Princeton University Spring 2025 MAT425: Measure Theory HW4 Sample Solutions Feb 25th 2025

Serban Cicortas

March 3, 2025

Problem 1.

Solution. We introduce the notation $f_{\delta}(x) = f(\delta x)$. For any $\epsilon > 0$, we prove that for all $|\delta - 1|$ small enough we have $||f - f_{\delta}||_{L^1} \leq 4\epsilon$, which will imply that $f_{\delta} \to f$ in $L^1(\mathbb{R}^d)$. We recall that continuous functions of compact support are dense in $L^1(\mathbb{R}^d)$, so let g be a continuous function of compact support such that $||f - g||_{L^1} \leq \epsilon$. We can write:

$$f - f_{\delta} = (f - g) + (g - g_{\delta}) + (f_{\delta} - g_{\delta})$$

By a change of variables we have:

$$\int_{\mathbb{R}^d} |f_{\delta} - g_{\delta}|(x) dx = \int_{\mathbb{R}^d} |f - g|(\delta x) dx = \delta^{-n} ||f - g||_{L^1} < 2\epsilon$$

because for $|\delta - 1|$ small enough we have $\delta^{-n} < 2$. Finally, since g is continuous and has compact support we have that for $|\delta - 1|$ small enough:

$$\int_{\mathbb{R}^d} |g(x) - g(\delta x)| dx < \epsilon$$

We use the triangle inequality and the previous bounds to conclude.

Problem 2.

Solution. We first define the function $h : [0, b] \times [0, b] \to \mathbb{R}$ given by $h(t, x) = \mathbf{1}_{[x,b]}(t) \cdot \frac{f(t)}{t}$. We now show that h is measurable on $[0, b] \times [0, b]$. For this, we use the following result from Corollary 3.7 in Chapter 2 of Stein and Shakarchi Real analysis: Suppose that F is measurable on \mathbb{R}^{d_1} , then $\tilde{F}(x, y) = F(x)$ is measurable on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$. The proof of the result is immediate from the definition of measurable functions. Applying

this result, we get that $(t, x) \mapsto \frac{f(t)}{t}$ is measurable on $[0, b] \times [0, b]$. Similarly, we also have that $(t, x) \mapsto t$ and $(t, x) \mapsto x$ are measurable. Thus, we get that $(t, x) \mapsto t - x$ is measurable, so the set $\{t - x \ge 0\} \cap \{t \le b\}$ is measurable. Finally, this implies that $(t, x) \mapsto \mathbf{1}_{[x,b]}(t)$ is measurable, so h is measurable on $[0, b] \times [0, b]$. In conclusion, the function used below is measurable and we can apply Tonelli's theorem (and later Fubini's theorem).

By the triangle inequality and Tonelli's theorem we have in the extended sense:

$$\int_{0}^{b} |g(x)| dx \le \int_{0}^{b} \int_{x}^{b} \frac{|f(t)|}{t} dt dx = \int_{0}^{b} \int_{0}^{t} \frac{|f(t)|}{t} dx dt = \int_{0}^{b} |f(t)| dt$$

Since f is integrable, we obtain that $g \in L^1([0, b])$ as well. We then use Fubini's theorem to conclude:

$$\int_{0}^{b} g(x)dx \le \int_{0}^{b} \int_{x}^{b} \frac{f(t)}{t} dt dx = \int_{0}^{b} \int_{0}^{t} \frac{f(t)}{t} dx dt = \int_{0}^{b} f(t) dt.$$

Problem 3.

Solution. We denote $E_{\alpha} = f^{-1}(\alpha, \infty) = \{x : f(x) > \alpha\}$. For every $x \in \mathbb{R}^d$ we have $f(x) \ge \alpha \mathbf{1}_{E_{\alpha}}$. We conclude by monotonicity of the integral:

$$\alpha\lambda(E_{\alpha}) = \int \alpha \mathbf{1}_{E_{\alpha}} d\lambda \le \int f d\lambda$$

Problem 4.

Solution. We write $f = f^+ - f^-$ where f^+, f^- are non-negative functions. For any $\alpha > 0$ we have that $\{f > \alpha\} = \{f^+ > \alpha\}$. Using Chebyshev's inequality we get:

$$\lambda(\{f > \alpha\}) = \lambda(\{f^+ > \alpha\}) \le \frac{1}{\alpha} \int f^+ d\lambda = \frac{1}{\alpha} \int_{\{f \ge 0\}} f d\lambda = 0$$

Since $\{f > 0\} = \bigcup_n \{f > 1/n\}$, we get that $\lambda(\{f > 0\}) = 0$. We use the same argument for -f to get $\lambda(\{f < 0\}) = 0$.

Problem 5.

Solution. We first construct the example in the case of $[0,1] \subset \mathbb{R}$. We set f = 0 and for every $0 \le k \le n-1$ we set:

$$g_{n,k} = \mathbf{1}_{I_{n,k}}, \ I_{n,k} = \left[\frac{k}{n}, \frac{k+1}{n}\right]$$

We have that $||g_{n,k}||_{L^1} = 1/n \to 0$ as $n \to \infty$. However, for any $x \in [0,1]$ we have that $\limsup_{n,k} g_{n,k}(x) = 1$ and $\liminf_{n,k} g_{n,k}(x) = 0$. We now consider the sequence $\{a_i\}$ to be an enumeration of $\{(k,n): 0 \le k \le n-1\}$

and we set $f_i = g_{a_i}$. We proved that the sequence $\{f_i\}$ converges to f in $L^1([0,1])$ but does not converge to f pointwise anywhere. Translating the functions $\{f_i\}$ and using an additional relabeling argument we can construct an example on \mathbb{R} as well.

Problem 6.

Solution. For any $x \in \mathbb{R}^d$ we can write:

$$|f(x)| = \int_0^{|f(x)|} 1d\alpha = \int_0^\infty \mathbf{1}_{\{|f(x)| > \alpha\}} d\alpha$$

Since $f \in L^1(\mathbb{R}^d)$ we can use Fubini to get:

$$\int_{\mathbb{R}^d} |f| d\lambda = \int_{\mathbb{R}^d} \int_0^\infty \mathbf{1}_{\{|f(x)| > \alpha\}} d\alpha d\lambda = \int_0^\infty \int_{\mathbb{R}^d} \mathbf{1}_{\{|f(x)| > \alpha\}} d\lambda d\alpha = \int_0^\infty \lambda\{|f(x)| > \alpha\} d\alpha$$

Problem 7.

Solution. Let $f_n \to f$ in L^1 . For any $\epsilon > 0$ we get by Chebyshev's inequality:

$$\lambda\Big(\big\{x\in\mathbb{R}^d:\ |f_n(x)-f(x)|>\epsilon\big\}\Big)\leq\frac{1}{\epsilon}\int_{\mathbb{R}^d}|f_n(x)-f(x)|dx\to0\text{ as }n\to\infty$$

Thus, we showed that convergence in L^1 norm implies convergence in measure.

We consider now the case d = 1. We set f = 0 and $f_n(x) = n \mathbf{1}_{[-1/n, 1/n]}$. For any $1 > \epsilon > 0$ we have:

$$\lambda\Big(\big\{x\in\mathbb{R}: |f_n(x) - f(x)| > \epsilon\big\}\Big) = \frac{2}{n} \to 0 \text{ as } n \to \infty$$

As a result, f_n converges to f in measure. However, we see that $\{f_n\}$ does not converge in L^1 .

Problem 8.

Solution. The proof is on pages 24-25 of Chapter 1 in Stein and Shakarchi: Real analysis.