysis. See the proof there.11

(b) Let n ∈ N. Let r ∈ (0,∞] and p1, . . . , pn ∈ (0,∞] such that
∑n

j=1 p
−1
j = r−1

∥∥∥∥∥∥
n∏

j=1

fj

∥∥∥∥∥∥
r

≤
n∏

j=1

∥fj∥pj
(f1, . . . , fn : X → C measurable)

Proof. If r = ∞ then we must have pj = ∞ for all j. This special case
follows from the statement: if for each 1 ≤ j ≤ n we have |fj | < Mj a.e. for
some Mj > 0, then also |f1f2 · · · fn| ≤M1M2 · · ·Mn a.e. We may therefore
assume that r is finite. We also assume in the remainder that the Hölder
result in 14(b) is known.

10Note that Rudin uses the result of Q8(a) to prove this.
11See also Proposition 6.2 in Folland’s Real Analysis.
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We proceed by induction on n. If n < 2, there is nothing to prove. For
the case n = 2, we make use of the easy but useful observation that for
r ∈ (0,∞), p ∈ (0,∞] and f a measurable function we have

∥|f |r∥p/r = ∥f∥rp

Returning to the proof, suppose p−1
1 + p−1

2 = r−1 and f1 ∈ Lp1 , f2 ∈ Lp2 .
Then (p1/r)

−1 + (p2/r)
−1 = 1. This in particular implies p1/r, p2/r > 1.

Hence by part (a) and the above discussion

∥f1f2∥rr = ∥|f1f2|r∥1 = ∥|f1|r|f2|r∥1 ≤ ∥|f1|r∥p1/r∥|f2|
r∥p2/r = ∥f1∥rp1

∥f2∥rp2

Taking r-th roots gives the desired result.

Assume the validity of the statement for n, suppose we are given p1, . . . , pn+1 ∈
(0,∞] and r ∈ (0,∞] such that r−1 :=

∑n+1
j=1 p

−1
j . Define p̃j := pj for j < n

and define p̃n by p̃−1
n = p−1

n + p−1
n+1. Then by construction

∑n
j=1(p̃j)

−1 =

r−1. Similarly define f̃j := fj for j < n and f̃n := fnfn+1. Then the induc-
tion hypothesis gives ∥∥∥∥∥∥

n∏
j=1

f̃j

∥∥∥∥∥∥
r

≤
n∏

j=1

∥f̃j∥p̃j

Translating back gives∥∥∥∥∥∥
n+1∏
j=1

fj

∥∥∥∥∥∥
r

≤

n−1∏
j=1

∥fj∥pj

 · ∥fnfn+1∥p̃n

But p̃−1
n = p−1

n + p−1
n+1 implies by the n = 2 case that

∥fnfn+1∥p̃n ≤ ∥fn∥pn∥fn+1∥pn+1

Combining the two inequalities completes the induction step.

(c) Let p1, . . . , pn ∈ (0,∞] and θ1, . . . , θn ∈ (0, 1) such that
∑n

j=1 θj = 1. Define

r by r−1 :=
(∑n

j=1 θjp
−1
j

)
. Prove∥∥∥∥∥∥
n∏

j=1

|fj |θj

∥∥∥∥∥∥
r

≤
n∏

j=1

∥fj∥θjpj

Proof. We set f̃j :=|fj |θj , p̃j := pj/θj . Then
∑n

j=1 p̃
−1
j = r−1 so by part (b),

we get ∥∥∥∥∥∥
n∏

j=1

f̃j

∥∥∥∥∥∥
r

≤
n∏

j=1

∥f̃j∥p̃j
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Translating back and using the observation made in part (b) we get∥∥∥∥∥∥
n∏

j=1

|fj |θj

∥∥∥∥∥∥
r

≤
n∏

j=1

∥|fj |θj∥pj/θj =

n∏
j=1

∥fj∥θjpj

(d) Let p ∈ (1,∞) and assume µ(X) ̸= 0. Then

∥fg∥1 ≥ ∥f∥1/p∥g∥− 1
p−1

(f, g : X → C measurable and |g| > 0 µ-a.e.)

Proof. Set f̃ :=|fg| and g̃ :=|g|−1. (One might worry about the measura-
bility of g̃. But this can be handled by writing it as the pointwise limit of
the measurable functions t 7→ iϵ(|g|(t)+ ϵ) where iϵ is a continuous function
which agrees with t 7→ 1/t outside of (−ϵ, ϵ).12) Then the inequality at hand
can be written∫

X

f̃ dµ ≥
(∫

X

(
f̃ g̃

)1/p

dµ

)p (∫
X

g̃1/(p−1) dµ

)1−p

If the right-most integral is infinite then the right side of the inequality
is 0 (because 1 − p < 0) and the whole thing trivializes. Otherwise, the
right-most integral must be a finite positive number13 Thus the above is
equivalent to∫

X

f̃ dµ

(∫
X

g̃1/(p−1) dµ

)p−1

≥
(∫

X

(
f̃ g̃

)1/p

dµ

)p

But this is just the special case of (b) where n = 2, r = 1/p, p1 = 1,
p2 = 1/(p− 1), f1 = f̃ , f2 = g̃.

12One should also change g on a measure 0 set to make it Borel-measurable.
13The assumption on g ensures that the integral is well-defined and non-zero.
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Question 9 : Young

Suppose p, q, r ∈ [1,∞] are such that p−1 + q−1 = r−1 + 1. Let X :=Rd with
the σ-algebra L(Rd) and µ :=λ. Then

∥f ∗ g∥r ≤ ∥f∥p∥g∥q (f, g : X → C measurable)

where

(f ∗ g)(x) :=
∫
y∈Rd

f(y)g(x− y) dλ(y) (x ∈ Rd)

Solution. See Proposition 8.9 in Folland’s Real Analysis for a proof employing
the very useful technique of “interpolation”. Here we provide a proof that
assumes no such background material.

It is not even immediately clear that f ∗ g is measurable! To see that it is,
let F1, F2 : X ×X → C be defined by

F1(x, y) = f(x)g(y), F2(x, y) = f(y)g(x− y)

See the sample solution for Q20 on the midterm for a proof that F1 ∈ L1(X ×
X,λ× λ). Now note that the function

ψ : Rd ×Rd → Rd ×Rd

(x, y) 7→ (y, x− y)

is measure-preserving (it is a smooth function whose Jacobian determinant is
constantly −1). So from F1 ∈ L1 it follows that F2 = f ◦ ψ ∈ L1. The
measurability of f ∗ g then follows from Fubini’s theorem applied to F2 (c.f.
Theorem 2.37(b) in Folland).14

To get the norm bound, we start by using the version of Hölder’s inequality
in Q8(c) with f1(y) :=|f(y)|, f2(y) :=|g(x− y)|, f3(y) :=|f(y)|p|g(x− y)|q (here
x is fixed), p1 = p, p2 = q, p3 = 1, θ1 = 1 − p/r, θ2 = 1 − q/r and θ3 = 1/r.15

We get (noting that y 7→ g(y) and y 7→ g(x− y) have the same norm)∫
y∈Rd

|f(y)g(x− y)| dλ(y) =
∫
y∈Rd

(|f(y)|)1−p/r
(|g(x− y)|)1−q/r

(|f(y)|p|g(x− y)|q)1/r dλ(y)

≤ ∥f∥1−p/r
p ∥g∥1−q/r

q

(∫
y∈Rd

|f(y)pg(x− y)q| dλ(y)
)1/r

14We are only using the measurability portion of that theorem.
15Noting that θ1

p1
+ θ2

p2
+ θ3

p3
= p−1 − r−1 + q−1 − r−1 + r−1 = 1.
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Applying this, and using Fubini’s theorem, we get

∥f ∗ g∥r =

(∫
x∈Rd

∣∣∣∣∫
y∈Rd

f(y)pg(x− y)q dλ(y)

∣∣∣∣r dλ(x))1/r

≤
(∫

x∈Rd

∥f∥r−p
p ∥g∥r−q

q

(∫
y∈Rd

|f(y)pg(x− y)q| dλ(y)
)
dλ(x)

)1/r

= ∥f∥1−p/r
p ∥g∥1−q/r

q

(∫
y∈Rd

(∫
x∈Rd

|f(y)pg(x− y)q| dλ(x)
)
dλ(y)

)1/r

= ∥f∥1−p/r
p ∥g∥1−q/r

q

(∫
y∈Rd

|f(y)|p
(∫

x∈Rd

|g(x− y)|q dλ(x)
)
dλ(y)

)1/r

= ∥f∥1−p/r
p ∥g∥1−q/r

q

(∫
y∈Rd

|f(y)|p · ∥g∥qq dλ(y)
)1/r

= ∥f∥1−p/r
p ∥g∥1−q/r

q ∥g∥q/rq ∥f∥p/rp = ∥f∥p∥g∥q
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Question 10

Let (X,M, µ) be a measure space. Prove that if p ∈ (1,∞) and Lp is understood
as consisting of equivalence classes of functions with respect to the equivalence
relation of being equal µ-a.e., then ∥·∥p is a complete norm, giving rise to an Lp

Banach space.

Solution. We first need to check that ∥·∥p is a norm. C.f. Claim 5.29 in the
lecture notes. We check each of the criteria in Definition C.1.

0. Changing a function on a measure 0 set does not change its integral. From
this it follows that ∥·∥p is well-defined. It should be clear that ∥·∥p takes
values in [0,∞).

1. For f ∈ Lp and α ∈ C, we have

∥αf∥p =

(∫
X

|αf |p dµ
)1/p

= |α|
(∫

X

|f |p dµ
)1/p

= |α| · ∥f∥p

2. The triangle inequality for ∥·∥p is the content of Question 7.

3. Clearly ∥x 7→ 0∥p = 0. On the other hand, if f ∈ Lp(X,µ) is non-zero then
Vϵ :=µ({x ∈ X | |f(x)| > ϵ} must be positive for some ϵ > 0.16 It follows
that

∥f∥pp =

∫
X

|f |p dµ ≥
∫
Vϵ

ϵp dµ > 0

For completeness of the norm, the proof of Theorem 5.31 in the lecture notes
goes through by simply changing suitable exponents and subscripts from 1 to p.
See also Theorem 6.6 in Folland’s Real Analysis and Theorem 3.11 in Rudin’s
Real and Complex Analysis.

16Otherwise, {x ∈ X | f(x) ̸= 0} =
⋃

n∈N V1/n would have measure 0.
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Question 11

Show that the norm ∥·∥p satisfies the parallelogram identity (for general measure
spaces X) if and only if p = 2.

Remark. If a norm ∥·∥ on a vector space V is induced by an inner product
⟨·, ·⟩, then for any v, w ∈ V we have

∥v + w∥2 + ∥v − w∥2 = ⟨v + w, v + w⟩+ ⟨v − w, v − w⟩
= ⟨v, v + w⟩+ ⟨w, v + w⟩+ ⟨v, v − w⟩ − ⟨w, v − w⟩
= ⟨v, v + w + (v − w)⟩+ ⟨w, v + w − (v − w)⟩
= 2 ⟨v, v⟩+ 2 ⟨w,w⟩ = 2∥v∥2 + 2∥w∥2

I.e. ∥·∥ satisfies the parallelogram identity.

Remark. If a norm ∥·∥ on a vector space V obeys the parallelogram inequality

∥v + w∥2 + ∥v − w∥2 ≤ 2∥v∥2 + 2∥w∥2 (v, w ∈ V )

Then by substituting v′ := v + w, w′ := v − w into the inequality we get

∥v′ + w′∥2 + ∥v′ − w′∥2 ≤ ∥v′∥2 + ∥w′∥2

4∥v∥2 + 4∥w∥2 ≤ 2∥v + w∥2 + 2∥v − w∥2

2∥v∥2 + 2∥w∥2 ≤ ∥v + w∥2 + ∥v − w∥2

So the norm satisfies the a priori stronger parallelogram identity

∥v + w∥2 + ∥v − w∥2 = 2∥v∥2 + 2∥w∥2 (v, w ∈ V )

Solution. The fact that for p = 2 the parallelogram identity is satisfied follows
from the first remark above applied to the inner product presented in Claim
5.34 in the lecture notes. We now focus on the case p ̸= 2.

To show that the parallelogram law fails for some measure space, consider
in Lp(R) the example (with p ̸= 2)

∥χ(0,1) + χ(1,2)∥2p + ∥χ(0,1) − χ(1,2)∥2p = 2 · 22/p ̸= 4 = 2∥χ(0,1)∥2p + 2∥χ(1,2)∥2p

In fact, the parallelogram law fails for any measure space (X,M, µ) with dimLp(X) >
1, as we now show. Given such a space, let Y1, Y2 ⊆ X be disjoint subsets with
0 < µ(Yi) <∞ for i = 1, 2.17 Then

∥χY1
+ χY2

∥2p = ∥χY1
− χY2

∥2p = (µ(Y1) + µ(Y2))
2/p

For p > 2, the function t 7→ t2/p is strictly concave18 and thus strictly subaddi-
tive on (0,∞) (see lemma below):

(µ(Y1) + µ(Y2))
2/p < µ(Y1)

2/p + µ(Y2)
2/p

17If such subsets cannot be found, then the space of integrable functions is it most 1-
dimensional and all Lp spaces coincide.

18as is readily verified by checking that its second derivative is negative on (0,∞)
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This gives

∥χY1 + χY2∥2p + ∥χY1
− χY2

∥2p < 2∥χY1
∥2/pp + 2∥χY2

∥2/pp

Thus the parallelogram inequality fails. If instead p < 2 then t2/p is strictly
convex and thus strictly superadditive on (0,∞). It follows that the opposite
inequality holds strictly. This means that the parallelogram identity fails (which
by the second remark above implies that the parallelogram inequality still fails).

Lemma. Suppose f : [0,∞) → R is a function with f(0) = 0. If f is con-
cave (resp. strictly concave, resp. convex, resp. strictly convex) then it is also
subadditive (resp. strictly subadditive, resp. superadditive, resp. strictly superad-
ditive).19

Proof. By changing f to −f we exchange concavity with convexity. It therefore
suffices to prove the concave half of the claim. Let x, y ∈ [0,∞). Concavity
gives

f(x) = f

(
y

x+ y
· 0 + x

x+ y
· (x+ y)

)
≥ y

x+ y
f(0)+

x

x+ y
f(x+y) =

x

x+ y
f(x+y)

Similarly, f(y) ≥ y
x+yf(x+ y). Adding the two, we get

f(x) + f(y) ≥ x

x+ y
f(x+ y) +

y

x+ y
f(x+ y) = f(x+ y)

If f is strictly concave then the first inequality is strict unless either 0 = x+y or
y/(x+ y) = 0 or x/(x+ y) = 0. Thus equality holds only if x = 0 or y = 0.

Question 12

Suppose ∥·∥ is a norm on a complex vector space V . Show that ∥·∥ satisfies
the parallelogram identity if and only if there exists an inner product ⟨·, ·⟩ on V
such that ∥v∥2 = ⟨v, v⟩ for all v ∈ V . In this case, the inner product in question
is uniquely determined by ∥·∥.

Solution. C.f. Prop. 2.1.8 in Kadison and Ringrose’s Fundamentals of the Theory
of Operator Algebras, Volume I. See also Theorem 4.3.6 in Istrăţescu’s Inner
Product Structures.

Suppose that ⟨·, ·⟩ were such an inner product, then for any v, w ∈ V we
would have

∥v+w∥2−∥v−w∥2 = ⟨v + w, v + w⟩−⟨v − w, v − w⟩ = 2 ⟨v, w⟩+2 ⟨w, v⟩ = 2 ⟨v, w⟩+2⟨v, w⟩ = 4ℜ(⟨v, w⟩)

(where ℜ is the real-part function). Note that (u, v) 7→ ℜ(⟨u, v⟩) is a real inner-
product on V .

19A function on [0,∞) or R is subadditive f(x + y) ≤ f(x) + f(y) whenever x, y lie in its
domain. It is superadditive if the reverse inequality always holds. The adverb strictly here
means that the inequality holds strictly whenever x, y are both non-zero.
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Proposition. Let V be a complex normed vector space whose norm satisfies
the parallelogram law. Define

[v, w] :=
1

4

(
∥v + w∥2 − ∥v − w∥2

)
(v, w ∈ V )

The bracket [·, ·] has the following properties:

(o) [u, v] ∈ R for all u, v ∈ V .

(i) [v, v] = ∥v∥2 for all v ∈ V .

(ii) [v, w] = [w, v] for all v, w ∈ V .

(iii) [iv, iw] = [v, w] for all v, w ∈ V .

(iv) [·, ·] is continuous as a function V × V → R.

(v) [·, ·] is additive in each argument, i.e.

[u+ v, w] = [u,w] + [v, w], [u, v + w] = [u, v] + [u,w] (u, v, w ∈ V )

(vi) [·, ·] is R-homogeneous in each argument, i.e.

[λu, v] = [u, λv] = λ[u, v] (u, v ∈ V, λ ∈ R)

Furthermore, [·, ·] is the unique real inner-product on V satisfying (i).

Proof. Claims (o) through (iii) are immediate from the definition. Claims (o)
through (vi) imply that [·, ·] is an inner product.20 The uniqueness condition
follows by an argument similar to the preamble above.

(iv) The continuity of [·, ·] follows from the fact that it is a composition of
continuous functions.

(v) By symmetry, it clearly suffices to prove additivity on the left.

The parallelogram law applied to the vectors u and v + w gives

2∥u∥2 + 2∥v + w∥2 = ∥u+ v + w∥2 + ∥u− v − w∥2

Applying it to the vectors u− w and v gives

2∥u− w∥2 + 2∥v∥2 = ∥u+ v − w∥2 + ∥u− w − v∥2

Subtracting the one from the other gives

2∥u∥2 − 2∥v∥2 + 2∥v + w∥2 − 2∥u− w∥2 = ∥u+ v + w∥2 − ∥u+ v − w∥2

Symmetrically (exchanging the roles of u and v), we get

2∥v∥2 − 2∥u∥2 + 2∥u+ w∥2 − 2∥v − w∥2 = ∥v + u+ w∥2 − ∥v + u− w∥2

20Note that positive-definiteness follows from (i).
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Adding the two equations above gives

2∥u+w∥2−2∥u−w∥2+2∥v+w∥2−2∥v−w∥2 = 2∥u+v+w∥2−2∥u+v−w∥2

The left-hand-side here is 8[u,w] + 8[v, w] and the right-hand-side is 8[u+
v, w].

(vi) Again by symmetry, it suffices to show that [λu, v] = λ[u, v]. Fix u, v ∈ V .
We consider the function

f : R → R
λ 7→ [λu, v]

Note that f is continuous as the composition of continuous functions. From
part (v) it is clear that for κ, λ ∈ R we have f(κ + λ) = f(κ) + f(λ). It
then follows from the proposition below that f(λ) = λf(1) = λ[u, v].

Proposition. Suppose f : Rn → Rm is a continuous function satisfying f(x+
y) = f(x) + f(y) for all x, y ∈ Rn. Then f is R-linear. That is, f(λx) = λf(x)
for all x ∈ Rn, λ ∈ R.

Proof. Consider the good set

G :={t ∈ R | f(tx) = tf(x) for all x ∈ Rn}

We will show that G = R, which suffices. Clearly 1 ∈ G. Now note that

f(0) = f(0 + 0) = f(0) + f(0)

implies f(0) = 0. So for any x ∈ Rn, we have f(0 · x) = f(0) = 0 · f(x). This
shows 0 ∈ G. Next suppose s, t ∈ G then for any x ∈ Rn,

f((s+ t)x) = f(sx+ tx) = f(sx) + f(tx) = sf(x) + tf(x) = (s+ t)f(x)

So s+ t ∈ G. Also if s ∈ G then for all x ∈ Rn

0 = f(0 · x) = f(sx− sx) = f(sx) + f(−sx)

Hence f(−sx) = −f(sx) = −sf(x). This means −s ∈ G.
These properties imply that G is an (additive) subgroup of R. Since 1 ∈ G,

the subgroup generated by 1, namely Z must also be contained in G.
Suppose again that s, t ∈ G. Then for all x ∈ Rn

f(stx) = sf(tx) = stf(x)

This shows that st ∈ G. Also if s ∈ G is nonzero then for all x ∈ Rn

f(x) = f(ss−1x) = sf(s−1x)

shows that f(s−1x) = s−1f(x). This implies s−1 ∈ G.
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The above properties now imply that G is a subfield of R. In particular, this
implies Q ⊆ G.

For the final nail in the coffin, we define for each x ∈ Rn, the function
∆x : R → Rm by t 7→ f(tx)− tf(x). Note that (for each x) the function ∆x is
continuous (as a composition of continuous functions) and

G =
⋂

x∈Rn

∆−1
x ({0})

This shows that G is an intersection of closed subsets of R, and must therefore be
closed. But the only closed subset of R containing Q is R itself. So G = R.

To define the inner product in terms of [·, ·], we use a standard trick. Note
that if [·, ·] = ℜ ◦ ⟨·, ·⟩ for some inner product ⟨·, ·⟩ then (letting ℑ denote the
imaginary-part function)

[u, v]+i[iu, v] = ℜ(⟨u, v⟩)+iℜ(⟨iu, v⟩) = ℜ(⟨u, v⟩)+iℜ(−i ⟨u, v⟩) = ℜ(⟨u, v⟩)+iℑ(⟨u, v⟩) = ⟨u, v⟩

Proposition. Suppose V is a complex vector space and [·, ·] : V × V → R is a
real inner product on V . Suppose ⟨iu, iv⟩ = ⟨u, v⟩ for all u, v ∈ V . Then the
function ⟨·, ·⟩ : V × V → C defined by

⟨u, v⟩ :=[u, v] + i[iu, v]

is the unique inner product on V which satisfies ⟨u, u⟩ = [u, u] for all u ∈ V .

Proof. Once we show ⟨·, ·⟩ is in fact an inner product, the uniqueness condition
will follow by the discussion above. For conjugate-symmetry, note that

⟨v, u⟩ = [v, u]+i[iv, u] = [u, v]+i[u, iv] = [u, v]+i[i·u, i·iv] = [u, v]−i[iu, v] = ⟨u, v⟩

Right-additivity of ⟨·, ·⟩ follows immediately from the right-additivity of [·, ·].
The same is true of R-homogeneity. For multiplication by i, we have

⟨u, iv⟩ = [u, iv] + i[iu, iv] = [i · u, i · iv] + i[u, v] = i([u, v] + i[iu, v]) = i ⟨u, v⟩

Hence for any z = a+ bi ∈ C (with a, b ∈ R) we have

⟨u, zv⟩ = ⟨u, (a+ ib)v⟩ = ⟨u, av + ibv⟩ = ⟨u, av⟩+⟨u, ibv⟩ = ⟨u, av⟩+i ⟨u, bv⟩ = a ⟨u, v⟩+ib ⟨u, v⟩ = z ⟨u, v⟩

Thus ⟨·, ·⟩ is C-linear in its second argument. Now observe that (for u ∈ V )

[u, iu] = [iu, i · iu] = [iu,−u] = −[u, iu]

This implies [u, iu] = 0. This means that

⟨u, u⟩ = [u, u] + i[iu, v] = [u, u]

This proves both the last claim in the proposition and the positive-definiteness
of ⟨·, ·⟩.

Returning to our original problem, we combine the two propositions above to
get an inner-product ⟨·, ·⟩ such that ⟨u, u⟩ = ∥u∥2 for all u ∈ V . Its uniqueness
is a consequence of the uniqueness conditions in these propositions.
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Question 13 : Riesz

A bounded linear functional on a Banach space V is (by definition) a C-linear
map A : V → C such that

sup
v∈V

∥v∥V ≤1

|Av| <∞

Show that if ∥·∥V is complete and satisfies the parallelogram identity then every
bounded linear functional on V has the form v 7→ ⟨u,−⟩ for a unique vector
u ∈ V .

Solution. This is essentially a restatement of Theorem D.10 in the lecture notes.21

See the proof there. See also Theorem 5.3 in Stein and Shakarchi’s Real Analy-
sis.

21The definition of “Hilbert space” there uses the notion of inner product instead of the
parallelogram law. But it is precisely the content of the previous question that the two notions
are equivalent.
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Question 14

Let (X,M, µ) be a measure space. Let f : X → C be measurable. A number
M ≥ 0 is an essential upper bound on f iff the set

{x ∈ X | |f(x)| > M}

has measure 0 in X. For any such function f , the set of essential upper bounds
on f admits a minimum in [0,∞], which is by definition the essential supre-
mum of f (c.f. Definition 3.7 in Rudin’s Real and Complex Analysis). We
define L∞(X → C, µ) to be the collection of equivalence classes of essentially
bounded22 measurable functions X → C under the equivalence relation of being
equal µ-a.e. The map ∥·∥∞ taking a function to its essential supremum defines
a norm on this space.

(a) L∞(X → C, µ) is a Banach space. That is, the essential supremum gives a
complete norm.

Solution. See (the end of the proof of) Theorem 3.11 in Rudin’s Real and
Complex Analysis.

(b) Extend the theorems of Hölder and Minkowski to the case p = ∞.

Solution. For the simplest version of Hölder’s inequality, see Theorem 3.8
in Rudin’s Real and Complex Analysis. The other cases follow formally as
in Question 8 parts (b) and (c).

For Minkowski’s inequality (which logically precedes part (a)), suppose f, g
are measurable functions. Then |f | ≤ ∥f∥∞ holds pointwise on the comple-
ment of a measure 0 set E. Similarly, |g| ≤ ∥g∥∞ holds pointwise on the
complement of a measure 0 set E′. Hence

|f + g| ≤ |f |+ |g| ≤ ∥f∥∞ + ∥g∥∞

holds pointwise on the complement of the measure 0 set E ∪ E′. It follows
that ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞

22That is, those whose essential supremum is finite.
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Question 15

Let X be a locally-compact, σ-compact, T6 Hausdorff space and µ : B(X) →
[0,∞] a locally-finite, σ-finite Borel measure. Let p ∈ [1,∞) and Cc(X → C)
the set of continuous functions whose closed support f−1(C−{0}) is compact.
Show that Cc(X → C) is dense in Lp(X → C, µ).

Proof. Consider

Theorem. Suppose X is a locally-compact, σ-compact, T6 Hausdorff space and
µ : B(X) → [0,∞] a locally-finite, σ-finite Borel measure. Let f be a complex
measurable function on X supported on a set of finite measure. Then for each
ϵ > 0 there exists g ∈ Cc(X → C) such that

µ({x ∈ X | f(x) ̸= g(x)}) < ϵ

We can further choose g such that supx∈X |g(x)| ≤ supx∈X |f(x)|.

This is theorem 2.24 in Rudin’s Real and Complex Analysis.23 See the proof
there.

With this tool in hand, we can make quick work of our problem.
Fix ϵ > 0 and f ∈ Lp(X → C, µ). It suffices to show that we can find

g ∈ Cc(X → C) such that ∥f − g∥p < 2ϵ. For each M ∈ N, define

XM :={x ∈ X |M−1 ≤ |f(x)| ≤M}
fM := f |XM

= f · χXM

Note thatXM has finite measure by the Tschebyschev inequality. Also fM −→ f
pointwise as M −→ ∞.24 The inequality |f − fM | ≤ |f | holds pointwise. It
follows by the dominated convergence theorem that ∥f−fM∥p −→ 0 asM −→ 0.
In particular, we can choose M0 large enough that ∥f − fM0∥p < ϵ. We can
then choose g ∈ Cc(X → C) such that |g| ≤M0 pointwise and

µ({x ∈ X | fM0(x) ̸= g(x)}) < (ϵ/2M0)
p

Let D :={x ∈ X | fM0
(x) ̸= g(x)}. Then

∥fM0 − g∥pp =

∫
X

|fM0
− g|p dµ ≤

∫
D

(|fM0
|+ |g|)p dµ ≤ µ(D) · (2M0)

p < ϵp

Thus ∥fM0 − g∥p < ϵ and so (using Minkowksi’s inequality)

∥f − g∥p ≤ ∥f − fM0
∥p + ∥fM0

− g∥p < ϵ+ ϵ < 2ϵ

23The hypotheses in that theorem are a bit different. Rudin asks that (i) µ be finite
on compact sets, (ii) µ be regular and (iii) µ be complete. The third hypothesis is never
used and since we can always pass to the completion (and then come back) it is harmless.
The assumption (i) follows from the hypotheses listed above by applying Claim 3.21. The
assumption (ii) follows from the same hypotheses by applying Theorem 3.22.

24At every point x ∈ X, the sequence fM (x) is eventually constant with limiting value f(x).
Note that the case f(x) = 0 needs to be argued for separately.
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