Complex Analysis with Applications Princeton University MAT330 HW2, Due Feb 17th 2023

February 14, 2023

1 The complex field \mathbb{C}

1. Find the principal argument of

(a)
$$z_1 = \frac{i}{-2-2i}$$
.

(b)
$$z_2 = (\sqrt{3} - i)^6$$

2. Prove that any two $z, w \in \mathbb{C} \setminus \{0\}$ have |z| = |w| iff $\exists a, b \in \mathbb{C}$ such that z = ab and $w = a\overline{b}$.

2 More topology

- 3. Consider the map $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ given by the formula $f(z) = e^{\frac{1}{z}}$.
 - (a) Define the punctured disc of radius r as $A_r := \{ z \in \mathbb{C} \mid 0 < |z| < r \}$. Calculate the image set $f(A_r)$.
 - (b) Determine if $\lim_{z\to 0} f(z)$ exists and if it does calculate it.
- 4. Prove that any non-constant polynomial $p : \mathbb{C} \to \mathbb{C}$ with $p(z) = \sum_{j=0}^{n} a_j z^j$ (for some collection of coefficients $a_0, \ldots, a_n \in \mathbb{C}$ such that not all a_1, \ldots, a_n are zero) has

$$\|p\|_{\infty} = \infty$$

i.e., is not a bounded function.

3 C-Differentiability and the Cauchy-Riemann equations

5. Prove that if $f, g: \mathbb{C} \to \mathbb{C}$ are \mathbb{C} -differentiable then $f \circ g: \mathbb{C} \to \mathbb{C}$ is \mathbb{C} -differentiable with derivative

$$(f \circ g)' = (f' \circ g) g'.$$

6. For a given function $f : \mathbb{C} \to \mathbb{C}$ with $f_R = \mathbb{R} \{ f \}, f_I = \mathbb{I} \{ m \}$, the Cauchy-Riemann equations are partialdifferential equations connecting $\partial_x f_R, \partial_x f_I, \partial_y f_R, \partial_y f_I$ as follows:

$$\begin{cases} \partial_x f_R &= \partial_y f_I \\ \partial_x f_I &= -\partial_y f_R \end{cases}$$

Defining the polar coordinates $r = \sqrt{x^2 + y^2}$ and $\theta = \arctan\left(\frac{y}{x}\right)$, re-write the Cauchy-Riemann equations in terms of $\partial_r f_R$, $\partial_r f_I$, $\partial_\theta f_R$, $\partial_\theta f_I$ instead of $\partial_x f_R$, $\partial_x f_I$, $\partial_y f_R$, $\partial_y f_I$.

7. Show that $f : \{ z = x + iy \in \mathbb{C} \mid x > 0 \} \to \mathbb{C}$ given by

$$f(z) = e^{-\theta} \cos(\log(r)) + ie^{-\theta} \sin(\log(r))$$

is $\mathbb C\text{-differentiable}.$

- 8. Prove that $f : \mathbb{C} \to \mathbb{C}$ given by $f(z) = x^2 + ixy$ is not \mathbb{C} -differentiable.
- 9. Suppose that $f(z_0) = g(z_0) = 0$ and $f'(z_0), g'(z_0)$ exist with $g'(z_0) \neq 0$. Show

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{f'(z_0)}{g'(z_0)}.$$

10. Provide an example (with proof) of a function $f : \mathbb{C} \to \mathbb{C}$ where there's at least one point $z_0 \in \mathbb{C}$ such that the Cauchy-Riemann equations hold for f at z_0 , yet the function is not \mathbb{C} -differentiable at $z_0 \in \mathbb{C}$. Conclude that the Cauchy-Riemann equations are necessary, but not sufficient for \mathbb{C} -differentiability.