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Note: when doing asymptotic analysis, the word “fixed” means that a parameter is not taken to infinity and does not

depend on the asymptotic parameter.
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Gaussian integrals

. Calculate, for some a > 0,
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(i.e., a two-dimensional surface integral throughout the complex plane).

. Calculate, for some a > 0,

. Let now n € N. Recall that a matrix A € Mat,, «, (R) is called “positive” and denoted

A>0

ifft A = B*B for some B € Mat,x, (R). Equivalent and convenient conditions are: (i) A > 0 iff A is Hermitian
and (v, Av)g, > 0 for any v € R and (ii) A > 0 if A is Hermitian and all eigenvalues of A are non-negative. Let
A € Mat,«n (R) and assume A > 0 (i.e. A is positive and non-singular).

Calculate
/ e~ 2{@AT)Rn 4
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Hint: Since A is self-adjoint, it is unitarily diagonalizable with A = O* DO for some orthogonal O and diagonal D
whose entries all strictly positive. Make a change of variable y := Oz (whose Jacobian is ... what?) to factorize into
n independent Gaussian integrals.

. Again assuming A > 0, calculate

/ o b (@ AT)+(0.2) g
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for some v € R™.

Hint: Complete the square on the expression f% (x, Az) 4+ (v, x) and make a shift change of variable.

/ o b(@An) Hi(va) g,
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for some v € R™.

Hint: Diagonalize A again and then calculate n Fourier transforms of n independent Gaussians, each of which we
have already calculated using contour integration in the past.

. Again assuming A > 0, calculate



10.

11.

12.

Laplace asymptotics

. The complementary error function is defined as as

erfc (x) := \/27?/OO e dt (x €R).

Calculate erfc (—oo0) and do Laplace asymptotics for erfc as large positive x.

. [extra] Let K C R™ be compact and f : K — [0, 00) have continuous second derivative with a unique global maximizer

at xo € interior (K). Prove that

pll)H;on”Lp(K) = ||fHL°°(K) :

. [extra] Using the Stirling approximation of n! which we saw in class, prove the De Moivre-Laplace theorem, which

states that the binomial distribution may be approximated via the normal distribution, in the following sense.
Let p € (0,1) be the probability of “heads” in an unfair coin-toss game. The Bernoulli distribution gives the
probability that we find k£ = 0,...,n heads in n independent consecutive coin-tosses, as

P[{ k heads }] = <Z> T

The De Moivre—Laplace theorem says that at large n this roughly behaves like a normal distribution with mean np
and variance np (1 — p), i.e.,

1 (k - np)2
e~ o (A

To derive this leading order asymptotic, do asymptotics of the binomial factor assuming that both n is large

n
k

and k = an for some fixed a € (0, 1), so you can do asymptotics of k! and (n — k)! too. Then also use

1 1
log(1+x)~mf§x2+§x3+....

. Determine the leading order asymptotics of

I = /1 SI () - xcosh(t) g
t=—1 3

as A — oo.

[extra] Determine the leading order asymptotics of

as A — oo via integration by parts.

Determine the leading order asymptotics of

I(\) = / em T ML
t

=0

as A — oco. Hint: make a change of variables ¢t = %

Determine the leading order asymptotics of the modified Bessel function
1 " A cos(0)
I, (x)=— e ¥ cos (nh) dd
T Jo=0

for fixed n € N.



3 Steepest descent asymptotics

13. Calculate

via contour deformation.

14. Calculate the leading order asymptotics of

I (A) = / ei)\ cosh(t)dt
teR

as A — oo.

15. [extra] Calculate the leading order asymptotics of

as A\ — oo by contour deformation.

16. Calculate the leading order asymptotics of

as A — oo for some entire f.

17. [extra] Calculate the leading order asymptotics of
I()\) — / e)\[cosh(xfiﬂ)fé(:vfiﬂ')Q]dx
z€R

as A — oo.

18. [extra] We have for any n € N and k € N<,,, the following contour integral representation of the binomial coefficient:

" :iyg 7(1+Z)ndz.
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Indeed, this follows from Cauchy’s integral formula: with f(2) := (1 + 2)" we have
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n!
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(+):

Use this contour integral representation to do leading order asymptotics of (n

k) (again, as above, but now avoiding

Stirling) for large n and large k = an for some fixed « € (0, 1).
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