Complex Analysis with Applications Princeton University MAT330 HW4, Due March 3rd 2023

February 25, 2023

1 Basic functions

Read the chapter (in particular the examples and exercises) on the complex logarithm and complex power in Brown and Churchill.

2 Contour integrals

- 1. Define $f: \mathbb{C} \to \mathbb{C}$ via $f(z) = x^2 iy^2$ and calculate the contour integral $\int_{\Gamma} f$ given that
 - (a) $\Gamma = \{ x + iy \in \mathbb{C} \mid y = 2x^2 \land x \in [1, 2] \}$ (carry out the calculation for both orientations).
 - (b) Γ is the straight line from (1, 8) to (2, 8).
 - (c) Γ is the straight line from (1, 2) to (2, 8).
- 2. Define the curve $\gamma: [0, 2\pi] \to \mathbb{C}$ given by

$$\gamma(t) = (i+t) - ie^{-it} \qquad (t \in [0, 2\pi]) .$$

- (a) Draw a plot of it.
- (b) Is it simple? Is it closed? Is it smooth or piecewise smooth?
- (c) Calculate $\int_{\gamma} f$ where $f : \mathbb{C} \to \mathbb{C}$ is given by $f(z) = z^2 + 1$ for all $z \in \mathbb{C}$.
- 3. Evaluate

$$\oint \left(\frac{1}{z} - 1\right) \mathrm{d}z$$

around

- (a) The circle $\{ z \in \mathbb{C} \mid |z 2| = 1 \}.$
- (b) The square with vertices at $1 \pm i$, $-1 \pm i$.
- 4. Let γ be any simple closed curve bounding a region having area A.
 - (a) Prove that

$$A = \frac{1}{2i} \oint_{\Gamma} \overline{z} dz$$

(b) Find the area bounded by the ellipse define via

$$\begin{cases} x = a\cos(\theta) \\ y = b\sin(\theta) \end{cases} \quad \theta \in [0, 2\pi]$$

for some a, b > 0.

5. Let $\varphi : [\alpha, \beta] \to [a, b]$ be a given smooth function with $\varphi' > 0$. Find a counter example (i.e., concrete γ, f) to the statement that

$$\int_{[a,b]} f \circ \gamma \quad = \quad \int_{[\alpha,\beta]} f \circ \gamma \circ \varphi \, .$$

6. Let $\gamma: [0, 2\pi] \to \mathbb{C}$ be given by $\gamma(t) = z_0 + Re^{it}$. Calculate

$$\oint_{\Gamma} \left(z - z_0\right)^k \mathrm{d}z \qquad (k \in \mathbb{Z}) \ .$$

Why does this not contradict Cauchy's integral theorem when k = -1?

7. Evaluate

$$\frac{1}{2\pi \mathrm{i}} \oint_{\Gamma} \frac{z^2}{z-1} \mathrm{d}z$$

for Γ the circle $|z| = \frac{1}{2}$ as well as Γ the circle |z| = 5, each with positive orientation.

8. Evaluate

$$\frac{1}{2\pi \mathrm{i}} \oint_{\Gamma} \frac{\mathrm{e}^{2z}}{z} \mathrm{d}z$$

for Γ the circle |z| = 4.

9. Let $F, G : \mathbb{R}^2 \to \mathbb{R}$ be a pair of harmonic conjugate functions. Show that the closed loop integral of the vector field

$$V = \begin{bmatrix} G \\ F \end{bmatrix}$$

is zero around any closed contour.

3 Cauchy's integral formula

10. Starting from Cauchy's integral formula

$$f(z_0) = \frac{1}{2\pi i} \oint \frac{f(z)}{z - z_0} dz$$

(with the conditions for it to be true...) show that if f is holomorphic in the interior of $B_R(z_0)$ then

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f\left(z_0 + R e^{i\theta}\right) d\theta.$$

Show that this actually holds separately for the real and imaginary parts of f. Make a conclusion about a similar formula for a harmonic function $F : \mathbb{R}^2 \to \mathbb{R}$.

- 11. Prove the maximum modulus principle, stating that if $f : \Omega \to \mathbb{C}$ is holomorphic and non-constant on some subset $\Omega \subseteq \mathbb{C}$ then $|f| : \Omega \to [0, \infty)$ has no maximum points in Ω , i.e., all maximum points of |f| in the closure of Ω lie on $\partial \Omega$.
- 12. Evaluate

$$\frac{1}{2\pi} \int_0^{2\pi} \cos\left(\frac{\pi}{3} + 2e^{i\theta}\right) d\theta$$
$$\frac{1}{2\pi i} \oint \frac{e^{zt}}{z^2 + 1} dz$$

13. Evaluate

on the circle
$$|z| = 3$$
.

4 Cauchy's inequality

14. Let f be a holomorphic function satisfying

$$|f(z)| \leq 1 + |z|^{1.5} \qquad (z \in \mathbb{C})$$

Prove that f is a polynomial and give an upper bound on its degree.

15. Using Liouville's theorem, prove that any polynomial of degree $n \ge 1$ has at least one root.