FEB 13 2023

HW2 - Sample Solutions

1. (a) $2_1 = \frac{i}{-2-2i}$. Seek its principal arg.:

 $-2-2i = \sqrt{2^2 + 2^2} \exp(i \operatorname{arctg}(\frac{-2}{2}))$ 8 1 T/4

 $\hat{i} = exp(i =)$ $\implies 2_{1} = \frac{e^{j\frac{\pi}{2}}}{\sqrt{8'}e^{j\frac{\pi}{4}}} = \frac{1}{\sqrt{8'}}e^{j(\frac{\pi}{2} - \frac{\pi}{4})} = \frac{1}{\sqrt{8'}}e^{j\frac{\pi}{4}}.$

 $\frac{T}{4} + 2\pi n \in (-\pi, \pi] \quad for \quad n=0$

=> II is The p. arg.

 $2_{2} = (\sqrt{3^{7} - i})^{6}$. (b)

First study 53-1: $\sqrt{3} - i = \sqrt{3} + i \exp(i \operatorname{arctg}(\frac{-1}{\sqrt{2}}))$

 $= 2 \exp(-i\frac{\pi}{6})$ Calculator for $\operatorname{arclg}(-\frac{1}{3^{7}})$. Raising to power 6 ylolds $2_2 = 2^6 e^{-i\pi} = -64$ p_i arg. = T. 2. Claim: V 2, we C 203, 121=1w1 (=>] abec: 2=ab w=ab Proof: 121= [ab]= 19161=191151=1951=1W1. Write $2 = re^{i\alpha}$, $w = re^{i\beta}$] τ>0, α,βεR. Then $\frac{2}{w} = e^{i(\alpha - \beta)} = \frac{b}{b} = e^{2i\alpha recb}$ \Rightarrow argeb) = $\frac{1}{2}(\alpha - \beta)$. $\frac{2}{\overline{w}} = e^{i(\alpha + \beta)} = \frac{\alpha}{\overline{\alpha}} = e^{2i\alpha - \eta \alpha}$ \Rightarrow $\arg(\alpha) = \frac{1}{2}(\alpha + \beta)$. Pick $a = \int r' e x p(\frac{1}{2}(x + \beta))$

 $b = \sqrt{r} exp(\frac{1}{2}(\alpha - \beta))$.

 $J. \quad f: \mathbb{C} \setminus \{o_j^2 \to \mathbb{C} \quad ; \quad f(z) = \exp(\frac{1}{z}).$ $(a) A_{\Gamma} := \left\{ z \in \mathbb{C} \mid 0 < |z| < r \right\}.$ $f(A_r) \equiv \left\{ f(z) \in \mathbb{C} \right\} \quad \theta < (z) < r \right\}$ $= \left\{ e^{\frac{1}{2}} \in \mathbb{C} \right\} \quad 0 < |z| < r \right\}$ In polar form, $2 = pe^{i\theta}$ $exp(\frac{1}{2}) = exp(\frac{1}{p}e^{i\theta})$ $= exp(\frac{1}{p}\cos(\theta) - \frac{1}{p}\sin(\theta))$ $= \exp\left(\frac{1}{\rho}\cos(\theta)\right) e^{i\frac{-1}{\rho}\sin(\theta)}$ $\Rightarrow \frac{1}{6} \in (\frac{1}{7}, \infty)$ $p \in (0, r)$ $\Rightarrow exp(-foscor) \in (e^{-\infty}, e^{\infty})$ $= (0, \infty).$ $f(A_r) = C \setminus \{0\}.$ We kind

(b) If E70, $f(\varepsilon) = e^{\frac{1}{\varepsilon}} \xrightarrow{\varepsilon \to o^{\dagger}} + \infty$ OTOH $f(-\varepsilon) = e^{-\frac{1}{\varepsilon}} \xrightarrow{\varepsilon - 2 \circ^{\dagger}} O,$ Since the limit depends on the putative direction, it cannot I. 4. Claim: If p: C-C is a non-const. poly. Then $\|p\|_{\infty} = \infty$. Proof: Let NGN be the largest non-zero deg in p, r.e., $p(z) = Q_N z^N + p(z)$ I are Choy and p poly. of deg < N. Then $\int_{|z| \to \infty} \frac{\hat{p}(z)}{z^N} = 0 \quad as$

deg(p) ZN. $\Rightarrow p(2) = \alpha_N Z^N (1 + \alpha_N \frac{\tilde{p}(2)}{2^N}).$ <u>______</u> 1≥l→∞ ♪1_ However, we can make 2^w arbit. $large. \implies lipilos = \infty$. If fig are C-diff, so is fog 5. Claim: and $(f \circ g)' = (f' \circ g)g'$. Proof: Calculate the prelimit entailed in $(f \circ g)':$ $(f \circ g)(20+2) - (f \circ g)(2 \circ 1) = f(g(2 \circ + 2)) - f(g(2 \circ))$ $Z = \frac{1}{2}$ fince g is C-diff. (Frechet diff.): $g(z_{0}+z) = g(z_{0}) + g'(z_{0}) + O(1z_{1}^{2})$ $\Rightarrow f(g(2_0+2)) = f(g(2_0)+g'(2_0)2+O(121^2))$ = g(g(20)) + f'(g(20)) g'(20) = $+ O(|g'(2_0)2|^2).$

We find: $\frac{f(g(2_0+2))-f(g(2_0))}{2} = \frac{f'(g(2_0))g'(2_0)+1}{2}$ +0(1g'(z0)17171) $\xrightarrow{2 \to 0} f'(g(20))g'(20) \quad \blacksquare$ 6. Want to express the CRE in polar coordinates. That means: $f' \mathbb{C} \rightarrow \mathbb{C}$ is written as a function of (r, 0)Lalthough we still keep the Cartesian $f' = f_{R} + i f_{\Sigma}$ decomposition — it's just the variables of the domain that change). Write $\Upsilon(x_1y) = \sqrt{x^2 + y^2}$ $\varphi(x_1y) = \operatorname{arctg}(\frac{\mu}{x})$

 $\Rightarrow (\partial_{x} g)(r, \theta) = (\partial_{r} g)(r, \theta) \partial_{x} r +$ $(\partial_{\theta} \partial_{\gamma})(r,\theta) \partial_{x} \Theta$ $\partial_x \Gamma = \frac{\chi}{\sqrt{\chi^2 + y^2}} = \cos(\theta)$ $\partial_y \Gamma = \sin(\theta)$ $\partial_x \Theta = - \frac{y}{x^2 + y^2} = - \frac{81 \cdot 10}{\gamma}$ $\partial_y \Theta = \frac{\log(\Theta)}{r}$ $\Rightarrow (\partial_{x}g)(r, 0) = (\partial_{r}g)(r, 0) \cos(0) -(\partial_0 g)(r, 0) \frac{fin(0)}{r}$ $(\partial_y g)(r_0) = (\partial_r g)(r_0) \sin(0) +$ $+ (\partial_{\Theta}g)(r_{i\Theta}) \frac{Co(iB)}{r}$. We may now apply this to g=frifz: $\partial_{x}f_{R} = \partial_{r}f_{R}$ (05(0) - $\partial_{0}f_{R}$ $\frac{\sin(0)}{r}$ $(CREI) = \partial_y f_I = \partial_r f_I \quad Sin(\Theta) + \partial_{\Theta} f_I \quad \frac{(OS(\Theta))}{r}$

 $\partial_x f_I = \partial_r f_I \quad \cos(\theta) - \partial_\theta f_I \quad \frac{\sin(\theta)}{r}$

(CRE2) _ Jyfr

 $= -\partial_r f_R \quad \text{Sin(9)} \quad - \quad \partial_{\theta} f_R \quad \frac{(05(0))}{r} \quad .$

Collecting everything;

 $\int \partial_r f_R \quad \cos(\theta) - \partial_\theta f_R \quad \frac{\sin(\theta)}{r} = \partial_r f_I \quad \sin(\theta) + \partial_\theta f_I \quad \frac{\cos(\theta)}{r}$

 $\left(\frac{\partial_r f_I}{\partial r} \right) - \frac{\partial_0 f_I}{\partial r} = -\frac{\partial_r f_R}{r} \frac{\sin(0)}{r} = -\frac{\partial_r f_R}{r} \frac{\sin(0)}{r} - \frac{\partial_0 f_R}{r} \frac{\cos(0)}{r}$

() Multiply 1st eq. n by Coslo) 2nd eg-n by Finlo)

add the two resulting eq-n to get,

 $\partial r f_R = \frac{1}{r} \partial_{\Theta} f_{I}$

(2) Multiply 1st eq-n by Sin(O)
2nd eq-n by Cos(O)

add the two resulting eq-n to get, $\partial_r f_{\overline{I}} = -\frac{1}{r} \partial_{\theta} f_{R}$ In Conclusion: $\begin{cases} \gamma \partial_r f_R = \partial_0 f_I \\ \gamma \partial_r f_I = -\partial_0 f_R \end{cases}$ $\exists \mathcal{L}aim: f: \{ \chi \neq i y \in \mathbb{C} \mid \chi \neq 0 \} \rightarrow \mathbb{C}$ def. via $f(r_i \theta) = e^{\Theta} \cos(\log(r)) + i e^{-\Theta} \sin(\log(r))$ is C-diff. Proof: Note: if we knew the def. of log: C-> C we could have used it here since

 $\mathcal{Z}^{i} = \exp(i \log(2))$ = exp(i log(reⁱ⁰)) = exp[i[log(r)+i0]) $= e^{-\theta} \cos(\log(r)) + 1e^{-\theta} \sin(\log(r))$ $= f(r_0).$ Instead, verify that f is R² diff. and satisfies the polar CRE: $(\partial_r f_R)(r, \sigma) = -e^{-\theta} sin(bog(r)) \frac{1}{r} \frac{1}{r}$ $(\partial_0 f_{\Xi})(r, \sigma) = -\bar{e}^{\Theta} \sin(\log(r)) \int$ Similarly for the otra one. Note R² diff. is s-ld. as lxp, log, cos, rin are R-diff. (log away from zero). We had to restrict to {x>03

to keep the limit at zero path indep. (check). Claim! () Xtiy is not C-diff. ×. $\frac{P_{coof}}{Jacobian} = \begin{bmatrix} 2x & y \\ 0 & x \end{bmatrix}$ is NOT of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. ⇒ Not C-Bunear, Ô, Suppose that $f(z_0) = g(z_0) = 0$ and $f'(z_0), g'(z_0)$ exist with $g'(z_0) \neq 0$. (lain: $\lim_{z \to z_0} \frac{f(z)}{q(z)} = \frac{f'(z_0)}{q'(z_0)}.$ $\frac{Proof}{2}: \quad \int (20) = \lim_{2 \to 20} \frac{f(2) - f(20)}{2}$ $=\lim_{2\to20} \frac{f(2)}{2}$ and $g'(z_0) = \lim_{z \to 20} \frac{g(z)}{z}$.

Hence $\begin{cases} \lim_{\substack{(2,1)\\(2,2)}(2)} \frac{f(2)}{g(2)} = \lim_{\substack{(2,1)\\(2,2)}(2)} \frac{f(2)}{g(2)} \\ \frac{f(2)}{2} \\ \frac{$ $\frac{1}{2} \left(\lim_{2 \to 20} \frac{f(z)}{2} \right) \left(\lim_{2 \to 20} \frac{g(z)}{2} \right)$ lin of ratio = ratio of lim if both J = f'(20) g'(20). Ø

Example 4.12 in Jee ∕Q. the

notes,