1 Contour integrals

1. Calculate the following integrals:

 (a) For any $a > 1$,

 \[\int_0^{2\pi} \frac{1}{(a + \cos \theta)^2} \, d\theta. \]

 (b) for any $a, b \in \mathbb{R}$ such that $a > |b|$,

 \[\int_0^{2\pi} \frac{1}{a + b \cos \theta} \, d\theta. \]

 (c) for any $a > 0$,

 \[\int_0^{\infty} \frac{\log(x)}{x^2 + a^2} \, dx. \]

 (d) for any $a \in \mathbb{C}$ with $|a| \leq 1$,

 \[\int_0^{2\pi} \log(|1 - ae^{i\theta}|) \, d\theta. \]

 (first show it for $|a| < 1$)

2. Calculate the series

 \[\sum_{n \in \mathbb{Z}} \frac{1}{(u + n)^2} \]

 for $u \in \mathbb{C} \setminus \mathbb{Z}$ by integrating $z \mapsto \frac{\pi \cot(\pi z)}{(u + z)^2}$ over $\partial B_{N + \frac{1}{2}}(0)$ for some $N \in \mathbb{N}$ with $N \geq |u|$ as $N \to \infty$.

2 Set theory maintenance

Let X, Y be two sets. A function $f : X \to Y$ is called injective (one-to-one) iff

\[f(a) = f(b) \implies a = b \quad (a, b \in X). \]

f is called surjective (onto) iff

\[g \in Y \implies \exists x_g \in X : f(x_g) = y. \]

The identity mapping on X, denoted by $1_X : X \to X$ is the function that maps

\[x \mapsto x \quad (x \in X). \]

A function $f : X \to Y$ is said to have a left-inverse iff there exists some $g : Y \to X$ such that

\[g \circ f = 1_X. \]

A function $f : X \to Y$ is said to have a right-inverse iff there exists some $g : Y \to X$ such that

\[f \circ g = 1_Y. \]

A function is bijective iff it is both injective and surjective.

3. Prove that $f : X \to Y$ is injective iff it has a left-inverse; prove that $f : X \to Y$ is surjective iff it has a right-inverse.
3 Conformal maps

4. Provide an example of a function \(f : U \to V \) (for some open \(U, V \subseteq \mathbb{C} \)) which is holomorphic and for which \(f' \neq 0 \), but which is not a conformal equivalence.

5. Find \(U, V \subseteq \mathbb{C} \) open such that \(f : U \to V \) is a conformal equivalence. Prove that it is so.

6. Solve the Dirichlet problem on the set
\[
S := \{ z \in \mathbb{C} \mid \text{Re} \{ z \} \in \left(0, \frac{\pi}{2}\right) \land \text{Im} \{ z \} > 0 \}
\]
with boundary conditions
\[
f : \partial S \to \mathbb{R} \quad z \mapsto \begin{cases} 1 & \text{Re} \{ z \} = 0 \\ 0 & \text{else} \end{cases}.
\]
That is, find the unknown function \(u : S \to \mathbb{R} \) such that
\[
\begin{cases} -\Delta u = 0 \\ u|_{\partial S} = f. \end{cases}
\]

7. [extra] Find the flow \(V : \mathbb{R}^2 \to \mathbb{R}^2 \), draw its vector field, and describe the obstacle, for flows associated to the complex velocity potential \(f : \mathbb{C} \to \mathbb{C} \) given by:
 (a) \(f(z) = wz \) for some \(w \in \mathbb{C} \).
 (b) \(f(z) = wz^n \) for some \(w \in \mathbb{C} \) and \(n \in \mathbb{N}_{\geq 2} \).
 (c) \(f(z) = w\sqrt{z} \) for some \(w \in \mathbb{C} \).
 (d) \(f(z) = \frac{w}{2\pi i} \log(z) \) for some \(w > 0 \).

4 The maximum modulus principle

8. Let \(\Omega \subseteq \mathbb{C} \) be open and bounded and \(f, g : \Omega \to \mathbb{C} \) analytic and which extend to \(\partial \Omega \) continuously and furthermore satisfy
\[
|f(z)| \leq |g(z)| \quad (z \in \partial \Omega)
\]
as well as
\[
g(z) \neq 0 \quad (z \in \Omega).
\]
Show that
\[
|f(z)| \leq |g(z)| \quad (z \in \Omega).
\]

9. A function \(f : X \to \mathbb{R} \) is called convex iff
\[
f(tx_1 + (1-t)x_2) \leq tf(x_1) + (1-t)f(x_2) \quad (t \in [0,1], x_1, x_2 \in X).
\]
A function \(f : X \to \mathbb{R} \) is called log-convex iff \(\log f : X \to \mathbb{R} \) is convex. Define the closed strip
\[
S_{[a,b]} := \{ z \in \mathbb{C} \mid \text{Re} \{ z \} \in [a, b] \}.
\]
Let \(f : \text{interior} \left(S_{[a,b]}\right) \to \mathbb{C} \) be analytic and bounded, such that it extends continuously to \(\partial S_{[a,b]} \). Show that for fixed \(y \in \mathbb{R} \), \(|f(\cdot + iy)| : (a, b) \to [0, \infty) \) is log-convex. I.e., show that if there exist \(A, B \in (0, \infty) \) such that for all \(y \in \mathbb{R} \),
\[
|f(a+iy)| \leq A \\
|f(b+iy)| \leq B
\]
then
\[
|f(z)| \leq A|\text{Re}(z) - a|^{\frac{a}{b-a}}B|\text{Re}(z) - a|^{\frac{b}{b-a}} \quad (z \in S_{[a,b]}).
\]
Find an example where this is an equality.