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Abstract

This is a written record corresponding to three lectures given in Paris in July 2022 on the topic of mathematical
aspects of non-interacting topological insulators. The audience was largely Vojkan Jakšić’s graduate students from
McGill.
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1 Introduction

1.1 Single-particle solid-state physics
We are interested in understanding the motion of electrons in a solid. For that we use quantum mechanics in the single-
particle approximation, and hence, in d ∈ N space dimensions the Hilbert space is `2

(
Zd
)
if we are using the tight-binding

approximation or L2
(
Rd
)
if not.

The approach in solid state physics is to choose the simplest model so that non-trivial physics may be described.
Furthermore, since electrons in solids rarely reach relativistic speeds, it seems unnecessary to speak about operators in the
continuum. Hence we will mostly (unless otherwise stated) use the tight-binding approximation. Furthermore, sometimes
it is necessary to describe internal degrees of freedom on each lattice site, and so, we will actually use the Hilbert space

H := `2
(
Zd
)
⊗ CN ∼= `2

(
Zd × { 1, . . . , N }

) ∼= `2
(
Zd → CN

)
where N ∈ N is the number of degrees of freedom on each lattice site (sub-lattice, iso-spin, spin, etc).

To specify a solid, we must specify a Hamiltonian–a self-adjoint operator on H. It will not be a big restriction to
assume these operators are bounded: the bounded linear operators on H will be denoted by B (H). This space of operators
forms a C-star algebra. Furthermore, Hamiltonians should obey certain locality properties.

1.2 Locality properties

The natural basis on H is described as follows: we denote by { δx }x∈Zd the natural basis for `2
(
Zd
)
and by { ej }Nj=1 the

natural basis for CN . In particular we mean that, for any x ∈ Zd, the vector with entries

(δx)y ≡ δx,y ≡

{
1 x = y

0 x 6= y

(
y ∈ Zd

)
.

Then an ONB for H is given by
{ δx ⊗ ej }x∈Zd,j=1,...,N

and any operator A ∈ B (H) will have matrix elements

Axy;ij ≡ 〈δx ⊗ ei, Aδy ⊗ ej〉 .

We can also consider partial matrix elements, i.e., define the N ×N matrix Axy whose i, j matrix element is given by

(Axy)ij := Axy;ij ≡ 〈δx ⊗ ei, Aδy ⊗ ej〉 .

Definition 1.1. An operator A ∈ B (H) is called local iff its matrix elements in space exhibit exponential off-diagonal
decay. I.e., iff there are constants CA, µA ∈ (0,∞) such that

‖Axy‖ ≤ CAe−µ‖x−y‖
(
x, y ∈ Zd

)
.

Here the norm on the LHS is the operator norm on MatN (C) and on the RHS the Euclidean norm on Rd.

One may also consider locality with respect to other rates of decay (e.g. any-rate polynomial) or ask what is the
slowest rate of decay so that such and such theorem holds. We shall mostly avoid such questions unless otherwise
specified.

Definition 1.2. A single-particle solid is an operator H ∈ B (H) (the Hamiltonian) which is (1) self-adjoint, i.e.,
H∗ = H and (2) local as in Definition 1.1.

The significance of locality is clear from the Lieb-Robinson theorem. It is usually discussed in the context of many-body
quantum mechanics [LR72], but here in the single-particle setting, obtains a particularly simple guise, which we take from
[AW15, Exercises 2.2 (a)]:

Theorem 1.3. (Single-particle Lieb-Robinson) If H is a solid as in Definition 1.2 then there is some velocity vH and
some D <∞ such that for any v > vH ,

P [{ a particle starting at the origin is outside Bvt (0) }] ≤ De−
µH
2 (v−vH)t (t ≥ 0) . (1.1)
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Here we mean Bvt (0) ≡
{
x ∈ Zd

∣∣ ‖x‖ < vt
}
.

Proof. First we interpret the LHS. We know from quantum mechanics that the state of a particle starting in the
origin is δ0. Since we have internal degrees of freedom we allow for an arbitrary state ϕ in CN so we take the initial
state of the particle as δ0 ⊗ ϕ. We know that after time t, its state, according to quantum mechanics, is

e−itHδ0 ⊗ ϕ

and finally, the probability to measure its position at some y ∈ Zd (in some internal state ψ ∈ CN ) is∣∣〈δy ⊗ ψ, e−itHδ0 ⊗ ϕ
〉∣∣2 .

We thus bound the LHS of (1.1) as

sup
ϕ,ψ∈CN :‖ϕ‖=‖ψ‖=1

∑
y∈Bvt(0)c

∣∣〈δy ⊗ ψ, e−itHδ0 ⊗ ϕ
〉∣∣2 =

∑
y∈Bvt(0)c

∥∥〈δy, e−itHδ0
〉∥∥2

. (1.2)

Now, we begin with a few preliminary estimates: For any n ∈ N,

∥∥∥(Hn)xy

∥∥∥ ≡
∥∥∥∥∥∥

∑
z1,...,zn−1∈Zd

Hx,z1 . . . Hzn−1,y

∥∥∥∥∥∥
≤

∑
z1,...,zn−1∈Zd

‖Hx,z1‖ . . .
∥∥Hzn−1,y

∥∥
≤

∑
z1,...,zn−1∈Zd

CnHe−µH(‖x−z1‖+···+‖zn−1−y‖) (Locality of H)

≤ CnHe−
µH
2 ‖x−y‖

∑
z1,...,zn−1∈Zd

e−
µH
2 (‖z2−z1‖+···+‖zn−1−y‖) .

In this last step, we have used the triangle inequality:

‖x− z1‖+ · · ·+ ‖zn−1 − y‖ ≥ ‖x− y‖

as well as dropping the first term since it is clearly positive. Since Zd is invariant under translations, we find

∑
z1,...,zn−1∈Zd

e−ν(‖z2−z1‖+···+‖zn−1−y‖) =

∑
z∈Zd

e−ν‖z‖

n−1

but the inner sum is clearly finite. E.g., ‖z‖ ≥ 1√
d
‖z‖1 with ‖z‖1 ≡

∑d
j=1 |zj | which then factorizes:

∑
z∈Zd

e−ν‖z‖ ≤

(∑
z∈Z

e
− ν√

d
|z|

)d

=

[
coth

(
ν

2
√
d

)]d
=: Dν,d (1.3)

Combining everything together we have the estimate

∥∥∥(Hn)xy

∥∥∥ ≤ CnHe−
µH
2 ‖x−y‖

([
coth

(
µH

4
√
d

)]d)n−1

=
1

DµH
2

(
CHDµH

2

)n
e−

µH
2 ‖x−y‖ .
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Next, we have

∥∥〈δy, e−itHδ0
〉∥∥ =

∥∥∥∥∥
∞∑
n=0

(−it)
n

n!
〈δy, Hnδ0〉

∥∥∥∥∥
≤
∞∑
n=0

tn

n!

∥∥∥(Hn)y,0

∥∥∥
≤
∞∑
n=0

tn

n!

1

DµH
2

(
CHDµH

2

)n
e−

µH
2 ‖y‖ (Previous estimate)

=
1

DµH
2

e
tCHDµH

2
−µH2 ‖y‖

and hence the RHS of (1.2) is bounded by∑
y∈Bvt(0)c

(
DµH

2

)−2

e
2tCHDµH

2
−µH‖y‖ ≤

(
DµH

2

)−2

e
2tCHDµH

2
−µH2 vt ∑

y∈Zd

e−
µH
2 ‖y‖

≤
(
DµH

2

)−2

e
2tCHDµH

2
−µH2 vt

DµH
2 ,d

=
1

DµH
2

e
−µH2

(
v−4

CHDµH
2

µH

)
t

and so we identify vH := 4
CHDµH

2

µH
and D := 1

DµH
2

.

While the Lieb-Robinson bound gives an intuitive sense for what locality implies for quantum dynamics, we will find more
for the Combes-Thomas estimate. Again, originally presented in the context of many-body quantum mechanics [CT73],
the single-particle version ([AW15, Chapter 10.3]), presented here roughly speaking says that the analytic functional
calculus of Hamiltonians preserves locality:

Theorem 1.4. (The Combes-Thomas estimate) If H is a solid as in Definition 1.2, z ∈ C with

δ := dist (z, σ (H)) > 0 (1.4)

then there is some µ̃H > 0 such that ∥∥∥R (z)xy

∥∥∥ ≤ 2

δ
e−µ̃Hδ‖x−y‖

(
x, y ∈ Zd

)
with R (z) ≡ (H − z1)

−1 being the resolvent operator and σ (H) ⊆ R the spectrum of H.

Corollary 1.5. (The analytic functional calculus of a local self-adjoint operator is local) Assume that f : R → C is
analytic, i.e., that,

f (λ) =
1

2πi

˛
Γ

1

z − λ
f (z) dz (λ ∈ R)

for some closed CCW contour Γ which encloses λ. Then if H is a solid as in Definition 1.2 then f (H) is local as in
Definition 1.1.

Proof. Write

f (H) =
i

2π

˛
Γ

R (z) f (z) dz

where Γ is a closed CCW contour which encloses σ (H). Since H is bounded, σ (H) has a finite diameter. Let
Γ be a contour which always stays distance 1 away from σ (H) and not ever more than distance 2, so that, say,
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¸
Γ
|dz| ≤ 2‖H‖. Then∥∥∥f (H)xy

∥∥∥ ≤ 1

2π
sup
z∈Γ

∥∥∥R (z)xy

∥∥∥ sup
z∈Γ
|f (z)|

˛
Γ

|dz|

≤ 1

π
‖H‖ sup

z∈Γ
|f (z)| sup

z∈Γ

∥∥∥R (z)xy

∥∥∥
≤ 2

π
‖H‖ sup

z∈Γ
|f (z)| e−ν‖x−y‖ . (Use the Combes-Thomas estimate)

Proof. of Theorem 1.4: Let f : Zd → C be a bounded measurable function such that there is some ν ∈ (0,∞) with

|f (x)− f (y)| ≤ ν‖x− y‖
(
x, y ∈ Zd

)
.

Define then

Hf := ef(X)He−f(X)

which is clearly also bounded. A short calculation yields[
(Hf − z1)

−1
]
xy

=

[(
ef(X)He−f(X) − z1

)−1
]
xy

=

[(
ef(X)He−f(X) − zef(X)e−f(X)

)−1
]
xy

=
[
e−f(X)R (z) ef(X)

]
xy

= e−f(x)R (z)xy ef(y)

Hence, ∥∥∥R (z)xy

∥∥∥ = ef(x)−f(y)
∥∥∥Rf (z)xy

∥∥∥
≤ ef(x)−f(y)‖Rf (z)‖ .

But for any ϕ ∈ H,

‖(Hf − z1)ϕ‖ = ‖(H − z1)ϕ‖ − ‖(Hf −H)ϕ‖
≥ δ‖ϕ‖ − ‖Hf −H‖‖ϕ‖

where we have used (1.4) in the last step. Using Holmgren’s bound (see Lemma 1.6 just below) we have then

‖Hf −H‖ ≤ max
x↔y

sup
x

∑
y

∥∥∥(Hf −H)xy

∥∥∥
= max

x↔y
sup
x

∑
y

∣∣∣ef(x)−f(y) − 1
∣∣∣ ‖Hxy‖

≤ max
x↔y

sup
x

∑
y

(
eν‖x−y‖ − 1

)
CHe−µH‖x−y‖

=
∑
y

(
eν‖y‖ − 1

)
CHe−µH‖y‖

≤ 2CHν
∑
y

e−(µH−2ν)‖y‖ (Use eν‖y‖ − 1 ≤ 2νe2ν‖y‖)

≤ 2CHνDµH−2ν

≤ 2CHνDµH
2
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where Dα is defined as in (1.3). Hence if we pick ν such that

2CHνDµH
2

=
δ

2

we find ‖Rf (z)‖ ≤ δ
2 . I.e.,

ν :=
δ

4CHDµH
2

.

We thus recognize µ̃H := 1
4CHDµH

2

and conclude using the fact that we have the freedom to replace f 7→ −f , and
hence, we have ∥∥∥R (z)xy

∥∥∥ ≤ δ

2
min

({
ef(x)−f(y), e−f(x)+f(y)

})
and together with |f (x)− f (y)| ≤ µ̃Hδ‖x− y‖ this implies the result.

Above we have used the following basic

Lemma 1.6. (Holmgren’s bound) For any operator A on a Hilbert space with an ONB { ψj }j we have

‖A‖ ≤
√

sup
j

∑
k

|〈ψj , Aψk〉|
√

sup
k

∑
j

|〈ψj , Aψk〉|

Proof. Start by the characterization ‖A‖ = sup ({ |〈ϕ,Aψ〉| | ‖ϕ‖ = ‖ψ‖ = 1 }), and use

|〈ϕ,Aψ〉| ≤
∑
i,j

|ϕi| |Aij | |ψj |

=
∑
i,j

(
|ϕi|

√
|Aij |

)(√
|Aij | |ψj |

)

≤
√∑

i,j

|ϕi|2 |Aij |
√∑

i,j

|Aij | |ψj |2 (Cauchy-Schwarz)

≤

√√√√√
sup

i

∑
j

|Aij |

(∑
i

|ϕi|2
)√√√√√(sup

j

∑
i

|Aij |

)∑
j

|ψj |2


=

√
sup
i

∑
j

|Aij |
√

sup
j

∑
i

|Aij | .

1.3 Periodic systems
While periodic (or translation-invariant) materials are not at all realistic from the point of view of solid-state physics,
their analysis offers some intuitive pictures which are instructive for the further study of disordered systems–out ultimate
goal.

Definition 1.7. An operator A ∈ B (H) is called periodic iff

Ax+z,y+z = Ax,y
(
x, y, z ∈ Zd

)
.

Thus, periodic operators are constant along their diagonal (if we think about operators as infinite matrices). Our main
tool to analyze them will be the Fourier series (math) or Bloch decomposition. It sends wave-functions in real space to
wave-functions in momentum space, or Fourier space, so to speak.
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Definition 1.8. The Fourier series is the map

F : `2
(
Zd
)
→ L2

(
Td
)

where Td ≡ [0, 2π)
d is the d-dimensional torus, given by

`2 (Z)
d 3 ψ F7→

Td 3 k 7→ (2π)
− d2

∑
x∈Zd

e−i〈k,x〉ψx

 =: ψ̂

and inverse

L2
(
Td
)
3 ψ̂ F−1

7→
(
Zd 3 x 7→ (2π)

− d2
ˆ
k∈Td

ei〈k,x〉ψ̂ (k) dk

)
.

Lemma 1.9. (1) F is unitary, (2) If A is periodic as in Definition 1.7 then

FAF∗ = Ma

where Ma is the multiplication operator by the function a:
(
Maψ̂

)
(k) ≡ a (k) ψ̂ (k) and

a (k) = (2π)
− ds

∑
x∈Zd

e−i〈k,x〉A0,x

(
k ∈ Td

)
.

Proof. For the first item, we calculate

〈
ϕ̂, ψ̂

〉
L2(Td)

≡
ˆ
k∈Td

(2π)
− d2

∑
x∈Zd

e−i〈k,x〉ϕx

(2π)
− d2

∑
x∈Zd

e−i〈k,x〉ψx

 dk

=
∑

x,y∈Zd

ϕxψy (2π)
−d
ˆ
k∈Zd

ei〈k,x−y〉dk︸ ︷︷ ︸
=δx,y

=
∑
x∈Zd

ϕxψx

≡ 〈ϕ,ψ〉`2(Zd) .

For the second item, let us calculate(
FAF∗ψ̂

)
(k) ≡ (2π)

− d2
∑
x∈Zd

e−i〈k,x〉
∑
y∈Zd

Axy (2π)
− d2
ˆ
p∈Td

e+i〈p,y〉ψ̂ (p) dp

= (2π)
− d2

∑
x∈Zd

e−i〈k,x〉
∑
y∈Zd

A0,y−x (2π)
− d2
ˆ
p∈Td

e+i〈p,y〉ψ̂ (p) dp

= (2π)
− d2

∑
x∈Zd

e−i〈k,x〉
∑
z∈Zd

A0,z (2π)
− d2
ˆ
p∈Td

e+i〈p,z+x〉ψ̂ (p) dp

=
∑
z∈Zd

A0,z (2π)
−d
ˆ
p∈Td

e+i〈p,z〉δ (k + p) ψ̂ (p) dp

=
∑
z∈Zd

e−i〈k,z〉A0,zψ̂ (k) .
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Example 1.10. The right-shift in direction j = 1, . . . , d operator Rj is defined as

(Rjψ)y ≡ ψy−ej
(
y ∈ Zd, ψ ∈ `2

(
Zd
))

It is a periodic operator and and hence its Fourier representation is a diagonal multiplication operator:

FRjF
∗ = Mrj

with rj (k) = e−ikj for all k ∈ Td.

Example 1.11. The discrete Laplacian −∆ defined via

(−∆ψ)x :=
∑
y∼x

ψx − ψy
(
ψ ∈ `2

(
Zd
)
, x ∈ Zd

)
is periodic. It may be re-written using the right-shift operator as

−∆ = 2

d∑
j=1

1− Re {Rj}

with Re {A} ≡ 1
2 (A+A∗). In momentum (i.e., Fourier) space, it is given as multiplication by the function

E (k) := 2

d∑
j=1

1− cos (kj)
(
k ∈ Td

)
.

Example 1.12. The position operator in the jth direction (j = 1, . . . , d)

(Xjψ)y ≡ yjψy
(
y ∈ Zd, ψ ∈ `2

(
Zd
))

(1.5)

gets mapped to to derivative with respect to momentum, i.e.,

FXjF
∗ = i∂j (j = 1, . . . , d) .

What does [Xj , A] map to for a periodic operator A?

Example 1.13. A multiplication operator in real spaceMv by the function v : Zd → R is mapped onto the convolution
operator Cv in momentum space.

Proof. Use the convolution theorem for Fourier series.

The following theorem from classical harmonic analysis [Kat04, pp. 27] associates locality in real space to regularity in
momentum space:

Theorem 1.14. (Riemann-Lebesgue) If A is local as in Definition 1.1 and periodic as in Definition 1.7, so that
FAF∗ = Ma, then a : Td → C is analytic.

Proof. We have from Lemma 1.9 that

a (z) = (2π)
− d2

∑
x∈Zd

d∏
j=1

z
xj
j A0,x

(
z ∈

(
S1
)d)

.

8



Now deforming z, we write it instead as of z̃ = rz where r ∈ (0,∞)
d so that

|a (z̃)| ≤ (2π)
− d2

∑
x∈Zd

d∏
j=1

r
xj
j ‖A0,x‖

≤ CA (2π)
− d2

d∏
j=1

∑
xj∈Z

r
xj
j e
−µA√

d
|xj | . (Using Definition 1.1)

Clearly this is finite if e
−µA√

d < max
({

rj ,
1
rj

})
. Hence we get a convergent power series in an annulus around the

torus which is equivalent to analyticity on that annulus.

More generally, any-rate polynomial decay will be mapped to smooth “symbols”, and `p locality will be mapped to Cp
reguliarty of the symbol.

2 Insulators

2.1 Non-interacting electrons in a solid
So far we have discussed the various consequences of representing the dynamics of electrons moving in solids via the
single-particle, tight-binding approximations as bounded self-adjoint, local operators on Hilbert space. We have studied
the relationship between constraints on these operators and the quantum dynamics. We now want to take this a step further
and discuss what kind of constraints on these operators will lead to consequences on electronic transport properties.

We are studying the single-particle approximation, but our particles are still electrons, hence Fermions. There is an
extent to which we still take interactions into account: we still put in the Fermi exclusion principle for Fermions into our
description. The way this happens is that while in single-particle quantum mechanics, when we compute the expectation
value of an observable B = B∗ ∈ B (H) in a state ψ ∈ H as

〈ψ,Bψ〉 .

To speak about the expectation value in the state of many non-interacting electrons of the single-particle observable B, it
turns out that the appropriate expression to calculate is

trH (PB)

where P ≡ χ(−∞,µ] (H) is the Fermi projection and µ ∈ R is the Fermi energy, which characterizes “how many electrons”
there are in the solid (the number is mathematically infinite in infinite volume so it rather characterizes the density). The
Fermi projection is an example of a density matrix, and we now explain why it is the appropriate object to use for the
many-body non-interacting ground state of the electrons in a solid.

2.2 Zero-temperature ground state expectation values
In quantum mechanics, the state of a particle is described by a vector in a Hilbert space H. To talk about the state of M
distinguishable particles simultaneously, we need to consider a vector in the M -fold tensor product Hilbert space

⊗M
j=1 H.

However, if we have M indistinguishable particles which are Fermions, which is the situation for electrons in a solid, then
the state of these particles is actually a vector in the M -fold exterior product Hilbert space

∧M
j=1 H, since the state must

be anti-symmetric with respect to exchange of any two particles.
If the single-particle Hamiltonian H is acting on each particle separately, then the many-body Hamiltonian is given by

dΓ (H) :=

M∑
j=1

1∧(j−1) ∧H ∧ 1∧(M−j) ,

i.e., the single particle Hamiltonian acts on the jth particle and doesn’t do anything on all other particles.
Then, if we are interested in the many-body expectation value of a non-interacting single-particle observable, say, B,

we would first raise it to the many-body Hilbert space just as above:

B 7→
M∑
j=1

1∧(j−1) ∧B ∧ 1∧(M−j) =: dΓ (B)
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and then if our system was in the state Ψ ∈
∧M
j=1 H, we would calculate

〈Ψ,dΓ (B) Ψ〉 .

Now, if Ψ itself is a product state, i.e., Ψ = ψ1 ∧ · · · ∧ψM , where { ψj }Mj=1 is an orthonormal state, then this simplifies to

〈Ψ,dΓ (B) Ψ〉 =

M∑
j=1

〈ψj , Bψj〉

= tr

(
M∑
i=1

ψi ⊗ ψ∗iB

)

where we recognize
∑M
i=1 ψi ⊗ ψ∗i as the projection operator onto the space spanned by the orthonormal set { ψj }Mj=1.

Now, say our Hamiltonian of the solid we wish to describe is H ∈ B (H), and say its eigenstates are { ϕj }j∈N (ordered
so that ϕ1 has the lowest energy, etc). Since no two Fermions can occupy the same quantum mechanical state (this is the
Pauli exclusion principle), if we fill the solid with M electrons, the ground state (i.e., the state of least energy, at zero
temperature) is the one where the M electrons occupy the M first levels of H, i.e., ϕ1, . . . , ϕM . The corresponding state
on the many-body Hilbert space

∧
H (the exterior algebra generated by H) is thus

ϕ1 ∧ · · · ∧ ϕM

(which is called the Slater determinant). If we calculate the corresponding one-particle reduced density matrix, ρ ∈ B (H),
whose matrix elements are given by

ρxy :=
∑

x2,...,xM∈Zd

(ϕ1 ∧ · · · ∧ ϕM ) (x, x2, . . . , xM ) (ϕ1 ∧ · · · ∧ ϕM ) (y, x2, . . . , xM )
(
x, y ∈ Zd

)
(2.1)

we obtain precisely the projection onto these M lowest states

ρ = χ(−∞,λM ] (H) .

where λM is the energy corresponding to ϕM . Hence, we use the density matrix ρ in our single-particle calculations, and
this corresponds to a zero temperature non-interacting many-body expectation value. Since it makes more sense to speak
about the energy up to which electrons are filled rather than how many electrons there are (in infinite volume there are
infinitely many particles and it is more appropriate to speak about the density anyway), we characterize the filling of the
system by an energy parameter µ ∈ R called the Fermi energy and define the Fermi projection corresponding to H

Pµ := χ(−∞,µ] (H)

which is manifestly the reduced one-particle density matrix associated with the non-interacting ground state associated
with H filled up to energy level µ. In infinite volume the range of this operator is infinite dimensional. In order to define
this operator rigorously one has to apply the measurable functional calculus of bounded self-adjoint operators, see [RS80,
Vol. 1, Ch. VII]. It will turn out that the Fermi projection Pµ contains most of the properties we care about in regards to
topological insulators. At non-zero temperatures the Fermi-Dirac distribution should be used–we won’t make use of this.

2.3 Electric conductivity
We wish to study insulators, for which we would like to calculate their electric conductance, which is phenomenologically
defined via Ohms law:

σ =
I

V

with I being the current and V the voltage. More generally, the conductivity σ is defined as the matrix relating the
current density j with the electric field as follows:

j = σE .

In principle each of these calculations of σ depends on the Fermi energy µ to which we fill the system.
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Definition 2.1. An electric insulator at Fermi energy µ is a material filled to µ whose conductivity matrix at that
energy is zero on the diagonal:

σii (µ) = 0 .

Why do we only talk about the diagonal conductivity will become clear later when we consider the Hall conductivity.
In the physics literature, for historical and possibly physical reasons, one usually separates the objects of study in an

experimental setup where there is a material (a solid) which is described by a Hamiltonian H and the external driving
electric field. Hence, if we calculate the conductivity associated with H alone, it should be zero (since it would typically
have no spontaneous currents) and only once we perturb with an external electric field it does it actually make to calculate
σ. Thus, we are at the task of perturbation theory, by, say a constant electric field. As we know from undergraduate
quantum mechanics, this means adding a term of the form

E0Xi

if the field is of strength E0 in direction i = 1, . . . , d.
Typically, however, the type of perturbation theory taught in undergraduate quantum mechanics (Rayleigh-Schrödinger

perturbation theory) is inappropriate for most systems we want to deal with, since it only deals with systems with discrete
spectrum (finitely degenerate isolated eigenvalues). Also, generally one likes to do perturbation theory of the more general
density matrices. The general theory under which this is done is called linear response theory [Kub91].

2.4 Linear response theory–the Kubo formula
As we have said the perturbation we are mostly concerned with is something proportional to the position operator and
the observable should be the current density, i.e.,

ji = ni [H,Xi] (i = 1, . . . , d)

where n is the density of particles. Indeed, H being the generator of time-translations, i [H,Xi] is associated with d
dtXi,

i.e., the velocity.
Furthermore, the perturbations we shall consider are not constant in time. Instead, they will be turned on very slowly

from being zero at the beginning of time.

Theorem 2.2. (The Kubo formula) Assume a system governed by H is in state described by density matrix ρ0.
Assume further that it is perturbed by the time-dependent operator εf (t)A, where f : R → [0, 1] is some smooth
time-modulation function which obeys f (−∞) = 0 and f (0) = 1, ε > 0 is some small order parameter, and A is a
time-independent self-adjoint operator. Then the first order (in ε) coefficient of the expectation value of an observable
B = B∗ for which tr (ρ0B) = 0 to the perturbation at time zero is given by

χBA := −i

ˆ 0

−∞
tr
(
e−itHBeitH [A, ρ0]

)
f (t) dt . (2.2)

Proof. The state of the system at time t is governed by the Schrödinger equation for the density matrix, which is

iρ̇ (t) = [H + εf (t)A, ρ (t)] .

We assume that

ρ (t) = ρ0 + ερ1 (t)

where ρ0 is independent of time since the zero order in ε has no time dependence in the Hamiltonian. A short
calculation then shows that

iρ̇1 (t) = f (t) [A, ρ0] + [H, ρ1 (t)] + O (ε)

which is solved by

ρ1 (t) = −iε

ˆ t

−∞
e−i(t−s)H [A, ρ0] e+i(t−s)Hf (s) ds (2.3)
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Hence, we find

〈B〉ρ(t) ≡ tr (ρ (t)B)

= tr (ρ0B) + εtr (ρ1 (t)B)

and plugging in (2.3) into this first order expression yields the claim.

2.5 The conductivity formula from Kubo
We now want to apply this formalism in order to calculate the conductivity of a system. As explained above, the
appropriate initial density matrix ρ0 to use is the Fermi projection, i.e.,

ρ0 = P ≡ χ(−∞,µ] (H) .

At non-zero temperature one replaces χ(−∞,µ] with the Fermi-Dirac distribution.
The observable B should be the current density, which is related to the velocity operator in direction i, so we shall

take

B = i [H,Xi] .

The perturbation shall be the electric field in direction j, i.e., Xj , so that all together we find that to first order in the
electric field,

σij (µ) = lim
f→1

tr

ˆ 0

−∞
e−itH i [H,Xi] e+itH i [Xj , P ] f (t) dt . (2.4)

The reason why we take the limit is that eventually we are interested in the static case, where the perturbation is not time
dependent (or alternatively in the adiabatic limit where the perturbation is turned on infinitely slowly).

Theorem 2.3. If H is time-reversal invariant (in the sense that (2.4) is symmetric in i↔ j) then

σij (µ) = lim
ε→0+

ε2

π

∑
x∈Zd

xixj

∥∥∥R (µ+ iε)0,x

∥∥∥2

. (2.5)

The proof of this claim is beyond the scope of these notes, see [AG98, Appendix A] for more details. An immediate
corollary is that systems which have a spectral gap (so that Theorem 1.4 is useful) have σij (µ) = 0 if µ is within the gap.

This corollary motivates the main definition of this chapter, which is its main takeaway message:

Definition 2.4. A solid specified by H (as in Definition 1.2), is said to be an insulator at Fermi energy µ ∈ R iff
µ /∈ σ (H).

Note that since σ (H)
c ∈ Open (C), there is a whole interval about µ which is not in the spectrum.

This is not the most general form of an insulator: it completely missed the phenomenon of being an insulator due to
Anderson localization. But we shall not say more about this at the moment, see e.g. [EGS05, Sha20] for more details on
the so-called mobility gap regime.

Theorem 2.5. For systems that do not have time-reversal-invariance, such as integer quantum Hall systems, if µ is
within a spectral gap of H, one can bring (2.4) to the form

σij (µ) = itr (P [[Λ1, P ] , [Λ2, P ]]) . (2.6)

Here, Λj is a projection operator onto the positive half-space defined by the jth axis:

(Λjψ)x ≡

{
ψx xj ≥ 1

0 xj ≤ 0 .

Part of the statement of the theorem is that the above expression is indeed

The proof of this statement is again beyond the scope of these notes but may be found, e.g., in [Sha16].
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3 Topology
In this brief chapter, we explain some notions from point-set topology and set up a program for the study of “topological
insulators”.

Topology is the study of properties of mathematical spaces which are preserved by smooth of continuous deformations.
The mathematical field of topology seems, a-posteriori, to be the appropriate way to describe physical properties of
materials which are macroscopically stable under experimental noise, impurities and variation. It will turn out that the
topology of spaces of quantum mechanical Hamiltonians obeying certain constraints (like locality, the insulator condition
and possibly symmetry constraints) will yield interesting and experimentally-relevant descriptions.

3.1 Some words on point-set topology
This section here is only included really mainly to set notation, but is expected to be basic undergraduate material to be
found, e.g., in [Mun00].

Definition 3.1. For any set S, a topology Open (S) on S is a set of subsets of S such that:

1. S ∈ Open (S) and ∅ ∈ Open (S).

2. An arbitrary union of elements of Open (S) again belongs to Open (S).

3. A finite intersection of elements of Open (S) again belongs to Open (S).

Naturally, a subset U ⊆ S is called open iff U ∈ Open (S). A set F ⊆ S is called closed iff S \ F ∈ Open (S). The
set of all closed sets is denoted Closed (S). Note that these two properties are not mutually exclusive and one speaks of
clopen sets as well: Open (S) ∩ Closed (S).

Unless one is studying a designated class on point-set topology, most likely one will be dealing with metric spaces, in
which a pre-given distance d (x, y) between any two points x, y ∈ S is given. In this setting, there is a much more concrete
way to describe Open (S):

Definition 3.2. (metric topology) For any metric space (S, d), a natural topology Open (S) is specified by

Open (S) := { U ⊆ S | ∀x ∈ U∃ε > 0 : Bε (x) ⊆ U }

where we use the notation for an open ball of radius ε:

Bε (x) := { y ∈ S | d (x, y) < ε } .

Another important example is the

Definition 3.3. (discrete topology) For any set S the discrete topology is defined by

Open (S) = P (S)

where P (S) is the power set of S, i.e., the set of all subsets of S. That is, the discrete topology is a topology where
all subsets are open. Note that this is also an example of a metric topology if we define the discrete metric

ρ (x, y) :=

{
1 x 6= y

0 x = y
(x, y ∈ S) .

An important notion that will come up frequently is that of subspace topology

Definition 3.4. Let (S,Open (S)) be a topological space and T ⊆ S. Then a natural topology on T is given by the
subspace topology descending from S:

Open (T ) := { U ⊆ T | U = T ∩ V ∃V ∈ Open (S) } .
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Definition 3.5. For any point s ∈ S, a neighborhood of s is some U ⊆ S such that s ∈ U and ∃V ∈ Open (S) with
s ∈ V ⊆ U . The set of all neighborhoods of a given point s is denoted by Nbhd (s).

Like all mathematical structures on sets (e.g. groups, vector spaces, etc), we are interested in maps f : S → T which
respects a given structure. This leads us to the notion of a continuous map:

Definition 3.6. A map f : S → T between two topological spaces is said to be continuous iff

f−1 (Open (T )) ⊆ Open (S) . (3.1)

Here, f−1 (Open (T )) ≡
{
f−1 (U)

∣∣ U ∈ Open (T )
}
and f−1 (B) ≡ { s ∈ S | f (s) ∈ B }.

One also uses the slightly more fine-grained definition that f : S → T is continuous at s ∈ S iff

f−1 (Nbhd (f (s))) ⊆ Nbhd (s) . (3.2)

Then f is continuous iff it is continuous at s for all s ∈ S.

Remark 3.7. This notion is more useful than that of an open map: f : S → T is open iff

f (Open (S)) ⊆ Open (T ) . (3.3)

In what way does (3.1) respect the topological structure rather than (3.3)? The basic operations on open sets
are arbitrary unions and finite intersections. I.e., we want an operation that “commutes” with the operations which
preserve openness: unions and intersections of sets. It turns out that the preimage operation, f−1, respects these
operations whereas the image operation f does not:

f−1

(⋃
α

Uα

)
=

⋃
α

f−1 (Uα)

f−1

(⋂
α

Uα

)
=

⋂
α

f−1 (Uα)

and for the image,

f

(⋃
α

Uα

)
=

⋃
α

f (Uα)

f

(⋂
α

Uα

)
⊆

⋂
α

f (Uα) .

An example where this last inclusion is proper is the following: f : Z→ Z given by n 7→ n2 has N≥0 ∩ Z≤0 = { 0 } so
that

f (N≥0 ∩ Z≤0) = f ({ 0 }) = { 0 }

and yet f (N≥0) = f (Z≥0) = (N≥0)
2

= { 0, 1, 4, 9, . . . }.

It is of course comforting to know that these new abstract notions match those studied in real analysis:

Lemma 3.8. For a map f : S → T between two metric spaces, f is continuous at s ∈ S iff for every ε > 0, there
exists some δε > 0 such that

Bδε (s) ⊆ f−1 (Bε (f (s))) . (3.4)

or stated in the more familiar notation, f is continuous at s ∈ S iff for every ε > 0 ∃δε > 0 such that for all s̃ ∈ S
such that dS (s, s̃) < δε one has dT (f (s) , f (s̃)) < ε.
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Proof. First assume f is continuous at s ∈ S, i.e., (3.2). Now let ε > 0 be given. Since f is continuous and
Bε (f (s)) ∈ Open (T ),

f−1 (Bε (f (s))) ∈ Open (S) .

Since s ∈ f−1 (Bε (f (s))), then using Definition 3.2, there exists some δε > 0 such that Bδε (s) ⊆ f−1 (Bε (f (s)))
which is (3.4).

We now tend to showing that (3.4) implies (3.2). Let U ∈ Nbhd (f (s)). Because U is open, there is some ε > 0
such that Bε (f (s)) ⊆ U . Then by assumption, there is some δε > 0 such that Bδε (s) ⊆ f−1 (Bε (f (s))). We find
s ∈ Bδε (s) ⊆ f−1 (U) so that f−1 (U) ∈ Nbhd (s), i.e., (3.2).

3.2 Connectedness and path-connectedness
For the topological spaces coming from quantum mechanics, we are mainly interested in connectivity properties

Definition 3.9. A topological space (S,Open (S)) is said to be disconnected iff

S = A ∪B

where A,B ∈ Open (S) \ {∅ }, A ∩B = ∅. Naturally, (S,Open (S))is said to be connected iff it is not disconnected.

Lemma 3.10. A topological space (S,Open (S)) is connected iff

Open (S) ∩ Closed (S) = { S,∅ } (3.5)

iff any continuous map f : S → { 0, 1 } (where { 0, 1 } is taken with the discrete topology) is constant.

Proof. Let us assume that S is connected, and show (3.5). Say then that there is some

A ∈ Open (S) ∩ Closed (S) \ { S,∅ }

and define B := S \A. Then B ∈ Open (S)∩Closed (S) too (by definition of closed as complement of open), neither
are empty, and their union is S, which implies S is disconnected, a contradiction. Conversely, if (3.5) yet S is
disconnected, then A,B are both clopen, which is a contradiction.

Next, assume that f : S → { 0, 1 } is a continuous map which is not constant. Since { 0 } and { 1 } are both
clopen, and f is continuous, f−1 ({ 0 }) and f−1 ({ 1 }) are both clopen, not empty (because f is not constant) and
together form the entirety of S. So that S is disconnected. Now if S is disconnected, define the map

f (s) :=

{
0 s ∈ A
1 s ∈ B

which is continuous and not constant.

Definition 3.11. The connected component of a space S is the collection of maximal connected subsets.

We will be particularly interested in the following

Lemma 3.12. Let D be a discrete space and f : S → D be continuous. Then f is constant on connected components
of S. In particular, if s, s′ ∈ S have f (s) 6= f (s′) then necessarily s, s′ belong to different connected components of
S, and we have

|f (S)| ≤ |Set of connected components of S| .

In this sense, it turns out that such functions f are “experimentally stable” and are called topological invariants of
the material. They (hopefully) correspond to physically measurable quantities which do not change when making slight
variations in the experimental setup. In lucky situations, we find such an invariant f : S → D such that

D ∼= Set of connected components of S
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in which case we say we have a complete classification of the phases of matter, and D is the set of indices or labels of such
phases.

Another related notion is that of path-connectedness: For any s ∈ S, define an equivalence class [s] ⊆ S via s ∼ s′

iff there is a continuous function γ : [0, 1] → S with γ (0) = s and γ (1) = s′ (with [0, 1] taken with the metric topology
associated with the absolute value distance).

Definition 3.13. S is path-connected iff s ∼ s′ for any two s, s′ ∈ S. The path-connected components are the set of
all equivalence classes and is denoted as π0 (S):

π0 (S) ≡ { [s] | s ∈ S } .

Similarly to before, also here any continuous map f : S → D where D is discrete will be constant on path-connected
components.

Lemma 3.14. Path-connectedness implies connectedness but the converse is in general false.

Proof. Assume S = A t B and set up a path γ : [0, 1] → S with γ (0) ∈ A and γ (1) ∈ B. This would violate
the connectedness of [0, 1], but it is connected, and hence, we reach a contradiction. For a counter-example of the
converse, look up the topologist’s sine-curve.

Since the converse is false, the two notions are in fact distinct. There is a notion of “locally path-connected” space in which
open and connected implies path-connected. Presumably, all interesting spaces of quantum mechanical Hamiltonians we
care about are locally path-connected (although this is far from obvious). If this is false, then it is an interesting question
whether connectedness or path-connectedness is the relevant notion which selects experimental stability of invariants (it
seems highly dubious that this question should be relevant to real-world experiments, but perhaps?).

To keep matters practical, in the remainder of these notes we pretend the two notions are equivalent, and furthermore,
since path-connectedness is the simpler notion to study, we shall focus entirely on that.

Problem 3.15. Thus, the program now for the mathematical field of “topological insulators” is to define an “ap-
propriate” topology Open (S) on the space of relevant quantum mechanical Hamiltonians S, and calculate its set of
path-connected components π0 (S). In interesting cases |π0 (S)| > 1. An additional goal of the analysis will be to
exhibit an isomorphism of π0 (S) with some non-trivial discrete set via an explicit formula which relates the discrete
label to a physically measurable quantity (such as a conductivity).

There is also the less ambitious goal, which is not to create a full classification but rather just define an index:

Problem 3.16. Define an “appropriate” topology Open (S) on the space of relevant quantum mechanical Hamiltonians
S, and a continuous surjective map f : S → D for some discrete space D. Associate f with an experimentally
measurable observable of the system.

While this last problem does not yield a complete classification it would say that there are at least as many “topological
phases” as |D|.

3.3 A first non-trivial example of algebraic topology: the winding number
Consider the set S of continuous functions S1 → C \ { 0 }. Here, S1 ≡ [0, 2π] is the unit circle (with 0 and 2π identified).
On this space, we define a topology which is the metric topology (see Definition 3.2) induced by the uniform norm (which
itself induces a metric):

‖f‖∞ := sup
z∈S1

|f (z)| .

Definition 3.17. (The winding number) Define a map W : S → Z via the following prescription. We write any map
f ∈ S in polar coordinates as

f (θ) := r (θ) eia(θ) (θ ∈ [0, 2π))
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where

r : [0, 2π] → (0,∞)

is periodic, and zero is excluded from its codomain as the codomain of f is the punctured complex plane, and

a : [0, 2π] → R

is 2π-periodic. The reason that a is chosen as merely 2π-periodic rather than periodic is so that it can be chosen as
continuous. In fact, since f is continuous, clearly r := |f | is continuous as the composition of two continuous maps,
and so is a (it is a basic fact in complex analysis that a continuous choice of the Argument function exists). We then
define

W (f) :=
a (2π)− a (0)

2π
∈ Z .

Even though a has an ambiguity in its definition, the difference above does not due to the continuous requirement.
Hence W is well-defined.

Theorem 3.18. W lifts to a bijection π0 (S) ∼= Z.

Proof. First we must show that W is well-defined with its domain π0 (S), i.e., that W ([f ]) = W ([g]) if [f ] = [g],
i.e., if f ∼ g. By definition then, there is a continuous map (called a homotopy) h : [0, 1] → S such that h (0) = f
and h (1) = g. For any t ∈ [0, 1], h (t) : S1 → C \ { 0 } and we use the notation

h (t, θ) = r (t, θ) eia(t,θ) (t ∈ [0, 1] , θ ∈ [0, 2π]) .

Then

[0, 1] 3 t 7→ a (t, 2π)− a (t, 0)

2π
≡W (h (t, ·)) ∈ Z

is a continuous function from a connected space [0, 1] into a discrete space Z and is hence constant. In particular,
its two end-points agree and so W is well-defined with π0 (S) as its domain.

Clearly W is surjective with the set of functions
{
θ 7→ eimθ

}
m∈Z

, so we need only demonstrate injectivity, i.e.,
that W (f) = W (g) implies f ∼ g.

Let Ff be the flipped map associated to f , i.e.,

(Ff) (θ) := f (2π − θ) (θ ∈ [0, 2π]) .

Clearly, F : S → S and W (Rf) = −W (f) for all f ∈ S. Also, for any z ∈ C \ { 0 } let Rzf be the z-scaled map
associated to f , i.e.,

(Rzf) (θ) := zf (θ) (θ ∈ [0, 2π]) .

Clearly, for any z, Rz : S → S and W ◦Rz = W .
Now, given any two f, g ∈ S, it is not clear that both may be concatenated, since their “base-points” f (2π),

g (0) need not agree. However, the map R f(2π)
g(0)

g ∈ S may be concatenated with f . We denote the concatenation
operation

(f]g) (θ) :=

{
f (2θ) 0 ≤ θ ≤ π
f(2π)
g(0) g (2 (θ − π)) π ≤ θ ≤ 2π

(θ ∈ [0, 2π]) .

It holds that ] : S2 → S and it is clear from the definition that W (f]g) = W (f) +W (g) . Hence we have

0 = W (f)−W (g)

= W (f) +W (←−g )

= W (f]←−g ) .
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So that we have reduced the problem to showing that if W (f) = 0 then f ∼ 1 where 1 is the constant map. Since
W (f) = 0, we have a (2π) = a (0). Now, consider the homotopy

at (θ) := (1− t) a (θ) + ta (0) .

Since a (2π) = a (0), we have at (2π) = a (0) so that throughout the homotopy at remains a well-defined map
[0, 2π] → R which is periodic (cf. if a (2π) − a (0) ∈ 2πZ whence at (2π) = a (2π) + t (a (0)− a (2π)) /∈ 2πZ for all
t ∈ (0, 1)). This defines a continuous function h : [0, 1] → S with h (0) = f and h (1) being a map with a constant
angular part. Since we know global rotations do not affect the winding, we make a further rotation from the angle
of f (0) to the horizontal axis. A further homotopy is given by

rt (θ) = (1− t) r (θ) + t

and we have rt (2π) = (1− t) r (2π) + t = (1− t) r (0) + t = rt (0) so that it is indeed periodic. Note that the order
of these homotopies was important: first deform the angular part, then rotate to the horizontal axis, then deform
the radial part.

Finally, we claim that if f]←−g is homotopic to the constant 1 map then f ∼ g.

We will see below that this example corresponds to an actual class of topological insulators, the one dimensional chiral
model.

The winding number is a special case of the following theorem

Theorem 3.19. Let M,N be two smooth compact manifolds of the same dimension and C (M → N) the space of
continuous functions endowed with the topology associated with the norm ‖·‖∞. Then the degree map

D : C (M → N) → Z

is continuous and lifts to π0 (C (M → N)) → Z. C here may be replaced with C∞, with the same topology, to obtain
the same statement. If N is a sphere then D is a bijection, i.e., π0 (C (M → N)) ∼= Z.

We omit the proof which may be found in [Mil97], but provide the formula for the degree: Since M,N are two manifolds
of the same degree, any map f ∈ C (M → N) may (after choosing charts and localizing to a neighborhood) be represented
as a map f̃ : Rn → Rn for n = dim (M) and let Df̃ denote the total (Frechet) derivative, i.e., an n × n-matrix-valued
function. Pick any point q ∈ Rn such that all points in p ∈ f−1 ({ q }) have det

((
Df̃
)

(p)
)
6= 0 (such points q are called

regular values of regular points p). Then

D (f) :=
∑

p∈f−1({ q })

sgn
(

det
(
Df̃
))
∈ Z . (3.6)

One has to show this definition does not depend on the chart-choices in f̃ nor on the choice of q first.

4 Periodic topological insulators and some algebraic topology
In this brief chapter, we describe how to (topologically) understand translation-invariant (that is, periodic) systems. Our
ultimate focus is on systems not obeying a periodicity condition, for two reasons: the mathematics is (at least subjectively)
easier and the physics is more convincing. Be that as it may, it would be unreasonable not to at least quickly describe the
periodic setting. The reason being that the pictures arising from these descriptions are extremely intuitive and suggestive,
and bring the underlying geometric notions to life. However, since this is not our main point we skip entirely proofs and
remain rather shallow in terms of precision.

4.1 Classification of even dimensional periodic insulators
From everything we have learnt so far, a periodic insulating system associated to a Hamiltonian H ∈ B

(
`2
(
Zd
)
⊗ CN

)
(using the Bloch decomposition Definition 1.8 and employing the insulator definition Definition 2.4) is fully specified by
a map

Ĥ : Td → HermN (C)

such that
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1. There is some µ ∈ R, the Fermi energy of the system (which determines its filling) such that for all k ∈ Td, none of
the N eigenvalues of Ĥ (k) intersect µ.

2. Td 3 k 7→ Ĥ (k) has a certain regularity which is governed by the locality assumption Definition 1.1 and the Riemann-
Lebesgue lemma Theorem 1.14. For simplicity we assume the amount of locality has been constrained so that Ĥ
is: continuous. This is perhaps too lax physically speaking, but mathematically the distinction between continuous
and smooth makes little difference thanks to [Lee13, Theorem 10.16].

Example 4.1. (the integer quantum Hall effect) Consider the case d = N = 2, whence we reduce to studying the
space Sd,N,µ of smooth maps

Ĥ : T2 → Herm2 (C)

whose two eigenvalues (for each k ∈ T2) never intersect a given, fixed µ ∈ R.
We define an invariant

C : Sd=2,N=2,µ → Z

(akin to a winding number Theorem 3.18) associated with any such Ĥ in the following way: if both eigenvalues of Ĥ
are always above (resp. below) µ for any k ∈ T2, we define C

(
Ĥ
)

= 0. Otherwise, the insulator condition implies
both eigenvalues are always separated by µ and hence are never degenerate, for all k ∈ T2. This means that the
orthogonal projection matrix onto the lower one,

P̂ : T2 → Herm2 (C) (4.1)

is a well-defined continuous function onto 2 × 2 self-adjoint projection matrices of rank-1. We note that the space
Herm2 (C) is spanned by the Pauli matrices so that any 2× 2 Hermitian matrix M may be written as

M = h0σ0 + d1σ1 + d2σ2 + d3σ3

where σ0 ≡ 12×2, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
and h0 ∈ R, d ∈ R3. If we furthermore require that

M2 = M , we get the further constraint that h0 = 1
2 and ‖d‖ = 1

2 . Hence, we may interpret (4.1) as being specified
by a continuous map

1

2
d : T2 → S2 . (4.2)

This 2-sphere is usually called the Bloch sphere, more so in quantum information. Now, Theorem 3.19 says that the
space of all such maps is fully classified by the degree. We thus define the Chern number as

C
(
Ĥ
)

:= Degree of the associated map T2 → S2 .

In fact, there is another formula (cf. (3.6)) in this case:

C
(
Ĥ, µ

)
=

i

2π

ˆ
T2

tr
(
P̂
[
∂1P̂ , ∂2P̂

])
(4.3)

although it is far from manifest from this formula that it is, indeed, Z-valued. This formula agrees with the one
usually used in the physics literature, which calls for a Berry curvature, see e.g. [HK10, (2), (5)] and is also equal to
Theorem 2.5.

More generally, one may think of the Grassmannian manifold Grk
(
CN
)
of k-dimensional subspaces within CN as

replacing the Bloch sphere above in case we consider systems which are gapped after k-levels, whence we are interested
in homotopy classes of continuous maps

T2 → Grk
(
CN
)
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and for N large enough (whence it is judicious to replace CN with any separable Hilbert space, say C∞ which stands
for `2 (N)), it is known that for any smooth compact manifold X,

[X → Grk (C∞)] ∼= Vectk (X)

where the RHS is the set of classes of rank-k vector bundles over X [Ati94, Nak03] and the LHS is the topological
space of all continuous maps X → Grk (C∞) (this shall be the meaning of the square brackets on spaces of maps
from now on) associated to the ‖·‖∞ norm. In fancy language, this equation says that the Grassmannians are the
classifying spaces for the principal bundle with the unitary group. It is instructive to compare this formula with the
Atiyah-Jänich theorem:

[X → F (C∞)] ∼= K0 (C (X → C))

hereF (C∞) is the space of Fredholm operators on C∞ (see Section 5.1) andK0 is the zeroth K-theory group associated
to the C-star algebra C (X → C) of continuous functions X → C, see [RLL00].

The same formula for the Chern number (4.3) works also when k > 1 (but the base space X is still T2).
This example is the classification of (certain classes of) integer quantum Hall systems (or Chern insulators), see

[Sha16] for more details and for the physical setup.
This example may be generalized to higher dimensions [RLL00, pp. 234,], to prove that for N sufficiently large,

π0 (S2d,N,µ) ∼= Z . (4.4)

4.2 Symmetry-protected topological phases
If we consider the previous example in dimension one, then from (4.2), since now d = 1, the space of such Hamiltonians
corresponds to the space of continuous maps

S1 → S2 .

However, it is well-known that the sphere is simply-connected, i.e.,[
S1 → S2

]
≡ π1

(
S2
) ∼= { 0 } .

For a proof see e.g. [Mun00]. Generalizing this, for N sufficiently large, one may calculate that for all odd d, the
classification is trivial, see [RLL00, pp. 234,]. However, even in odd dimensions, if we add a further symmetry constraint
on the system we may get a non-trivial classification, as well shall now see.

Historically, symmetry classes defined by Altland and Zirnbauer in the context of random matrices have been most
studied [AZ97]. These are three symmetries: time-reversal Θ, particle-hole Ξ, and their composition, chiral symmetry
Π ≡ ΘΞ. The first two are anti-unitary anti-C-linear operators on H whereas the latter one is unitary. To say that a
given Hamiltonian H is symmetric w.r.t. Θ,Ξ or Π means that it either commutes with Θ or anti-commutes with Ξ or
Π. Furthermore, we may have Θ2 = ±1 as well as Ξ2 = ±1. Hence, all together when counting the different possibilities
we arrive at ten different symmetry classes, which are called the Altland-Zirnbauer symmetry classes. The ten classes are
each associated with one of the ten symmetric spaces. The classification of local insulating Hamiltonians which fall in a
certain symmetry class proceeds as above, with the added constraint that Hamiltonians have the given symmetry, which
yields further constraints on the map

Ĥ : Td → Grk (C∞) .

For example, if only time-reversal symmetry Θ is present which is of the type Θ2 = 1, then Θ in fact defines a “real
structure” on the Hilbert space so that instead of classifying C-vector bundles of rank k with base space Td, one may
classify R-vector bundles of rank k with the same base space. If Θ2 = −1 one gets a quaternionc structure, and so on. For
instance, it is a fact of algebraic topology that vector bundles with quaternionic structure over the 2-torus are isomorphic
to Z2:

VectH
k

(
T2
) ∼= Z2. (4.5)

Here, H is the quaternions.
This entire study has been carried out [RSFL10, SRFL08] for all dimensions and all ten Altland-Zirnbauer symmetry

classes and then organized by Kitaev into a table (and crucially, associated with K-theory), called the Kitaev table [Kit09].
This table is essentially the same table found in [ABS64] in the context of Clifford modules: each of the ten symmetry
classes corresponds also to one of the ten Morita equivalence classes of the real and complex Clifford algebras.

We conclude with a particularly simple example, in fact, much simpler than the integer quantum Hall effect already
presented, of a symmetry-protected topological phase.
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Symmetry label Θ2 Ξ2 Π d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8

A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIII 0 0 1 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 0 0 0 Z 0 Z2 Z2 Z
BDI 1 1 1 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 Z2 Z2 Z 0 0 0 Z 0
AII −1 0 0 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 Z 0 Z2 Z2 Z 0 0 0
C 0 −1 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 −1 1 0 0 Z 0 Z2 Z2 Z 0

Table 1: The Kitaev periodic table of topological insulators. A zero for a symmetry indicates that it is not present, and
otherwise it is indicated what it squares to. The cells of the table indicate the set of path-connected components of such
spaces of topological insulators. Note that it is periodic, i.e., d = 9 is the same as d = 1. Also note its diagonal shift
structure.

Example 4.2. Consider the space of insulators which are also chiral in d = 1, N = 2 and µ = 0. Chiral symmetry Π
is a unitary operator on H which anti-commutes with the Hamiltonian H and commutes with the position operator
X. Writing

`2 (Z)⊗ C2 ∼= `2 (Z)⊕ `2 (Z)

and using block-operator notation, we thus have

Π =

[
1 0
0 −1

]
and from H = H∗ and the anti-commutation relation

{H,Π } ≡ HΠ + ΠH = 0

we get

H =

[
0 S∗

S 0

]
for some S ∈ B

(
`2 (Z)

)
which is not necessarily self-adjoint. Hence chiral Hamiltonians stand in one-to-one cor-

respondence with non-self-adjoint operators on half the space. The insulator condition on H implies that S must
be invertible (verify this) so that employing the periodic constraint as well, we arrive at classifying the space of all
continuous maps

Ŝ : S1 → C \ { 0 } .

This has been precisely analyzed by the winding number, see Theorem 3.18 and it was calculated that the path-
connected components of such systems are bijective with Z. The bijection, which is just the winding number, is
physically known as the Zak phase [Zak89], and is related to a certain chiral polarization.

5 Disordered topological insulators and some Fredholm theory
In order to understand disordered systems, we will use Fredholm theory. We begin with a crash course on the theory,
which requires basic functional analysis. Most of the material in this section can be found in the first part of the accessible
textbook [BB89]. One may also wish to consult the short and beautiful paper [Mur94] or the textbook [Sch01, Chapter
5].
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5.1 Fredholm theory
In this section, we temporarily forget about the spatial structure of our Hilbert space. Thus, H is any separable Hilbert
space, which schematically is usually denoted as C∞ as above. If we want a concrete choice it could be `2 (N) with ONB
{ ej }∞j=1. On H we consider B (H), the C-star algebra of bounded linear operators H → H together with the operator
norm

‖A‖ ≡ sup ({ ‖Aϕ‖ | ϕ ∈ H : ‖ϕ‖ = 1 }) .

Definition 5.1. An operator A ∈ B (H) is called Fredholm iff kerA and cokerA are finite dimensional. These are
the two vector spaces defined as

kerA ≡ { ϕ ∈ H | Aϕ = 0 }

and

cokerA ≡ H/imA

with imA ≡ { ϕ ∈ H | ∃ψ : Aψ = ϕ }. Recall that the quotient vector space is defined as:

ϕ ∼ ψ ⇐⇒ ϕ− ψ ∈ imA

and

[ϕ] := { ψ ∈ H | ϕ ∼ ψ }
cokerA = { [ϕ] | ϕ ∈ H } .

For every Fredholm operator, we define the index, an integer associated with that operator, as

index (A) := dim kerA− dim cokerA ∈ Z .

We denote the space of all Fredholm operators as F (H).

The kernel of an operator kerA should not be confused with its integral kernel

Axy ≡ 〈ex, Aey〉

in the context of PDEs, i.e., its matrix elements in the context of quantum mechanics.
Intuitively speaking, the kernel measures how much an operator deviates from being injective, whereas the cokernel

measures how much an operator deviates from being surjective. Hence, Fredholm operators are those that are injective
and surjective (and hence invertible) up to some finite dimensional “defect”, and the index of the operator measures the
severity of this defect, so to speak (in a signed way). The fact that one has a difference of two numbers instead of just one
number should be associated with the Grothendiek construction of a group out of a semigroup, or with the construction
of Z out of N as pairs of naturals which should be identified with the difference.

The following result allows us to speak only of kernels of operators instead of the more mysterious cokernel:

Lemma 5.2. cokerA is finite-dimensional iff imA ∈ Closed (H) and kerA∗ is finite dimensional.

Proof. Assume that imA ∈ Closed (H). Then via Claim A.1,

(ker (A∗))
⊥

=
(

(imA)
⊥
)⊥

= imA (Via Claim A.4)
= imA . (By hypothesis)

Now, we always have

H = (kerA)⊕
(

(kerA)
⊥
)

= (kerA∗)⊕
(

(kerA∗)
⊥
)

= (kerA∗)⊕ imA .

22



Hence

cokerA ≡ H/imA

∼= (imA)
⊥

= kerA∗ .

Hence if dim kerA∗ is finite, so is dim cokerA.
Conversely, assume that dim cokerA is finite. We want to show that imA ∈ Closed (H).
Define a map

η : (H/ kerA)⊕ (imA)
⊥ → H

([ϕ] , ψ) 7→ Aϕ+ ψ .

It is easy to verify that η is a bounded linear bijection (it is in verifying that η is bounded that we used the fact
cokerA ∼= (imA)

⊥ is finite dimensional). Hence

imA ∼= η ((H/ kerA)⊕ { 0 }) ∈ Closed (H)

where the last statement is due to the open mapping them which says that the inverse of η is also continuous, i.e.,
η is a closed map and hence maps closed sets to closed sets.

See also [AA02, Corollary 2.17].
The Fredholm index is continuous, as well shall see, but only half of it is not :

Lemma 5.3. dim ker : F (H)→ N≥0 is upper semicontinuous.

Proof. Decompose H = ker (A)⊕ ker (A)
⊥ ∼= ker (A∗)⊕ ker (A∗)

⊥. Since im (A) ∼= ker (A∗)
⊥, we have

A =

[
a 0
0 0

]
for some isomorphism a : ker (A)

⊥ → im (A). Taking any norm perturbation B of size at most
∥∥a−1

∥∥−1 will
mean that A+B is injective on ker (A)

⊥ and hence dim kerA+B ≤ dim kerA.

To characterizer the the image of an operator being closed, we have

Lemma 5.4. For A ∈ B (H), the following are equivalent:

1. imA ∈ Closed (H).

2. 0 /∈ σ
(
|A|2

)
or zero is an isolated point of σ

(
|A|2

)
.

3. ∃ε > 0 such that

‖Aϕ‖ ≥ ε‖ϕ‖
(
ϕ ∈ (kerA)

⊥
)
.

Proof. ((1)=>(3)): Assume that im (A) ∈ Closed (H). Then Ã : ker (A)
⊥ → im (A) is a bijection. Since im (A) ∈

Closed (H), im (A) is a complete metric space, which implies that Ã−1 : im (A) → ker (A)
⊥ is bounded by the

“bounded inverse theorem” [RS80]. I.e.,
∥∥∥Ã−1

∥∥∥ < ∞, which is tantamount to saying that ∃c < ∞ such that∥∥∥Ã−1ϕ
∥∥∥ < c‖ϕ‖ for all ϕ ∈ im (A). Now if ψ ∈ ker (A)

⊥, then Aψ ∈ im (A), and so Ã−1Aψ ≡ ψ. Hence

‖ψ‖ ≤ c‖Aψ‖
l

1

c
‖ψ‖ ≤ ‖Aψ‖ .
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((3)=>(1)): Let { ϕn }n ⊆ im (A) such that limn ϕn = ψ for some ψ ∈ H. Our goal is to show that ψ ∈ im (A).
If ψ = 0 we are finished so assume ψ 6= 0. Since { ϕn } ⊆ im (A), ∃ { ηn }n ⊆ H such that Aηn = ϕn. We assume
WLOG that ηn ∈ ker (A)

⊥ (if this is false for all ηn then ϕn = 0, so if necessary take a subsequence of such ηn). Hence,
‖Aηn‖ ≥ ε‖ηn‖ by hypothesis. We claim { ηn }n is Cauchy. Indeed, ‖ηn − ηm‖ ≤ 1

ε‖A (ηn − ηm)‖ = 1
ε‖ϕn − ϕm‖.

But { ϕn }n converges and is hence Cauchy. Hence limn ηn = ξ for some ξ ∈ H (because regardless of the status of
im (A), H certainly is complete and hence Cauchy sequence converge). Since A is bounded it is continuous, and so
we find that

Aξ = A lim
n
ηn

= lim
n
Aηn

= lim
n
ϕn

= ψ .

We obtain then that ψ ∈ im (A) as desired.

((2)<=>(3)): We have ker
(
|A|2

)⊥
= ker (A)

⊥ using Lemma A.5. Now, since |A|2 ≥ 0, (2) is equivalent to

|A|2 ≥ ε1 on ker (A)
⊥. Hence

|A|2 − ε1 ≥ 0 ⇐⇒
〈
ψ,
(
|A|2 − ε1

)
ψ
〉
∀ψ ∈ ker (A)

⊥

⇐⇒ ‖Aψ‖2 ≥ ε2‖ψ‖2∀ψ ∈ ker (A)
⊥

Thus, we could alternatively define A to be Fredholm when kerA, kerA∗ are finite dimensional and imA is closed, and we
could just as well write for its index

index (A) = dim kerA− dim kerA∗ ∈ Z .

From this formula it is clear that if a self-adjoint operator is Fredholm then its index must be zero.

Example 5.5. Here are a few trivial examples for the notion of a Fredholm operator:

1. The identity operator 1 is Fredholm and its index is zero.

2. The zero operator H 3 v 7→ 0 is not Fredholm.

3. Recall the position operator X from (1.5), which is not even bounded. Its inverse A := X−1 is however bounded:
‖A‖ ≤ 1. It is however not Fredholm, even though it is self-adjoint and has an empty kernel. To see that imA /∈
Closed

(
`2 (N)

)
, use the second characterization of Lemma 5.4 and note that while zero is not in σ

(
|A|2

)
, it is an

accumulation point and hence not isolated in σ
(
|A|2

)
. What is the cokernel of A? Is it finite dimensional?

4. The right-shift operator R from Theorem 1.10 on `2 (N) is Fredholm. Indeed, one checks that

|R|2 = R∗R = 1

and hence by the second characterization of Lemma 5.4 it has closed image. Its kernel is empty and the kernel of
its adjoint, the left shift operator, is spanned by δ1 and is hence one dimensional.

index (R) = −1 .

Note that, considered on `2 (Z), R is also Fredholm, but it is now invertible and hence has zero index. The right shift
operator is the most important example of a Fredholm operator, and in a sense, all other non-zero index operators
may be connected to a power of the right shift, as we shall see.

Claim 5.6. If A ∈ B (H1 → H2) with H1,H2 finite dimensional, then A is Fredholm and its index equals

index (A) = dim (H1)− dim (H2) .
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Proof. The rank-nullity theorem [KK07] states that

dim (H1) = dim (ker (A)) + dim (im (A)) .

Furthermore, since coker (A) ≡ H2/im (A), we have

dim (coker (A)) = dim (H2)− dim (im (A)) .

Thus, we have

index (A) ≡ dim (ker (A))− dim (coker (A))

= dim (H1)− dim (im (A))− dim (H2) + dim (im (A))

= dim (H1)− dim (H2) .

as desired.

In particular, any square matrix is Fredholm with index zero: finite dimensions are not very interesting for Fredholm
theory. Be that as it may some mechanical models in physics have been studied of finite non-square matrices, which have
a non-zero index.

Definition 5.7. An operator F ∈ B (H) is called finite rank iff dim (im (F )) <∞ iff it may be written in the form

F =

N∑
i=1

fiϕi ⊗ ψ∗i

where { fi }Ni=1 ≥ 0 are the singular values of F and { ϕi }i, { ψi } are orthonormal bases of H.

For the next definition, we use the open ball definition

Bε (v) ≡ { u ∈ H | ‖u− v‖ < ε } .

Definition 5.8. An operator K ∈ B (H) is called compact iff K
(
B1 (0)

)
is compact in H iff it is the operator-norm

limit of finite rank operators iff it may be written as

K = lim
N→∞

N∑
i=1

fiϕi ⊗ ψ∗i

where the limit is meant in the operator-norm and fi may accumulate only at zero. The set of all compact operators
is denoted as K (H). It is a two-sided ideal within H.

Lemma 5.9. (Riesz) 1−K ∈ F (H) for all K ∈ K (H) and index (1−K) = 0.

Proof. Write K = limn Fn (in operator norm) where Fn is finite rank. Hence 1−K+Fn is invertible for n sufficiently
large since ‖K − Fn‖ may be made arbitrarily small. Then,

1−K = (1−K + Fn)
(
1− (1−K + Fn)

−1
Fn

)
so that

1−K = G (1− F )

with G invertible and F finite rank. Hence ker (1−K) = ker (1− F ). Now, v ∈ ker (1− F ) iff v = Fv which implies
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that v is an eigenvector of F with eigenvalue 1. But this if F is finite rank its eigenspaces are finite dimensional.
Same for 1− F ∗. The two kernels are of the same dimension since F is of finite rank.

Theorem 5.10. (Atkinson) A ∈ F (H) iff A is invertible up to compacts, i.e., iff there is some operator B ∈ B (H),
called the parametrix of A, such that,

1−AB,1−BA ∈ K (H) .

We note that we may have 1−AB 6= 1−BA indeed. Furthermore, index (B) = −index (A).

Proof. If 1−AB,1−BA ∈ K (H) then BA = 1−K for some compact K and using Lemma 5.9 we have that BA
is Fredholm of index zero. Hence ker (BA) is finite dimensional. But ker (A) ⊆ ker (BA) so that ker (A) is finite
dimensional. Also, K (H) is closed under adjoint, so that ker (A∗) is also finite. Finally, let v ∈ ker (A)

⊥. Then
v ∈ ker (BA)

⊥. Since BA is Fredholm, it has closed image, so that by Lemma 5.4 we have

ε‖ϕ‖ ≤ ‖BAϕ‖
≤ ‖B‖‖Aϕ‖ .

Consequently, A has closed range. Thus A is Fredholm. Now, using the logarithmic law Theorem 5.18 further below,
since AB = 1−K, 0 = index (AB) = index (A) + index (B).

Also

ker (B) ⊆ ker (AB)

= ker (B∗A∗)

Conversely, assume A ∈ F (H). Want to construct two partial inverses: let P,Q be the orthogonal projections
onto ker (A) and ker (A∗) resp. We claim that |A|2 +P and |A∗|2 +Q are bijections. Indeed, ker (A) = ker

(
|A|2

)
so if

H ∼= ker
(
|A|2

)⊥
⊕ker

(
|A|2

)
, |A|2 +P ∼= |A|2

∣∣∣
im(P )⊥

⊕1 and similarly for the other operator. Hence B := |A|2 +P

is invertible, and

1 = B−1A∗A+B−1P .

But now, B−1P is of finite rank and C := B−1A∗ is the sought-after parametrix.

Definition 5.11. The essential spectrum σess (A) of an operator A ∈ B (H) is the set of all points z ∈ C such that
A− z1 is not Fredholm.

Claim 5.12. If A ∈ F (H) and index (A) = 0 then A = G+K for some G invertible and K compact.

Proof. Since index (A) = 0, dim kerA = dim kerA∗. Thus,

H ∼= ker (A)⊕ ker (A)
⊥ ∼= ker (A∗)⊕ ker (A∗)

⊥
.

But we know that since dim kerA = dim kerA∗, there is a natural linear isomorphism η : ker (A) → ker (A∗). We
also know that im (A) ∼= ker (A∗)

⊥. Hence, A|ker(A)⊥ is just an isomorphism

ker (A)
⊥ → im (A) .

Hence, the map

G := η ⊕ A|ker(A)⊥ : H → H

is an isomorphism and H 3 (v1, v2)
K7→ (η (v1) , 0) ∈ H is compact and hence the result.
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Theorem 5.13. We have the inclusion

F (H) + K (H) ⊆ F (H)

and the Fredholm index is stable under compact perturbations.

Proof. If A ∈ F (H) and K ∈ K (H), then by Atkinson Theorem 5.10, there is some parametrix B such that
AB − 1, BA− 1 is compact. But B will be a parametrix of A+K too:

(A+K)B − 1 = AB +KB − 1

which is compact since KB is compact (as the compacts form an ideal). Hence A + K is Fredholm. We postpone
the proof that the index remains stable until the next theorem.

We see from Atkinson’s theorem that the essential spectrum is stable under compact perturbations.

Theorem 5.14. (Dieudonne) index : F (H) → Z is operator-norm-continuous and if B ∈ F (H) is any parametrix
of A ∈ F (H) then

B‖B‖−1 (A) ⊆ F (H) .

In particular, F (H) ∈ Open (B (H)).

Proof. Let A ∈ F (H) and B be any parametrix of it. Take any Ã ∈ B‖B‖−1 (A). We have∥∥∥B (A− Ã)∥∥∥ ≤ ‖B‖∥∥∥A− Ã∥∥∥ < 1

by assumption, so that 1 − B
(
A− Ã

)
is invertible. We claim that

(
1−B

(
A− Ã

))−1

B is a parametrix for Ã.
Now,

0 = index (1)

= index (1−K)

= index

((
1−B

(
A− Ã

))−1

BÃ

)
= index

(
BÃ
)

Now, via Theorem 5.18 further below we have index (B) + index
(
Ã
)
and since index (B) = −index (A) we obtain

the result.

Finally, we finish the proof of Theorem 5.13: if A ∈ F (H) and K ∈ K (H), the homotopy [0, 1] 3 t 7→ A + tK ∈ F (H)
interpolates in a norm continuous way between A and A+K and thus the index is constant along this path.

Claim 5.15. A is invertible up to compacts iff it is invertible up to finite ranks.

Proof. Since finite rank operators are compact one direction is trivial. Now, assume that there is some B ∈ F (H)
with which 1 − AB,1 − BA ∈ K (H). Let { Fn }n be a sequence of finite rank operators which converges to
K := 1 − BA in operator norm. Then ‖Fn −K‖ can be made arbitrarily small and hence Wn := 1 − K + Fn is
invertible for n sufficiently large. Then,

BA = 1−K
= Wn

(
1−W−1Fn

)
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and hence

1−W−1
n BA = W−1Fn .

Since finite rank operators form an ideal, W−1
n Fn is finite rank too. This same logic shows that

1−ABW̃−1
n = F̃nW̃

−1
n

where now F̃nW̃
−1
n is finite rank. So Now, W−1

n B is a partial left inverse and BW̃−1
n is a partial right inverse. Then

W−1
n BA = 1−W−1Fn

W−1
n BABW̃−1

n = BW̃−1
n −W−1FnBW̃

−1
n

W−1
n B

(
1− F̃nW̃−1

n

)
= BW̃−1

n −W−1FnBW̃
−1
n

W−1
n B −BW̃−1

n = W−1
n BF̃nW̃

−1
n −W−1FnBW̃

−1
n

and since the finite rank operators form an ideal within B (H), we find that W−1
n B equals BW̃−1

n up to finite rank
operators and hence there is just one parametrix, say, W−1

n B.
The following is taken from [Mur94]:

Theorem 5.16. (Fedosov) If A ∈ F (H) and B is any parametrix of A such that 1−AB,1−BA is finite rank, then

index (A) = tr ([A,B]) .

Proof. First we note that if B,B′ are two such parametrii, then B′ = B + F for some F finite rank. Then
[A,B′] = [A,B] + [A,F ] and since F is finite rank, tr ([A,F ]) = 0. So we are free to choose any such finite rank
parametrix.

We claim there is a finite-rank parametrix B such that A = ABA. If we can find such a parametrix, then 1−AB
and 1−BA are idempotents, and their traces equal the dimension of the cokernel and kernel of A respectively and
hence the result.

To find this special B, since A induces an isomorphism ϕ : ker (A)
⊥ → im (A), by the bounded inverse theorem,

ϕ−1 is bounded. Let B be any extension of ϕ−1 to H. Then it fulfills A = ABA.

Another useful trace formula is the following:

Claim 5.17. If there is some n ∈ N such that 1− |A|2 and 1− |A∗|2 are n-Schatten class, then

index (A) = tr ((1− |A|)n)− tr ((1− |A∗|)n) .

The proof is left as an exercise to the reader.

Theorem 5.18. (Logarithmic law) If A,B ∈ F (H) then

index (AB) = index (A) + index (B)

index (A⊕B) = index (A) + index (B) .

Proof. The easiest proof is via Fedosov Theorem 5.16: If Ã is a parametrix for A and B̃ is a parametrix for B then
B̃Ã is a parametrix for AB. If we let F := 1−BB̃ be finite rank, then some algebra implies

index (AB) = index (A) + tr
(
ÃABB̃ − B̃ÃAB

)
the last trace is seen to equal index (B) since ÃA− 1 is finite rank.

The statement about the direct sum is trivial.
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Theorem 5.19. (Atiyah-Jähnich) We have π0 (F (H)) ∼= Z.

Proof. We already know that index : F (H)→ Z is continuous and is constant on the path-connected components of
F (H). Thus index lifts to a well-defined map on π0 (F (H)). To see that it’s surjective it suffices to consider powers
of the right-shift operator. So we only need to show it is injective.

First we claim that if index (A) = 0 then there is a path from A to 1: Via Claim 5.12 we have A = G + K for
some invertible G and compact K. By Theorem A.6, there is a path γ from (A−K)

−1 to 1, and γA is a path from
1− K̃ to A. From there we can define a further homotopy to reduce K̃ to zero.

Next, we need that if index (A) = index (B) then there is a path between them. To that end, let B̃ be the
parametrix of B. Then index

(
AB̃
)

= 0, whence by the above there is a path γ : AB̃ 7→ 1. The path γ̃ := γB

interpolates between A−K and B. Again, a further homotopy brings us to A.

5.2 Chiral 1D topological insulators
The material in this section can be found in [GS18]. As we saw in Theorem 4.2, chiral one dimensional insulators H on
`2 (Z)⊗ C2N are of the form

H =

[
0 S∗

S 0

]
for some S on `2 (Z)⊗ CN which is not necessarily self-adjoint. Define the projection Λ onto N within Z:

Λδx :=

{
δx x ≥ 1

0 else
(x ∈ Z) .

Claim 5.20. U := A |A|−1, the polar part of S, is local too, since S is local and invertible.

Proof. Use the Combes-Thomas estimate Theorem 1.4.

Then we claim that when S is local as in Definition 1.1 and has a gap, [Λ, U ] is compact where U := A |A|−1 is the polar
part of S. In this case, it is easy to show that the operator

�U := ΛUΛ + 1− Λ

is Fredholm (indeed, �U is its parametrix). It turns out that now

index (�U)

is the relevant topological index of such disordered chiral systems which generalizes the Zak phase or winding number of
Theorem 4.2.

5.3 The integer quantum Hall effect
The material in this section may be found in [EGS05, AG98]. The integer quantum Hall effect, as in Theorem 4.1, is
specified by an operator H on `2 (Z)⊗CN , and the choice of a Fermi energy µ, with which one defines the Fermi projection

P := χ(−∞,µ) (H) .

Claim 5.21. If µ is in a spectral gap of H and H is local, then P is local.

Proof. Use the Combes-Thomas estimate Theorem 1.4.

Now, using [BSS21, Lemma A1], which is
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Lemma 5.22. If P is local and has ‖P‖ ≤ 1, and f ∈ `∞
(
Z2
)
such that

|f (x)− f (y)| ≤ D
‖x− y‖
1 + ‖x‖

then [P, f (X)] is Schatten-3.

The function u : C\{ 0 } → C\{ 0 } given by z 7→ z
|z| obeys this estimate, and again as above we may thus immediately

see that the operator

Pu (X) := Pu (X)P + 1− P

is Fredholm, with X the position operator (the parametrix is Pu (X)
∗). It turns out that the Chern number now equals

index (Pu (X))

which is just the generalization of (4.3) and also equals Theorem 2.5. This formulation of the Hall conductivity dates back
to Laughlin.

6 Epilogue
In concluding the notes that correspond to these three lectures, one must comment on everything that was excluded from
this presentation–a lot!

6.1 The bulk-edge correspondence
The most glaring omission is the bulk-edge correspondence, which is considered by many as a defining feature of topological
insulators and in a sense is a kin to an Atiyah-Singer index theorem or to a holographic duality principle from string theory.
This is the statement that half-infinite systems (which we entirely ignored–they model what happens near the boundary
of the material, and are typically modeled via the Hilbert space `2

(
Zd−1 × N

)
) also have topological classification and

indices, and that if one takes a doubly infinite (bulk) system H, then calculating its index commutes with truncating it
to the half-space (edge) Ĥ and then calculating edge indices. This was first studied in the context of the integer quantum
Hall effect by Hatsugai [Hat93], but see also [SBKR99, EG02, EGS05, FSS+20, BKR17].

6.2 The mobility gap regime
In Section 2 we completely ignored random operators and Anderson localization. However, for certain aspects of the
integer quantum Hall effect which we have not explained (namely, their plateaus), one needs strong disorder, see e.g.
[Sha16]. To define this regime a discussion of Anderson localization needs to take place, but roughly speaking, one drops
the spectral gap assumption and instead employs a dynamical assumption on H, which makes life somewhat harder and
precludes the usage of the Combes-Thomas estimate Theorem 1.4.

By now there are various works on in this regime for various cells of the Kitaev table Table 1: In [BvS94] the IQHE bulk
index was first defined in this regime, in [EGS05] the IQHE bulk-edge correspondence was established and the stability of
the index as µ ranges in this regime was proven. In [Sha20] the stability of the index with respect to the Hamiltonian was
proven. In [ST19, GS18, BSS21] the bulk-edge correspondence was proven in this regime for Floquet (periodically time
dependent systems), chiral 1D and Z2 time-reversal invariant systems.

A big open problem in topological insulators is to define an appropriate ambient topology for Hamiltonians in the
mobility gap regime so that π0 of these Hamiltonians is isomorphic to Z, say, in the integer quantum Hall effect. Another
important problem is whether the edge system of bulk-mobility-gapped IQHE systems has ac-spectrum or resonances.

6.3 The continuum regime
We have used exclusively the tight-binding regime. In the integer quantum Hall effect, it was shown in [SW22] that the
tight-binding limit connects continuum with discrete for the dynamics of low-energy states and and the topological indices
agree. It remains to study other cells of Table 1, and to resolve whether really all cells are topological in the continuum,
see e.g. [SW21].
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6.4 Interacting systems
Since relatively early in the history of the integer quantum Hall effect, the fractional quantum Hall effect was experimentally
discovered and since Nobel prizes have been awarded for its description. It is generally believed that to understand this
phenomenon, interactions must be taken into account. Our topological understanding of these interacting systems is not
yet at the same level as that of the single-particle picture. We do not have the analog of Table 1. Be that as it may,
recently some progress has been achieved, see e.g. [GMP17, BBDRF20] and references within.

A Some linear algebra or functional analysis lemmas

Claim A.1. ker (A∗) = (imA)
⊥ for any operator A : H→ H.

Proof. We have the following sequence of equivalent statements for any v ∈ H:

1. v ∈ ker (A∗).

2. A∗v = 0.

3. 〈u,A∗v〉 = 0 for all u ∈ H.

4. 〈Au, v〉 = 0 for all u ∈ H.

5. v ∈ (imA)
⊥.

Claim A.2. W⊥ ∈ Closed (H) for any subspace W ⊆ H.

Proof. Write

W⊥ =
⋂
v∈W
{ u ∈ H | 〈v, u〉 = 0 }

=
⋂
v∈W
〈v, ·〉−1

({ 0 }) . (A.1)

But { 0 } ∈ Closed (C) and 〈v, ·〉−1
: H → C is continuous, so that 〈v, ·〉−1

({ 0 }) ∈ Closed (H). But now, arbitrary
intersections of closed subsets are again closed (cf. Definition 3.1).

Claim A.3. For any subspace W ⊆ H,
(
W
)⊥

= W⊥.

Proof. Since W ⊆ W ,
(
W
)⊥ ⊆ W⊥ via (A.1). Conversely, let v ∈ W⊥. WTS v ∈

(
W
)⊥

, i.e., that for all w ∈ W ,
〈v, w〉 = 0. Let { wn }n ⊆W such that limn wn = w. Then

〈v, w〉 =
〈
v, lim

n
wn

〉
= lim

n
〈v, wn〉 (〈v, ·〉 is continuous)

= lim
n

0 = 0 .

Claim A.4. For any subspace W ⊆ H,
(
W⊥

)⊥
= W .
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Proof. Let w ∈W . Then 〈w, v〉 = 0 for all v ∈
(
W
)⊥

, which, via Claim A.3, implies that 〈w, v〉 = 0 for all v ∈W⊥,
which is equivalent to saying that w ∈

(
W⊥

)⊥.
Conversely, by [Rud91, 12.4], for any closed subspace,

H = W ⊕
(
W
)⊥

= W ⊕W⊥ . (Via Claim A.3)

Now since W⊥ ∈ Closed (H) via Claim A.2, we may also write

H = W⊥ ⊕
(
W⊥

)⊥
.

Hence we learn that

W⊥ ⊕
(
W⊥

)⊥
= W⊥ ⊕W .

Now if W were a proper subspace of
(
W⊥

)⊥, this line would lead to a contradiction.

Lemma A.5. We have ker (A) = ker
(
|A|2

)
with |A|2 ≡ A∗A.

Proof. We have the chain of implications

ϕ ∈ ker (A) ⇐⇒ Aϕ = 0

⇐⇒ A∗Aϕ = |A|2 ϕ = 0

=⇒ v ∈ ker
(
|A|2

)
.

Conversely,

ϕ ∈ ker
(
|A|2

)
⇐⇒ |A|2 ϕ = 0

⇐⇒
〈
|A|2 ϕ,ψ

〉
= 0∀ψ ∈ H

⇐⇒ 〈Aϕ,Aψ〉 = 0∀ψ ∈ H .

In particular, choose ψ = ϕ to get ‖Aϕ‖ = 0 which implies Aϕ = 0 and so ϕ ∈ ker (A) as desired.

Theorem A.6. (Kuiper’s theorem) The invertible operators are contractible within B (H).

Proof. Let A ∈ B (H). We wish to find a continuous path to 1. Using the polar decomposition, write

A = |A|U

where |A| ≡
√
A∗A and U = A |A|−1 is unitary. By the Hille-Yosida theorem [RS80], there is some self-adjoint

operator H such that U = eiH . Define the map

γ : [0, 1] → GL (B (H))

via

γ (t) = ((1− t) |A|+ t1) ei(1−t)H .

Then γ (0) = A and γ (1) = 1, γ is norm continuous and γ (t) is invertible because |A| > 0.
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