
Complex Analysis with Applications
Princeton University MAT330

HW5v3, Due Apr 7th 2023 (but not Apr 9th!)

April 1, 2023

Note: the present HW is graded up to 100+10=100 points with 10 points bonus for legibility and coherence as is
our tradition. New this week, you have the opportunity of obtaining bonus points counting for your overall grade: the
exercises marked [extra] are not part of the HW’s 100 points count: a fully correct solution of each [extra] exercise counts
as one point increase to your final course grade.

Second note: this homework has been edited to make it more accessible. If you struggled with any question in the
previous version (or haven’t even tried it yet) please consult the question presented in this version. The added text is
mostly in italics. Importantly, questions 5 and 12 are now [extra] credit. Only for questions 5 and 12, if you’ve already
worked on them and wish to receive partial credit, please hand in your work (even if it’s partial) and I’ll make sure you
get those extra two points in your course grade.

1 Sequences, series and power series
In the following three examples, we will examine how things break down badly if interchanging the order of limits, or
interchanging limits and integration, without justification.

1. Let a function f : R2 → R be given by

f (x, y) :=

{
x

x+y x ̸= −y

0 x = −y
.

Calculate the limits:

(a) limy→∞ limx→∞ f (x, y).

(b) limx→∞ limy→∞ f (x, y).

(c) limt→∞ f (t, t).

2. Let a sequence of functions fn : R → R be given by

fn (x) =
x2

(1 + x2)
n (x ∈ R, n ∈ N≥0) .

Define the partial sum sequence gN : R → R via

gN (x) :=

N∑
n=0

fn (x) (x ∈ R, N ∈ N) .

Calculate
lim

N→∞
gN (x)

for any x ∈ R and determine whether the convergence is uniform (in x) or not. Note: you do not have to prove the
statement about uniform convergence but please at least heuristically justify it. Finally, determine whether gN is a
continuous function for finite N and whether the limit function g∞ is continuous.
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3. Define a sequence of functions fn : [0, 1] → R via

fn (x) := n2x
(
1− x2

)n
(x ∈ [0, 1] , n ∈ N) .

(a) Calculate the limit function limn→∞ fn.

(b) Is the convergence uniform? You do not have to justify you answer.

(c) Calculate the limit number

lim
n→∞

ˆ 1

0

fn .

(d) Now considering the modified sequence of functions f̃n := 1
nfn, calculate limn→∞ f̃n and limn→∞

´ 1
0
f̃n.

4. (Summation by parts formula) Let { an }Nn=1 , { bn }Nn=1 ⊆ C be two finite sequences. Define Bk :=
∑k

n=1 bn be the
partial sums, with B0 ≡ 0. Show that

N∑
n=M

anbn = aNBN − aMBM−1 −
N−1∑
n=M

(an+1 − an)Bn .

5. [extra] (Abel’s theorem on “Abel summation”) For some sequence { an }n ⊆ C, assume that
∑∞

n=1 an converges. Show
that

lim
ε→0+

∞∑
n=1

(1− ε)
n
an =

∞∑
n=1

an .

Here are some hints on how to approach this:

(a) In the first step, assume that
∑∞

n=1 an = 0 so your goal is to show limε→0+
∑∞

n=1 (1− ε)
n
an = 0.

i. Apply the previous summation by parts formula on (there) an (here) (1− ε)
n and (there) bn (here) an to

obtain an identity for
∑N

n=1 (1− ε)
n
an (at some finite partial sum N).

ii. Since AN :=
∑N

n=1 an → 0 by assumption, for any δ > 0, there’s some Nδ ∈ N such that |An| < δ if
n ≥ Nδ. So pick some arbitrary δ and divide the sum in the RHS of the identity you obtained in the
previous step to

∑N−1
n=1 · · · =

∑Nδ

n=1 · · ·+
∑N−1

n=Nδ+1 · · · .
iii. Bound each of these terms (in absolute value from above) separately. For the first term, use the fact that

(1− ε)
n ≤ 1 and for the second term use the fact that within it, |An| ≤ δ, and afterwards you may calculate

the resulting geometric sum of the second term.
iv. Now take the limits, in the following order: first N → ∞, then ε → 0+, and finally δ → 0. In doing so,

note that δ and Nδ are independent of both N and ε by construction.
v. Conclude that limε→0+ |

∑∞
n=1 (1− ε)

n
an| ≤ 0 and hence the claim.

(b) To obtain the general case, define a0 := −
∑∞

n=1 an and add that to both sides of the putative equation to get
the equivalent claim

lim
ε→0+

∞∑
n=0

(1− ε)
n
an =

∞∑
n=0

an .

i. Define bn = an−1, and after factoring out (1− ε)
−1, apply the claim to limε→0+

∑∞
n=1 (1− ε)

n
bn to get

the result, using the fact that limε→0+ (1− ε)
−1

= 1 and the product of limits is the limit of products.

6. [extra] Find the radius of convergence of the following power series
∑∞

n=1 anz
n. You may employ the so-called

Cauchy-Hadamard formula for the radius R of absolute convergence of a power series

R =
1

lim supn→∞ |an|
1
n

(cf. the root test of series). Find R for the following choices:

(a) an = (log (n))
2.

(b) an = n!.

(c) an = 1
n2 .
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(d) an = n2

4n+3n .

(e) an = (n!)3

(3n)! . You may use the upper and lower bounds on the factorial

nn

en−1
≤ n! ≤ nn+1

en−1
.

(f) an = fn(α)fn(β)
n!fn(γ)

for some α, β ∈ C, γ ∈ C \ { n ∈ Z | n ≤ 0 } and

fn (ξ) :=

n−1∏
j=0

(ξ + j) (ξ ∈ C) .

(g) a2n+1 = 0 and 22n = (−1)n

n!(n+r)!
1

22n for some r ∈ N.

7. Let f be a power series centered at the origin. Prove that f has a power series expansion around any point in its
disc of convergence. If you are curious calculate the coefficients of the new series (but you don’t have to do so to
obtain credit).

8. Find a power series expansion of (1− z)
−m about z0 = 0 for some m ∈ N.

9. Calculate the Taylor series coefficients at x = 0 of the R → R function

f (x) :=

{
0 x ≤ 0

e−
1
x2 x > 0

.

What does this mean about analyticity about x0 = 0?

10. Find s ∈ R for which the following series are convergent, and for which they are absolutely convergent:

(a)
∑∞

n=1
1
ns .

(b)
∑∞

n=1
(−1)n

ns .

You may use the integral test for convergence of a series and the alternating series test.

11. Show that the following two series are convergent to a finite number and are equal:
∞∑

n=1

(−1)
n+1

n
=

∞∑
n=1

1

(2n− 1) 2n
.

You may find the identity
1

a
− 1

b
=

1

a
(b− a)

1

b

useful.

12. [extra] (Riemann’s theorem) For a given α ∈ R, find a re-arrangement f : N → N (i.e., a bijection) so that

∞∑
n=1

(−1)
f(n)+1

f (n)
= α .

2 Calculation of contour integrals
In the following integral calculation, to obtain full credit please justify every step of your calculation to reasonable extent.

13. For some a ∈ (0, 1), calculate ˆ ∞

x=−∞

eax

1 + ex
dx .

14. How many distinct values does ˛
∂BR(0)

cos (πz)

z (z − 5)
2 dz

take as R ranges over (0,∞) \ { 5 }? Calculate them.
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Figure 1: Keyhole contour.

15. Let Γ be a simple closed CCW contour. Show that for all t ∈ C,

˛
Γ

z3 + tz

(z − w)
3 dz =

{
6πiw w ∈ interior (Γ)

0 w /∈ interior (Γ) .

16. [extra] For some z ∈ C \ [0, 4], calculate ˆ 2π

k=0

1

2− 2 cos (k)− z
dk

and (second, unrelated part) for some ξ ∈ R, calculate
ˆ ∞

x=−∞

e−2πixξ

cosh (πx)
dx .

3 Miracles
17. Prove that if f : Ω → C is non-constant analytic on some open connected Ω then fR cannot have a maximum on

interior (Ω).

18. [extra] Define Γ : Ω → C on Ω := { z ∈ C | Re {z} > 0 } via

Γ (z) =

ˆ ∞

0

tz−1e−tdt .

Show that Γ is analytic on Ω. Define now Γ̃ : C → C via

Γ̃ (z) :=
1

2i sin (πz)

˛
C

tz−1etdt

where C is a key-hole contour about the negative real axis (see Figure 1). Show that Γ̃ is the analytic extension of
Γ, and that it possesses simple poles on { n ∈ Z | n ≤ 0 } ⊆ C.
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