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1. In this question we consider the space L1
(
Rd

)
w.r.t. to the Lebesgue measure on Rd, and endow it with a norm

∥f∥L1 ≡
∫

Rd

|f |dλ .

Prove that if f ∈ L1
(
Rd

)
and δ > 0 then { x 7→ f (δx) }δ>0 converges to f in the L1-norm as δ → 1.

2. Let f ∈ L1 ([0, b]) and set

g (x) :=

∫ b

x

f (t)

t
dt (x ∈ (0, b]) .

Show that g ∈ L1 ([0, b]) and ∫ b

0

g =

∫ b

0

f .

3. (Chebyshev inequality) Let f ∈ L1
(
Rd → [0,∞)

)
. Show that

λ
(
f−1 ((α,∞))

)
≤ 1

α

∫
fdλ (α > 0) .

4. Show that for f ∈ L1
(
Rd → R

)
, if ∫

A

fdλ = 0 (A Lebesgue measurable)

then
λ
(
f−1 ({ 0 }c)

)
= 0 .

5. Find a function f ∈ L1
(
Rd

)
and a sequence { fn }n ⊆ L1

(
Rd

)
such that

∥f − fn∥L1 → 0

yet fn (x) → f (x) does not hold for any x ∈ Rd.

6. (The Layer-Cake Representation) Let f ∈ L1
(
Rd

)
. Show that∫

Rd

|f |dλ =

∫ ∞

α=0

λ
({

x ∈ Rd
∣∣ |f (x)| > α

})
dα .

7. A sequence
{
fn : Rd → C

}
n

of measurable functions is called Cauchy in measure iff for any ε > 0,

λ
({

x ∈ Rd
∣∣ |fn (x)− fk (x)| > ε

})
→ 0

as n, k → ∞. Moreover, the sequence converges in measure to a measurable function f : Rd → C iff for any ε > 0,

lim
n→∞

λ
({

x ∈ Rd
∣∣ |fn (x)− f (x)| > ε

})
= 0 .

Prove that convergence in L1 norm implies convergence in measure, and provide a counter example to the converse.
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8. In this exercise, you will construct a Vitali set in [0, 1] and prove that it cannot be Lebesgue measurable.

(a) The Equivalence Relation.
i. Let ∼ be the relation on [0, 1] defined by

x ∼ y if and only if x− y ∈ Q.

Prove that ∼ is an equivalence relation on [0, 1].
ii. Show that each equivalence class is countable. (Hint: For any fixed x ∈ [0, 1], the equivalence class of x is

given by {x+ q : q ∈ Q} ∩ [0, 1], and Q is countable.)
(b) Existence of a Vitali Set. Using the Axiom of Choice, show that there exists a subset V ⊂ [0, 1] such that

V contains exactly one element from each equivalence class defined by ∼. This set V is called a Vitali set.
(c) Translates of the Vitali Set. For each rational number r ∈ Q ∩ [−1, 1], define the translated set

Vr = {v + r : v ∈ V }.

Prove that the sets {Vr : r ∈ Q ∩ [−1, 1]} are pairwise disjoint. (Hint: Suppose that for r1 ̸= r2, there exist
v1, v2 ∈ V such that v1 + r1 = v2 + r2. Use the definition of the equivalence classes to reach a contradiction.)

(d) Covering a Finite Interval. Show that ⋃
r∈Q∩[−1,1]

Vr ⊂ [−1, 2].

(Hint: If v ∈ V ⊂ [0, 1] and r ∈ [−1, 1], then v + r ∈ [−1, 2].)
(e) Non-measurability of the Vitali Set. Assume, for the sake of contradiction, that V is Lebesgue measurable

with measure m(V ). Using the translation invariance and countable additivity of Lebesgue measure, show that
this assumption leads to a contradiction.

i. Express the measure of the union
U =

⋃
r∈Q∩[−1,1]

Vr,

in terms of m(V ).
ii. Explain why this leads to a contradiction given that U is contained in the finite interval [−1, 2]. (Hint:

Consider the cases m(V ) = 0 and m(V ) > 0, and show that each case contradicts the finiteness of the
measure of [−1, 2].)

9. [NOT FOR THE MIDTERM ] The Banach-Tarski paradox is one of the most striking results in measure theory and
geometric group theory. In this exercise, you will explore several aspects of the paradox, including the notions of
equidecomposability, the role of non-measurable sets, the use of the Axiom of Choice, and the connection to free
groups and amenability.

(a) Equidecomposability and Measure Preservation.
Let A,B ⊂ R3. We say that A and B are equidecomposable if there exist finite partitions

A =

n⋃
i=1

Ai and B =

n⋃
i=1

Bi,

and isometries (rotations and translations) T1, . . . , Tn of R3 such that

Ti(Ai) = Bi for i = 1, . . . , n.

i. Prove that if A and B are Lebesgue measurable and equidecomposable (via the above definition), then
λ(A) = λ(B).

ii. Explain why the existence of a paradoxical decomposition (as in the Banach-Tarski paradox) implies that
at least one of the pieces must be non-measurable.

(b) Statement and Intuition Behind the Paradox.
Let B ⊂ R3 be a solid ball. The Banach-Tarski paradox asserts that one can partition B into finitely many
disjoint subsets B1, B2, . . . , Bn such that, using only rotations and translations, these pieces can be reassembled
to form two solid balls, each congruent to B.
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i. Write a precise statement of the Banach-Tarski paradox.
ii. Discuss which fundamental properties of Lebesgue measure (such as additivity and invariance under isome-

tries) would be violated if all the pieces in the decomposition were measurable. You will need to appeal to
Theorem 4.11 in the lecture notes.

(c) The Role of the Axiom of Choice.

i. Explain why the construction of the Banach-Tarski paradox relies on the Axiom of Choice.
ii. Describe briefly how the Axiom of Choice is used to select non-measurable sets that are critical in the

paradoxical decomposition.

(d) Free Groups and Paradoxical Decompositions.
A crucial step in the proof of the Banach-Tarski paradox is to show that the rotation group SO(3) contains a
free subgroup on two generators.

i. Prove (or outline a proof) that SO(3) contains a subgroup isomorphic to the free group on two generators,
denoted F2.

ii. Explain why the existence of such a free subgroup is essential for constructing a paradoxical decomposition
of the sphere.

(e) Amenability and the Dimensionality Issue.

i. Define what it means for a group to be amenable.
ii. Explain why the Banach-Tarski paradox cannot occur in R2. (Hint: Relate this to the amenability of the

rotation group in the plane.)

(f) Consequences for Finitely Additive Measures.
Assume for the sake of contradiction that there exists a finitely additive, rotation-invariant measure defined on
all subsets of R3 that extends Lebesgue measure.

i. Show that, under this assumption, the Banach-Tarski paradox leads to a contradiction with the finite
measure of the ball B.

ii. Conclude why no such finitely additive measure can exist on all subsets of R3.
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