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LIST OF SYMBOLS 4

List of Symbols

(1) n ∈N\ { 0 } will always be a positive integer.
(2) S1 ≡ R

2πZ is the circle.
(3) T2 ≡ S1 × S1 is the 2-torus.
(4) Zn ≡ Z

nZ ≡ { 0, 1, . . . , n− 1 }.
(5) Jn := Zn + 1 ≡ { 1, 2, . . . , n }.
(6) Mn (F) is the set of all n×n matrices over a field F.
(7) α denotes the image under involution of an element α ∈ F, if an involution is defined on F.
(8) If A ∈Mn (F) then A denotes the matrix with entries involuted.
(9) For a linear map A between two vector spaces, A∗ denotes the adjoint of A.

(10) Herm (n) is the set of all Hermitian n×n matrices over C.
(11) If S is a set and F is an ambient set (F ⊇ S), then Sc ≡ F\S. Sometimes the ambient set will be implicit.

(12) χS (x) ≡

{
1 x ∈ S
0 x /∈ S

is the characteristic function of S at x.

(13) l2 (Z; Cn) or l2 (N; Cn) is the set of all square-summable sequences in Z or N of vectors in Cn, that is,∑
j∈Z

∣∣ψj∣∣2 <∞ or
∑
j∈N

∣∣ψj∣∣2 <∞ for elements ψ ∈ l2 (Z; Cn) or ψ ∈ l2 (N; Cn).
(14) σj is the jth 2× 2 Pauli matrix, defined ∀j ∈ J3 as:

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
and σ3 =

[
1 0

0 −1

]
.

We also use σ0 ≡ 12×2.
(15) If X and Y are Banach spaces, B (X, Y) is the set of bounded linear operators from X to Y, and B (X) ≡ B (X, X).
(16) σ (H) is the spectrum of the bounded linear operator H over a complex Banach space:

σ (H) ≡ { λ ∈ C | (H− λ1) is not invertible }

(17) EF ∈ R is the Fermi energy.

(18) ‖v‖ ≡
√∑n

i=1 〈v, êi〉
2 for all v ∈ Rn where { êi }

n
i=1 is the standard basis of Rn.

(19) Time-Reversal-Invariant Momenta on T2:

TRIM ≡
{
k ∈ T2

∣∣∣ k = −k
}
=

{ [
0

0

]
,
[
0

π

]
,
[
π

0

]
,
[
π

π

]}
(20) TRI stands for time-reversal invariance (to be defined in Eq. (3)).
(21) Pf [A] is the Pfaffian of an anti-symmetric 2n× 2n matrix, given by

Pf [A] =
1

2nn!

∑
σ∈S2n

sgn (σ)

n∏
i=1

(A)σ(2i−1),σ(2i)

where S2n is the symmetric group and sgn is the signature of a permutation.



Part 1

The Bulk-Edge Correspondence



The Bulk-Edge correspondence refers to the equivalence of certain physical quantities computed for two different
but related physical systems, one called “bulk” and the other “edge”. For us, these physical quantities are the Hall
electric charge conductance in the case of quantum Hall systems, or in the case of topological insulators, it is “time-
reversal polarization” as in [Fu06]: “a Z2 quantity that signals whether a time reversal invariant one-dimensional
system has a Kramers degeneracy associated with its ends.” What defines the bulk system is that it has no boundaries,
whereas the edge system (for us) usually has one boundary. Except for the employment of these boundary conditions,
we assume the two systems are the same (in a sense made precise later). It is a striking fact that the two different
mechanisms, happening in two different localizations of the system, give rise to the same physical quantities. In real
world physical systems (which, of course, have boundaries) both both bulk and edge transport mechanisms take
place in proportions that depend on the actual system’s capture potential.

That the equivalence should exist is a surprising fact, yet, it has been proven already to various degrees of math-
ematical rigor and in rising levels of generality. For instance, [Ha93] was probably the first and least general, [Ke02]
uses twisted equivariant K-theory, [Es11] uses Green’s functions, [Gr13] presents two proofs, one using frame bun-
dles and the other using Levinson’s theorem in scattering theory, and [Ta12] uses the Atiyah-Singer index theorem.

In this work our task at hand was rather to find the simplest possible proofs, and so for each type of index,
or topological invariant, we went to the simplest yet non trivial systems: a two-band model for the quantum-Hall
system (because a gap is necessary), and a four-band model for the topological-insulator model (because of Kramer’s
degeneracy and a gap).

After setting the stage, we begin by recounting the results of [Mo11] regarding “Dirac” systems. This will allow
us to characterize the existence of edge states easily. Next we present two different proofs for the quantum-Hall
correspondence: one simpler and more restricted in generality, the other more general, relying on [Mo11]. This latter
proof is heavily inspired by the one presented originally in [Mo11]. While the main tool to analyze the bulk system
is algebraic topology and for the edge system functional analysis, we make use of this machinery sparingly, as our
goal is indeed to make the most simple presentation possible.

In the last chapter, we present a new formula for the Z2 topological invariant for “Dirac” four-band systems,
which is justified by two proofs: one a generalization of [Fu07] and the other new but inspired by [Mo07]. This
formula, together with [Mo11], allows us to show the correspondence in a very short proof.



CHAPTER 1

Analysis of Nearest Neighbor Lattice Models

1.1. Setting

Let N ∈ 2N\ { 0 } be given. Following [Gr13], we study families of self-adjoint operators on the Hilbert space
l2
(
Z; CN

)
parametrized on S1 by the variable k2 and denoted H (k2), called Hamiltonians, which have the form

given by matrix elements

H(n,n ′) (k2) = V (k2) δn,n ′ +A (k2) δn,n ′+1 +A
∗ (k2) δn,n ′−1 (1)

for all (n, n ′) ∈ Z2, where ∀k2 ∈ S1, V (k2) ∈ Herm (N) and A (k2) ∈ MN (C). Such families will be called “bulk”
systems, because here H (k2) operates on maps Z→ CN, and Z has no edge. From such systems, “edge” systems are
derived, defined by the Hamiltonians H] (k2) with matrix elements

H
]
(n,n ′) (k2) = H(n,n ′) (k2) ∀

(
n, n ′

)
∈N2 (2)

and undefined elsewhere. SoH] (k2) acts on l2
(
N; CN

)
. Because N has a left edge (at 0), we call this system the edge

system.
In what follows we shall often omit the explicit k2 dependence and write merely H or H] for the sake of brevity.

ê1

ê2

Vacuum Material

Ed
ge

FIGURE 1.1.1. The orientation of the edge throughout this work.
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1.1.1. REMARK. The form of H given in Eq. (1) is a nearest neighbor approximation of a one dimensional chain (or a
family of chains parameterized by k2). However, this system should be viewed as a two-dimensional lattice where
on the ê2 direction, we allow for arbitrary-length correlations, as we never use the explicit form of the k2 dependence.

1.1.2. DEFINITION. A bulk Hamiltonian H : S1 → B
(
l2
(
Z; CN

))
is called gapped iff

EF /∈ σ (H (k2)) ∀k2 ∈ S1

1.2. Time-Reversal

1.2.1. DEFINITION. Define a map on C : CN → CN called “complex conjugation” by

vj
C7→ vj ∀j ∈ JN

where vj is the jth component of v ∈ CN.

1.2.2. DEFINITION. Define a block diagonal N×N matrix, ε, given by 1
2N blocks, each of which is −iσ2, and denote

the corresponding linear map CN → CN given by

v 7→ εv ∀v ∈ CN

with ε as well.

1.2.3. DEFINITION. Define a map Θ : CN → CN by

Θ := ε ◦C

called “time-reversal”. From this map, a map (still denoted by Θ) on the Hilbert space l2
(
Z; CN

)
or l2

(
N; CN

)
is

induced by
ψn 7→ Θψn ∀n ∈N or Z

where ψn is the nth component of ψ ∈ l2
(
Z; CN

)
or ψ ∈ l2

(
N; CN

)
.

1.2.4. CLAIM. Θ is anti-linear and Θ2 = −1.

PROOF. That Θ is anti-linear follows directly from its definition as matrix multiplication (which is linear) together
with complex conjugation.

(Θ)2 = ε ◦C ◦ ε ◦C
ε∈MN(R)

= ε2

= −1

where the last step follows by direct computation. �

1.2.5. CLAIM. Θ∗Θ = 1.

PROOF. We have

Θ∗ ◦Θ = (ε ◦C)∗ ◦ ε ◦C
= C∗ ◦ ε∗ ◦ ε︸ ︷︷ ︸

1

◦C

= C∗ ◦C
= 1

�

1.2.6. DEFINITION. Define a property of bulk Hamiltonians called “time-reversal invariant” by the following condi-
tion

H (−k2) = Θ ◦H (k2) ◦Θ−1 ∀k2 ∈ S1 (3)

1.2.7. CLAIM. If a bulk Hamiltonian H : S1 → B
(
l2
(
Z; CN

))
is time-reversal invariant then the induced edge Hamil-

tonian H# : S1 → B
(
l2
(
N; CN

))
obeys:

H] (−k2) = Θ ◦H (k2)
] ◦Θ−1 ∀k2 ∈ S1
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PROOF. The claim follows immediately because Eq. (3) is equivalent to

H(n,n ′) (−k2) = ΘH(n,n ′) (k2)Θ
−1 ∀

(
n, n ′, k2

)
∈ Z2 × S1

which implies
H(n,n ′) (−k2) = ΘH(n,n ′) (k2)Θ

−1 ∀
(
n, n ′, k2

)
∈N2 × S1

which is equivalent to
H

]
(n,n ′) (−k2) = ΘH

]
(n,n ′) (k2)Θ

−1 ∀
(
n, n ′, k2

)
∈N2 × S1

due to Eq. (2), and this is equivalent to the claim. �

1.2.8. CLAIM. If H is time-reversal symmetric then σ (H (k2)) = σ (H (−k2)) for all k2 ∈ S1.

PROOF. If z ∈ σ (H (k2)) then ker (H (k2) − 1z) 6= 0 and so [H (k2) − z]ψ = 0 holds for some ψ 6= 0.
• Multiply this equation by Θ from the left to get:

(ΘH (k2) −Θz)ψ = 0

(ΘH (k2) −Θz)Θ
−1Θ︸ ︷︷ ︸
1

ψ = 0ΘH (k2)Θ
−1︸ ︷︷ ︸

H(−k2)

−ΘzΘ−1︸ ︷︷ ︸
z

Θψ = 0

[H (−k2) − z]Θψ = 0

• As a result we see that if z ∈ R then z ∈ σ (H (−k2)). A symmetric argument shows the other direction of
inclusion.

�

1.2.9. CLAIM. (Kramers theorem) At special points on S1 where k2 = −k2, given by { 0, π }, the eigenstates of H (k2)

are at least two-fold degenerate.

PROOF. Because at these special points, Eq. (3) implies [H (k2) , Θ] = 0, we have that if ψ is an eigenstate of the
HamiltonianâĂŞH (k2)ψ = EψâĂŞthen Θψ is also an eigenstate of H (k2) with the same eigenvalue E:

H (k2)Θψ = ([H (k2) , Θ] +ΘH (k2))ψ

= ΘH (k2)ψ

= ΘEψ

= EΘψ

Now, if ψ and Θψ are the same up to a phase, then there would be no degeneracy. However, this is impossible. To
see this, assume otherwise, that is, assume that

Θψ = cψ

for some c ∈ C. Multiplying this equation by Θ from the left we get

Θ2ψ = Θcψ

= cΘψ

= ccψ

= |c|2ψ

which is of course nonsense as 1.2.4 would imply that |c|2 = −1. We conclude that ψ and Θψ are two linearly-
independent vectors. �

1.3. Bloch Reduction

The “bulk” Hamiltonian (which acts on l2
(
Z; CN

)
) possesses translational symmetry in the sense of

H(n,n ′) (k2) = H(n+m,n ′+m) (k2) ∀
(
n,n ′,m

)
∈ Z3

and as such, we may choose to work with a continuous parameter k1 ∈ S1 instead of the parameter n ∈ Z.
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To this end, we employ Bloch’s theorem, which states that because of the periodicity of H in n, the eigenstates of
H are simultaneously also eigenvectors of the translation operator T : ψn 7→ ψn+1, and may be written as

ψn,k1 = e
ik1nun,k1

where k1 ∈ S1 is a new quantum number labelling the eigenvalues of the translation operator, eik1n; un,k1 has the
same periodicity of the Hamiltonian, un,k1 = un+1,k1 and so we might as well drop its n index and write

ψn,k1 = eik1nuk1

= eik1nψ0,k1

We plug this into the eigenvalue equation to obtain:∑
n ′∈Z

H(n,n ′)ψn ′,k1 = Ek1ψn,k1∑
n ′∈Z

H(n,n ′)e
ik1n

′
ψ0,k1 = Ek1e

ik1nψ0,k1∑
n ′∈Z

H(n,n ′)e
ik1(n

′−n)ψ0,k1 = Ek1ψ0,k1∑
n ′∈Z

H(0,n ′−n)e
ik1(n

′−n)ψ0,k1
∗
= Ek1ψ0,k1∑

m∈Z

H(0,m)e
ik1m

︸ ︷︷ ︸
HB(k1)

ψ0,k1 = Ek1ψ0,k1

HB (k1)ψ0,k1 = Ek1ψ0,k1

where in ∗we have used the translational symmetry of H and we have defined

HB (k1, k2) :=
∑
m∈Z

H(0,m) (k2) e
ik1m ∀ (k1, k2) ∈ T2 (4)

B stands for Bloch. Let us compute HB (k) where k ∈ T2 explicitly:

HB (k) ≡
∑
m∈Z

H(0,m) (k2) e
ik1m (5)

= H(0,0) (k2) +H(0,1) (k2) e
ik1 +H(0,−1) (k2) e

−ik1 + (all other summands are zero)

= V (k2) + [A (k2)]
∗ eik1 +A (k2) e

−ik1

= V (k2) +
{
[A (k2)]

∗ +A (k2)
}

cos (k1) + i
{
[A (k2)]

∗ −A (k2)
}

sin (k1)

This special form of HB (k) is a manifestation of the nearest-neighbor approximation.

1.3.1. CLAIM. If H is time-reversal invariant as in Eq. (3) then HB obeys

HB (−k) = ΘHB (k)Θ−1 ∀k ∈ T2 (6)

PROOF. We start by assuming Eq. (3) and using our formula for HB (k) given by Eq. (4):

HB (−k) ≡
∑
m∈Z

H(0,m) (−k2) e
−ik1m

=
∑
m∈Z

ΘH(0,m) (k2)Θ
−1e−ik1m

= Θ

∑
m∈Z

H(0,m) (k2) e
+ik1m

Θ−1

= ΘHB (k)Θ−1

�
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1.4. Edge Systems

To get the spectrum and eigenstates of the bulk system, the preceding section showed we merely need to solve the
eigenvalue problem for anN×NHermitian matrixHB (k), the problem being parametrized by the parameter k ∈ T2.
This is the result of employing the Bloch theorem, which saves us the trouble of having to solve the eigenvalue
problem for an infinite chain on Z.

For the edge system, we still have a half-infinite problem on N, which is just as hard to solve as the infinite
problem, yet now we may not employ Bloch’s theorem as there is no translation symmetry.

1.4.1. CLAIM. If ψ solves the eigenvalue problem for the bulk system, and it obeys the condition ψ0 = 0 then it solves
the edge system as well.

PROOF. We assume that ∑
n ′∈Z

H(n,n ′)ψn ′ = Eψn

V (k2)ψn +A (k2)ψn−1 +A
∗ (k2)ψn+1 = Eψn

which means that ψ is a solution for the bulk problem.
• At n = 1 the equation reads

V (k2)ψ1 +A (k2) ψ0︸︷︷︸
0

+A∗ (k2)ψ2 = Eψ1

V (k2)ψ1 +A
∗ (k2)ψ2 = Eψ1

• However, this is exactly the edge eigenvalue equation at n = 1, and so ψ solves the edge eigenvalue
equation at n = 1. For n > 1, the edge and bulk eigenvalue equations are identical, and so, ψ solves the
edge problem.

�

To produce bulk solutions ψ obeying ψ0 = 0 we cannot simply take Bloch-decomposed bulk solutions, ψn,k1 =

eink1ψ0,k1 and enforce ψ0 = 0 because that would mean that ψn,k1 = 0∀n ∈ Z, giving us only zero solutions.
Instead we must take linear combinations

ψn =
∑
j

cjψ
(j)

n,k(j)1

of such bulk solutions ψ(j)

n,k(j)1
so that

∑
j cjψ

(j)

0,k(j)1

!
= 0.

In addition we must also make sure that the edge solution decays into the bulk (so that it is indeed localized near
n = 0). Indeed, in general (as in [Gr13])

σess

(
H] (k2)

)
⊂ σess (H (k2)) ∀k2 ∈ S1

and so we would want to avoid finding solutions of H] which resemble those of H. What is unique about solutions
which are only of H] is that htey are localized near the edge of N.

The way to make sure that we have such a solution is to take solutions which have =
(
k
(j)
1

)
> 0 for all j. That

way,
exp

[
in
(
<
(
k
(j)
1

)
+ i=

(
k
(j)
1

))]
ψ
(j)

0,k(j)1

n→∞−→ 0

This is thus a generalization to the Bloch scheme where the eigenvalues of the translation operator T are taken to be
on the unit circle in the complex plane:

∣∣eik1 ∣∣ = 1. For localized edge solutions they need to be taken inside or within
the unit circle:

∣∣eik1 ∣∣ 6 1.
1.4.2. REMARK. Thus our “recipe” to find the edge discrete spectrum from a given bulk, Bloch-decomposed problem
is as such:

(1) Solve the Bloch problem, and fix some energy value E within a bulk gap and some arbitrary k2 ∈ S1.
(2) Find (at least) two values of k1 ∈ S1 + i [0, ∞), k(1)1 and k(2)1 which solve the Bloch eigenvalue equation with

corresponding eigenstates ψ(1)

0,k(1)1
and ψ(2)

0,k(2)1
.

(3) Impose the boundary condition, from which another equation emerges. This last equation should allow one
to find the edge energy E.
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1.5. Dirac Hamiltonians

In this section we recount the analysis of [Mo11] for solving the edge spectrum of “Dirac Hamiltonians”. The
results in this section will be crucial to showing the bulk-edge correspondence later.

1.5.1. DEFINITION. Dirac Hamiltonians are Hamiltonians (after Bloch reduction, thus specified with HB (k) for all
k ∈ T2) given by

HB (k) =

m∑
j=1

hj (k) Γj (7)

where
{
Γj
}m
j=1

is a traceless set of Hermitian N×N matrices obeying the Clifford algebra{
Γi, Γj

}
= 2δij1N×N

and h (k) ≡
∑m
i=1 hi (k) êi is a map T2 → Rm. Note that summation convention on repeating subscript latin indices

(such as j) will be assumed in what follows.

1.5.2. CLAIM. σ
(
HB (k)

)
= { ‖h (k)‖, −‖h (k)‖ }.

PROOF. The eigenvalue equation is given by

hj (k) Γjψ = EB (k)ψ

Multiply this equation from the left by hj (k) Γj to obtain:(
hj (k) Γj

)2
ψ = hi (k)hj (k) ΓiΓjψ

=


∑
i

(hi (k))
2 (Γi)

2︸ ︷︷ ︸
1N×N

+
∑
j 6=i

hi (k)hj (k)
{
Γi, Γj

}︸ ︷︷ ︸
2δij︸ ︷︷ ︸

0

ψ

= ‖h (k)‖2ψ

yet we also know that
(
hj (k) Γj

)2
ψ =

(
EB (k)

)2
ψ so that the result follows. �

1.5.3. COROLLARY. The gapped Hamiltonian condition 1.1.2 then translates to the assumption that h (k) 6= 0∀k ∈ T2.

1.5.4. CLAIM. h (k) is of the form
h (k) = b0 + be−ik1 + beik1

where b0 ∈ Rm is given by the components 〈
b0, êi

〉
=
1

N
Tr [V (k2) Γi]

and b ∈ Cm is given by

〈b, êi〉 =
1

N
Tr [A (k2) Γi]

PROOF. We have the two simultaneous assumptions, namely Eq. (5) and Eq. (7), from which we get the equality

hj (k) Γj = V (k2) + [A (k2)]
∗ eik1 +A (k2) e

−ik1

Multiply this equation by Γi from the right, take the trace, and divide by 1
N to get:

hj (k)
1

N
Tr
[
ΓjΓi

]
=
1

N
Tr [V (k2) Γi] +

1

N
Tr
[
[A (k2)]

∗ Γi
]
eik1 +

1

N
Tr [A (k2) Γi] e

−ik1

But using the fact that the trace is cyclic, we have

1

N
Tr
[
ΓjΓi

]
=

1

2

(
1

N
Tr
[
ΓjΓi

]
+
1

N
Tr
[
ΓiΓj

])
=

1

2

1

N
Tr
[{
Γj, Γi

}]
= δij
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so that we get

hi (k) =
1

N
Tr [V (k2) Γi] +

1

N
Tr
[
[A (k2)]

∗ Γi
]
eik1 +

1

N
Tr [A (k2) Γi] e

−ik1

Now use the fact that the Tr [A∗] = Tr [A] to obtain that 1NTr [V (k2) Γi] ∈ R due to the Hermiticity of Γi and V (k2)

whereas 1
NTr [A (k2) Γi] is generally complex, as A (k2) is not necessarily Hermitian. �

1.5.5. REMARK. Observe that for a fixed k2 and varying k1 we have

h (k) = b0 (k2) + b (k2) e
−ik1 + b (k2)e

ik1

= b0 (k2) + 2<{b (k2)}︸ ︷︷ ︸
br(k2)

cos (k1) + 2 = {b (k2)}︸ ︷︷ ︸
bi(k2)

sin (k1)

and so at fixed k2, h (k)|k2 traces an ellipse in Rm as k1 is varied on S1. Note that this is a feature of the nearest
neighbor approximation. This ellipse lives on the plane spanned by the two vectors br (k2) and bi (k2) (and so in
particular at different values of k2 this plane changes, but it is independent of k1) and is offset from the origin by the
vector b0.

1.5.6. DEFINITION. Define the following vectors and matrices, most of which are functions of k2 alone unless other-
wise noted:

êr :=
<{b}

‖<{b}‖

êi :=
= {b}− 〈= {b} , êr〉 êr

‖= {b}− 〈= {b} , êr〉 êr‖
êv := ±êi

(the sign is unspecified for now)

b0‖ :=
〈
b0, êr

〉
êr +

〈
b0, êi

〉
êi

b0⊥ := b0 − b0‖

ê⊥ :=
b0⊥∥∥b0⊥∥∥

h‖ (k) := b0‖ (k2) + b (k2) e
−ik1 + b (k2)e

ik1

Γα := eαj Γj ∀α ∈ { r, i, ⊥, v }

Origin êr

êi

2br

2bi

2bii

2bir

FIGURE 1.5.1. The ellipse spanned by br (k2) and bi (k2), before the shift by b0‖ (k2).
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Γ± :=
1

2
(Γr ± iΓv)

hα (k) := 〈h (k) , êα〉 ∀α ∈ { r, i, ⊥, v }

h± (k) := hr (k)∓ ihv (k)

1.5.7. REMARK. Note that êv is chosen so that it is orthogonal to êr and ê⊥. The reason we don’t simply work with
êi instead is that we want to work in a generality in which the orientation of the system

(
êr, êv, ê⊥

)
is not yet fully

specified. This will be then used later in 1.5.21.

1.5.8. CLAIM. The Hamiltonian Eq. (7) may be written as

HB (k) =
∥∥∥b0⊥ (k2)

∥∥∥Γ⊥ + h+ (k) Γ+ + h− (k) Γ−

êr

êi

Origin

2br + b0‖

2bi + b0‖

b0‖

FIGURE 1.5.2. The ellipse spanned by br (k2) and bi (k2), after the shift by b0‖ (k2). In this particular
configuration there is no edge state because the origin is outside of the ellipse.

êr
êi

ê⊥

b0

b0⊥

b0‖

FIGURE 1.5.3. The ellipse embedded in R3. In this configuration, there is an edge state because the
projection onto the ellipse’s plane (in grey) contains the origin. The state’s energy magnitude is given
by the length of the blue vector and its sign is positive because êr, êi and ê⊥ form a right-handed
system.
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PROOF. Note that as h (k) is spanned by only three vectors, we may write it as a sum of these components:

HB (k) = hj (k) Γj

=
[
h⊥ (k) e⊥j + hr (k) erj + h

v (k) evj

]
Γj

= h⊥ (k) Γ⊥ + hr (k) Γr + hv (k) Γv

= h⊥ (k) Γ⊥ +
1

2

[
h+ (k) + h− (k)

]
Γr + i

1

2

[
h+ (k) − h− (k)

]
Γv

= h⊥ (k) Γ⊥ +
1

2
h+ (k) (Γr + iΓv) +

1

2
h− (k) (Γr − iΓv)

= h⊥ (k) Γ⊥ + h+ (k) Γ+ + h− (k) Γ−

The last step is to recognize that h⊥ in fact does not depend on k1, as a result of the fact that it is defined as

h⊥ (k) ≡
〈
h (k) , ê⊥ (k2)

〉
=

〈
b0 (k2) + 2<{b (k2)} cos (k1) + 2= {b (k2)} sin (k1) , ê⊥ (k2)

〉
=

〈
b0 (k2) , ê⊥ (k2)

〉
=

∥∥∥b0⊥ (k2)
∥∥∥

using ê⊥ (k2) ⊥ <{b (k2)} and ê⊥ (k2) ⊥ = {b (k2)}. �

1.5.9. CLAIM.
{
Γ⊥, Γ±

}
= 0.

PROOF. {
Γ⊥, Γ±

}
=

{
e⊥j Γj,

1

2
(eriΓi ± ie

v
i Γi)

}
=

1

2
e⊥j
(
eri
{
Γj, Γi

}
± ievi

{
Γj, Γi

})
=

1

2
e⊥j (eri ± ie

v
i ) 2δji1

=
(
ê⊥ · êr ± iê⊥ · êv

)
1

= 0

�

1.5.10. CLAIM. {Γ+, Γ−} = 1.

PROOF. {
Γ+, Γ−

}
=

{
1

2
(eriΓi + ie

v
i Γi) ,

1

2

(
erj Γj − ie

v
j Γj

)}
=

1

4

(
erie

r
j2δij + e

v
i e
v
j 2δij + 2e

r
ie
v
j 2δij

)
1

= 1

�

1.5.11. CLAIM. (Γα)2 = 1∀α ∈ { r, i, ⊥, v }.
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PROOF. Here there is no summation implied over the repeated index α, but only over latin indices:

(Γα)2 = eαi e
α
j ΓiΓj

=
1

2

(
eαi e

α
j ΓiΓj + e

α
j e
α
i ΓiΓj

)
=

1

2
eαi e

α
j

{
Γi, Γj

}
=

1

2
eαi e

α
j 2δij1

= êα · êα1
= 1

�

1.5.12. CLAIM.
(
Γ±
)2

= 0.

PROOF. (
Γ±
)2

=
1

2
(eriΓi ± ie

v
i Γi)

1

2

(
erj Γj ± ie

v
j Γj

)
=

1

4

(
erie

r
j ΓiΓj − e

v
i e
v
j ΓiΓj ± ie

r
ie
v
j ΓiΓj ± ie

v
i e
r
j ΓiΓj

)
=

1

4

(Γr)2 − (Γv)2︸ ︷︷ ︸
0

±ierie
v
j ΓiΓj ± ie

v
i e
r
j ΓiΓj


= ±1

2
ierie

v
j

{
Γi, Γj

}
= ±iêr · êi1
= 0

�

1.5.13. REMARK. It is assumed that all maps T2 → R introduced so far (hj (k) for instance) can be analytically
continued in such a way that k1 takes on complex values:

η (λ, k2) := b0 (k2) + b (k2) λ−1 + b (k2) λ ∀λ ∈ C

when a map is analytically continued we denote it by the corresponding Greek letter:

η (exp (ik1) , k2) ≡ h (k) ∀k ∈ T2

1.5.14. CLAIM. Let E ∈ R, η⊥ ∈ R and u ∈ CN\ { 0 } be given.
If E 6= ±η⊥, then the equation (

η⊥Γ⊥ + η+Γ+ + η−Γ−
)
u = Eu (8)

where (η+, η−) are unknown variables is satisfied for at most a single pair (η+, η−).

PROOF. Applying
(
η⊥Γ⊥ + η+Γ+ + η−Γ−

)
on Eq. (8) from the left results in(

η⊥Γ⊥ + η+Γ+ + η−Γ−
)2
u = E2u (9)

yet (
η⊥Γ⊥ + η+Γ+ + η−Γ−

)2
=

∑
(α,β)∈{⊥,± }2

ηαηβΓαΓβ

=
∑

(α,β)∈{⊥,± }2

ηαηβ
1

2

{
Γα, Γβ

}

=

[(
η⊥
)2

+ η+η−
]
1
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so that Eq. (9) becomes

η+η−u =

[
E2 −

(
η⊥
)2]

u

But as u 6= 0 it follows that

η+η− = E2 −
(
η⊥
)2

(10)

Now assume that ∃ two pairs (η+, η−) and (η̃+, η̃−) such that Eq. (8) is satisfied (observe that the assumption that
E2 6=

(
η⊥
)2 implies 0 /∈ { η+, η−, η̃+, η̃− }). Then from Eq. (10) we have

η+η− = η̃+η̃− (11)

as well as {(
η⊥Γ⊥ + η+Γ+ + η−Γ−

)
u = Eu(

η⊥Γ⊥ + η̃+Γ+ + η̃−Γ−
)
u = Eu

directly from Eq. (8). Taking the difference of these two equations gives[(
η+ − η̃+

)
Γ+ +

(
η− − η̃−

)
Γ+
]
u = 0 (12)

But observe that [(
η+ − η̃+

)
Γ+ +

(
η− − η̃−

)
Γ+
]2

=
(
η+ − η̃+

) (
η− − η̃−

)
1

so that Eq. (12) implies, after acting on it from the left with [(η+ − η̃+) Γ+ + (η− − η̃−) Γ+]:(
η+ − η̃+

) (
η− − η̃−

)
= 0

which in turn implies that η+ = η̃+ or η− = η̃−. We will show that in fact both must hold.
Assume that η+ = η̃+ holds. Then Eq. (11) implies

η+η− = η+η̃−

and as η+ 6= 0 we have that η− = η̃−. The other way around works similarly and so we conclude that(
η+, η−

)
=
(
η̃+, η̃−

)
so that really there is only one pair. �

1.5.15. CLAIM. If for given E ∈ R, k2 ∈ S1 and u ∈ CN\ { 0 } the equation(∥∥∥b0⊥ (k2)
∥∥∥Γ⊥ + η+ (λ, k2) Γ+ + η− (λ, k2) Γ−

)
u = Eu (13)

has two solutions (λ1, λ2) such that |λ1| < 1 and |λ2| < 1 then it must be that E = ±
∥∥b0⊥ (k2)

∥∥.

PROOF. Assume E 6= ±
∥∥b0⊥ (k2)

∥∥. Then using 1.5.14 it follows that there is a single pair (η+, η−) such that Eq. (13)
holds, which we label as (ξ+, ξ−): (∥∥∥b0⊥ (k2)

∥∥∥Γ⊥ + ξ+Γ+ + ξ−Γ−
)
u = Eu

and we label ξj the corresponding vector defined by (ξ+, ξ−):

ξj =
1

N
Tr
{[∥∥∥b0⊥ (k2)

∥∥∥Γ⊥ + ξ+Γ+ + ξ−Γ−
]
Γj

}
=

∥∥∥b0⊥ (k2)
∥∥∥ 1
N
Tr
[
Γ⊥Γj

]
+ ξ+

1

N
Tr
[
Γ+Γj

]
+ ξ−

1

N
Tr
[
Γ−Γj

]
=

∥∥∥b0⊥ (k2)
∥∥∥ 1
N
Tr
[
ê⊥i ΓiΓj

]
+ ξ+

1

N
Tr

[
1

2
(êriΓi + iê

v
i Γi) Γj

]
+ ξ−

1

N
Tr

[
1

2
(êriΓi − iê

v
i Γi) Γj

]
=

∥∥∥b0⊥ (k2)
∥∥∥ê⊥i 1

N
Tr
[
ΓiΓj

]
︸ ︷︷ ︸

δij

+
1

2
ξ+
(
êri
1

N
Tr
[
ΓiΓj

]
+ iêvi

1

N
Tr
[
ΓiΓj

])
+
1

2
ξ−
(
êri
1

N
Tr
[
ΓiΓj

]
− iêvi

1

N
Tr
[
ΓiΓj

])

=
∥∥∥b0⊥ (k2)

∥∥∥ê⊥j + ξ+
1

2

(
êrj + iê

v
j

)
︸ ︷︷ ︸

ê+

+ξ−
1

2

(
êrj − iê

v
j

)
︸ ︷︷ ︸

ê−



1.5. DIRAC HAMILTONIANS 18

Now we would like to find out what is λ ∈ C corresponding to this pair (ξ+, ξ−) and so we have to solve the
following equation for λ (k2 is fixed an suppressed):

ξj
!
= ηj ≡ b0j + bjλ

−1 + bjλ

which implies
bjλ

2 +
(
b0j − ξj

)
λ+ bj = 0

and now using Vieta’s formula (which holds for quadratic equations over C as well) we have that

λ1λ2 =
bj(
bj
)

Taking the absolute value of this equation we find that

|λ1| |λ2| = 1

which implies that |λ1| =
1

|λ2|
. If |λ1| < 1 that means that |λ2| > 1 which contradicts the initial hypothesis and

likewise for |λ2| < 1 we have |λ1| > 1, again, a contradiction. So it must be that E = ±
∥∥b0⊥ (k2)

∥∥, as desired. �

1.5.16. CLAIM. The edge system H] (k2) has a decaying solution at some k2 if and only if the ellipse traced by h‖ (k)
(k2 is fixed and k1 is the parameter along the ellipse) encloses the origin of Rm. If this condition is met, then the
energy of that edge state is E] (k2) = ±

∥∥b0⊥ (k2)
∥∥.

PROOF. From 1.4.2, as the first step, we are looking for a solution ψ] ∈ l2
(
Z; CN

)
to the equations

b0j Γjψ
]
n + bjΓjψ

]
n−1 + bjΓjψ

]
n+1 = E]ψ]

n ∀n ∈N

together with the boundary condition thatψ]
0

!
= 0. Make an Ansatz of the formψ

]
n =
∑
j ujλ

n
j (finite sum) to obtain

b0j Γj

(∑
l

ulλ
n
l

)
+ bjΓj

(∑
l

ulλ
n−1
l

)
+ bjΓj

(∑
l

ulλ
n+1
l

)
= E]

(∑
l

ulλ
n
l

)
∑
l

(
b0j Γjulλ

n
l + bjΓjulλ

n−1
l + bjΓjulλ

n+1
l

)
=
∑
l

E]ulλ
n
l

so that (omitting l for brevity, but the following holds for each l):

b0j Γjuλ
n + bjΓjuλ

n−1 + bjΓjuλ
n+1 = E]uλn (14)

This Ansatz makes sense if |λ| < 1 as then our solution indeed decays into the bulk. This can be thought of as a
generalized Bloch solution with λ = exp (ik1) where now = (k1) > 0. From Eq. (14) we have

λ
{[
b0 + bλ−1 + bλ1

]
· Γ − E]1

}
u = 0 (15)

Thus we have:
λ
[
ηj (λ) Γj − E

]1
]
u = 0 (16)

and so using Eq. (8) we have

λ
[∥∥∥b0⊥ (k2)

∥∥∥Γ⊥ + η+ (λ, k2) Γ+ + η− (λ, k2) Γ− − E]1
]
u = 0 (17)

which implies (using the same procedure as in 1.5.14) the equation

λ2
[
η+ (λ, k2)η− (λ, k2) +

∥∥∥b0⊥ (k2)
∥∥∥2 − (E])2] = 0 (18)

Note that contrary to how the eigenvalue equation is usually solved (E] would be the unknown), we consider the
unknown in Eq. (18) to be λ while k2 and E] are fixed.

1.5.17. CLAIM. ηj (λ) = ηj
(
1
λ

)
.



1.5. DIRAC HAMILTONIANS 19

PROOF.

ηj (λ) ≡ λ−1bj + λbj + b
0
j

= λ−1bj + λbj + b
0
j

=

(
1

λ

)−1

bj +
1

λ
bj + b

0
j

≡ ηj

(
1

λ

)
�

1.5.18. CLAIM. If λ ∈ C\ { 0 } is a solution of Eq. (18) then so is 1

(λ)
.

PROOF. We assume Eq. (18) holds for some given λ ∈ C. If this equation is true, then its complex conjugate
should also be true: λ2

∑
j

[
ηj (λ)

]2
 =

{
λ2
(
E]
)2}

(
λ
)2∑

j

(
ηj (λ)

)2 =
(
λ
)2 (

E]
)2

(
λ
)2∑

j

(
ηj

(
1

λ

))2 =
(
λ
)2 (

E]
)2

(
1

λ

)2∑
j

(
ηj

(
1

λ

))2 =

(
1

λ

)2 (
E]
)2

which is just the original equation with λ replaced by 1
λ

, so that the claim follows. �

Thus we conclude that for every solution of Eq. (18) within the unit circle, λ = Reiϕ with R < 1, there is a
solution outside the unit circle 1

λ
= 1
Re−iϕ

= R−1eiϕ (R−1 > 1). As a result, only half the solutions are decaying into
the bulk and other other solutions correspond to a mirrored chain, defined on −N.

1.5.19. CLAIM. Eq. (18) is an equation of order 4 in λ.

PROOF. We have

λ2η+η− = λ2
1

2
(ηr − iηv)

1

2
(ηr + iηv)

= λ2
1

4

[
(ηr)2 + (ηv)2

]
= λ2

1

4
η
‖
jη
‖
j

=
(
b
0‖
j λ+ bj + bjλ

2
)(
b
0‖
j λ+ bj + bjλ

2
)

The other terms in the equation are all of order λ2. �

Thus by the fundamental theorem of algebra Eq. (18) has 4 solutions in the complex plane. In light of 1.5.18,
we have at most 2 solutions within the unit circle. Call these two solutions λ1 and λ2.

So the most general form of the edge wave function which is decaying is

ψ]
n =

∑
i∈J2

ui (λi)
n
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where ui is a null-vector of the matrix λi
[∑

j ηj (λi) Γj − E
]1
]
.

Following the next step of 1.4.2, we need to employ the boundary condition and so we setψ]
0

!
= 0which implies

that u1 = −u2 and thus λ1
[∑

j ηj (λ1) Γj − E
]1
]

and λ2
[∑

j ηj (λ2) Γj − E
]1
]

share a null-vector. But that means that

for a fixed E] and k2, the equation ηj (λ) Γju1 = E]u1 has two solutions λ1 and λ2 within the unit circle, so that we
may use 1.5.15 to conclude that if an edge state exists, then E] (k2) = ±

∥∥b0⊥ (k2)
∥∥, showing the last part of our

claim.

Furthermore, we have

{[∥∥b0⊥∥∥Γ⊥ + η+1 Γ
+ + η−1 Γ

−
]
u1 = E]u1[∥∥b0⊥∥∥Γ⊥ + η+2 Γ

+ + η−2 Γ
−
]
u1 = E]u1

where we have abbreviated η±i ≡ η
± (λi). We

can now compute the anti-commutator:{∥∥∥b0⊥∥∥∥Γ⊥ + η+1 Γ
+ + η−1 Γ

−,
∥∥∥b0⊥∥∥∥Γ⊥ + η+2 Γ

+ + η−2 Γ
−
}

=

[∥∥∥b0⊥∥∥∥2 + η+2 η−1 + η−2 η
+
1

]
1

yet we also have {∥∥∥b0⊥∥∥∥Γ⊥ + η+1 Γ
+ + η−1 Γ

−,
∥∥∥b0⊥∥∥∥Γ⊥ + η+2 Γ

+ + η−2 Γ
−
}
u =

(
E]
)2
u

so that we may conclude 
η+ (λ1)η

− (λ1) = 0

η+ (λ2)η
− (λ2) = 0

η+ (λ2)η
− (λ1) + η

− (λ2)η
+ (λ1) = 0

As a result, it appears that either η+ (λ) has the two roots λ1 and λ2, or η− (λ) has two roots λ1 and λ2. But the third
equation excludes the possibility that η+ and η− each have only one root λ1 and λ2 respectively.

We now proceed to show that the existence of the edge state at k2 means the ellipse traced by h‖ (k)
∣∣∣
k2

encloses

the origin of Rm:

(1) The number of zeros minus the number of poles of η+ within the unit circle is given by 1
2πi

∮
z∈S1⊂C

η+
′
(z)

η+(z) dz.

(2) But η+ has one pole (at λ = 0), and so, to have two zeros, we must have 1
2πi

∮ η+ ′(z)
η+(z) dz

!
= 1.

(3) But 1
2πi

∮ η+ ′(z)
η+(z) dz

!
= 1 iff η+

(
eik
)

wraps around the origin counterclockwise once, for k ∈ [0, 2π].

(4) If, however, η+
(
eik
)

wraps around the origin clockwise, 1
2πi

∮ η+ ′(z)
η+(z) dz = −1 and so the number of ze-

ros is 0 for η+ (thus no edge states “from” η+). But then, that means that η−
(
eik
)

wraps around the
origin counterclockwise (because η− is the conjugate of η+ when evaluated on the unit circle) and so
1
2πi

∮ η− ′(z)
η−(z) dz = 1 and so η− has two zeros, and thus, gives rise to an edge states.

(5) Observe that both η±
(
eik1

)
trace the same ellipse in C which h‖ (k)

∣∣∣
ky

traces in some skewed plane of

Rm. So that if h‖ (k)
∣∣∣
ky

wraps around the origin (for fixed k2 and varying k1) then either η+ (λ) or η− (λ)

has two zeros within the unit circle.
�

1.5.20. CLAIM. If η+ (λ) has two roots λ1 and λ2 within the unit circle, then either η− (λ1) 6= η− (λ2) or the ellipse lies
on a straight line. The same holds when + and − are interchanged.
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PROOF. Assume that η+ (λ1) = η
+ (λ2) = 0. Recall that

η+ (λ) = ηr (λ) − iηv (λ)

= ηj (λ)
(
erj − ie

v
j

)
=

(
b0 + bλ−1 + bλ

)
· (êr − iêv)

=
[
b0 + (<{b}+ i= (b)) λ−1 + (<{b}− i= (b)) λ

]
· (êr − iêv)

= b0 · êr − ib0 · êv + (|< {b}|+ i= (b) · êr + = (b) · êv) λ−1 + (|< {b}|− i= (b) · êr − = (b) · êv) λ

= b0r − ib0v +
(
br + ibir + biv

)
λ−1 +

(
br − ibir − biv

)
λ

and so if η+ (λ) has two roots λ1 and λ2 it follows from Vieta’s formula that

λ1λ2 =
br + ibir + biv

br − ibir − biv

Now also compute

η− (λ) = ηr (λ) + iηv (λ)

= ηj (λ)
(
erj + ie

v
j

)
=

(
b0 + bλ−1 + bλ

)
· (êr + iêv)

=
[
b0 + (<{b}+ i= (b)) λ−1 + (<{b}− i= (b)) λ

]
· (êr + iêv)

= b0 · êr + ib0 · êv + (|< {b}|+ i= (b) · êr − = (b) · êv) λ−1 + (|< {b}|− i= (b) · êr + = (b) · êv) λ

= b0r + ib0v +
(
br + ibir − biv

)
λ−1 +

(
br − ibir + biv

)
λ

and assume that η− (λ1) = η
− (λ2), which implies that(

br + ibir − biv
)
λ−11 +

(
br − ibir + biv

)
λ1 =

(
br + ibir − biv

)
λ−12 +

(
br − ibir + biv

)
λ2(

br − ibir + biv
)
(λ1 − λ2) =

(
br + ibir − biv

)(
λ−12 − λ−11

)
︸ ︷︷ ︸

λ1−λ2
λ1λ2

λ1λ2 =
br + ibir − biv

br − ibir + biv

Thus we obtain the constraint
br + ibir − biv

br − ibir + biv
=

br + ibir + biv

br − ibir − biv(
br + ibir − biv

)(
br − ibir − biv

)
=

(
br + ibir + biv

)(
br − ibir + biv

)
(
br − biv

)2
+
(
bir
)2

=
(
br + biv

)2
+
(
bir
)2

brbiv = 0

Which geometrically means that the ellipse reduces to a straight line (either along êr or along êv).
The case with + and − interchanged gives the same constraint and thus leads to the same conclusion. �

1.5.21. CLAIM. When N = 2 then the sign of E] (k2) is given by

E] (k2) =
[(
êr × êi

)
· ê⊥

] ∥∥∥b0⊥ (k2)
∥∥∥

PROOF. Let k2 ∈ S1 be given. Assume that for k2, the ellipse does not lie on a straight line.
First note that we may adiabatically (without closing the gap) apply a unitary transformation on HB (k), con-

tinuously in k, such that êr = ê1, êv = ê2 and ê⊥ = ê3. Rotations will not change the magnitude of the vector
‖h (k)‖ and so will not close the gap, and clearly rotations are continuous. This is exactly possible because êv has
an unspecified sign, and so we can make sure that

(
êr, êv, ê⊥

)
has right-handed orientation just as (ê1, ê2, ê3). As a



1.5. DIRAC HAMILTONIANS 22

result, we will have êi = ±ê2 and so

sgn
(
biv
)
= sgn

(〈
bi, ê2

〉)
= ±1

The sign of biv thus matches the sign of
[(
êr × êi

)
· ê⊥

]
. So if

[(
êr × êi

)
· ê⊥

]
= +1 then sign

(
biv
)
= +1 and so

h− (k)|ky goes counter-clockwise in C whereas if
[(
êr × êi

)
· ê⊥

]
= −1 then sign

(
biv
)
= −1 then it is h+ (k)|ky that

goes counter-clockwise in C. This can be seen from

h± (k)
∣∣
k2

= hr (k)∓ ihv (k)

= b0r + 2br cos (k1) + 2bir sin (k1)∓ i
[
b0v + 2biv sin (k1)

]
=

(
b0r ∓ ib0v

)
+ 2br cos (k1) + 2

(
bir ∓ ibiv

)
sin (k1)

As we know from 1.5.16, the one of h+ or h− which goes counter-clockwise is the one of η+ or η− that has the two
zeros within the unit circle (if it contains the origin). In conclusion:

•
[(
êr × êi

)
· ê⊥

]
= +1 means η− is the one that might have two zeros within the unit circle.

•
[(
êr × êi

)
· ê⊥

]
= −1 means η+ is the one that might have two zeros within the unit circle.

Assuming we have these relations, we may work with an explicit form of the three gamma matrices:

Γ⊥ =

[
1 0

0 −1

]
Γ⊥ − 1 =

[
0 0

0 −2

]
Γ⊥ + 1 =

[
2 0

0 0

]
Γr =

[
0 1

1 0

]
Γv =

[
0 −i

i 0

]

Γ± ≡ 1
2
(Γr ± iΓv) = 1

2

([
0 1

1 0

]
±
[
0 1

−1 0

])
=



[
0 1

0 0

]
+[

0 0

1 0

]
−

Next, divide the analysis into two cases:
(1) Assume that it is η+ that has the two roots (rather than η−) within the unit circle. So in this case[(

êr × êi
)
· ê⊥

]
= −1.

From Eq. (17) we have that{[∥∥b0⊥ (k2)
∥∥Γ⊥ + η− (λ1, k2) Γ− − E]1

]
u = 0[∥∥b0⊥ (k2)

∥∥Γ⊥ + η− (λ2, k2) Γ− − E]1
]
u = 0

Now we have two sub-cases:
(a) E] = +

∥∥b0⊥ (k2)
∥∥:

In this case we have{[∥∥b0⊥ (k2)
∥∥ (Γ⊥ − 1

)
+ η− (λ1, k2) Γ−

]
u = 0[∥∥b0⊥ (k2)

∥∥ (Γ⊥ − 1
)
+ η− (λ2, k2) Γ−

]
u = 0

which translates into

{∥∥b0⊥ (k2)
∥∥[0 0

0 −2

]
+ η− (λ1, k2)

[
0 0

1 0

]}
u = 0{∥∥b0⊥ (k2)

∥∥[0 0

0 −2

]
+ η− (λ2, k2)

[
0 0

1 0

]}
u = 0
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from which we learn that{
η− (λ1, k2)u(1) − 2

∥∥b0⊥ (k2)
∥∥u(2) = 0∥∥b0⊥ (k2)

∥∥η− (λ2, k2)u(1) − 2
∥∥b0⊥ (k2)

∥∥u(2) = 0
or that 

u =


(
2‖b0⊥(k2)‖
η−(λ1,k2)

)
1


u =


(
2‖b0⊥(k2)‖
η−(λ2,k2)

)
1


But then it must be that η− (λ1, k2) = η− (λ2, k2), which, as we learnt in 1.5.20 is not possible because
by hypothesis the ellipse is not on a straight line, so we must conclude this case is not possible.

(b) E] = −
∥∥b0⊥ (k2)

∥∥:
In this case we have{[∥∥b0⊥ (k2)

∥∥ (Γ⊥ + 1
)
+ η− (λ1, k2) Γ−

]
u = 0[∥∥b0⊥ (k2)

∥∥ (Γ⊥ + 1
)
+ η− (λ1, k2) Γ−

]
u = 0

which translates into

{∥∥b0⊥ (k2)
∥∥[2 0

0 0

]
+ η− (λ1, k2)

[
0 0

1 0

]}
u = 0{∥∥b0⊥ (k2)

∥∥[2 0

0 0

]
+ η− (λ2, k2)

[
0 0

1 0

]}
u = 0

from which we learn that 

{
2
∥∥b0⊥ (k2)

∥∥u(1) = 0

η− (λ1, k2)u(1) = 0{
2
∥∥b0⊥ (k2)

∥∥u(1) = 0

η− (λ2, k2)u(1) = 0

or that

u =

[
0

1

]
which leads to no contradictions.

We have thus shown that[(
êr × êi

)
· ê⊥

]
= −1 =⇒ E] = −

∥∥∥b0⊥ (k2)
∥∥∥

(2) The other case leads to the complementary conclusion, namely, if η− (λ) has two roots within the unit circle
then

[(
êr × êi

)
· ê⊥

]
= +1, and we will find that to avoid contradictions it must be that E] = +

∥∥b0⊥ (k2)
∥∥.

Thus when the ellipse does not lie on a straight line, we have proven the formula

E] (k2) =
[(
êr × êi

)
· ê⊥

] ∥∥∥b0⊥ (k2)
∥∥∥

Now, assuming that E] (k2) is continuous, we can take the limit êi → ±êr (then the ellipse is on a straight line). In
this limit, E] (k2)→ 0. So it must be that when the ellipse lies on a straight line, E] (k2) = 0. �

1.5.22. CLAIM. If N = 4 and there is an edge state at a given k2 then there are in fact at least two edge states corre-
sponding to both E] (k2) = +

∥∥b0⊥ (k2)
∥∥ and E] (k2) = −

∥∥b0⊥ (k2)
∥∥.

PROOF. Without loss of generality, assume that η+ has two zeros within the unit circle (the case for η− proceeds
analogously). Then the eigenvalue equation, depending on the sign of the energy, is either:{[∥∥b0⊥ (k2)

∥∥ (Γ⊥ − 1
)
+ η− (λ1, k2) Γ−

]
u = 0[∥∥b0⊥ (k2)

∥∥ (Γ⊥ − 1
)
+ η− (λ2, k2) Γ−

]
u = 0

for E] (k2) = +
∥∥∥b0⊥ (k2)

∥∥∥
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with the same u for both equations, or{[∥∥b0⊥ (k2)
∥∥ (Γ⊥ + 1

)
+ η− (λ1, k2) Γ−

]
v = 0[∥∥b0⊥ (k2)

∥∥ (Γ⊥ + 1
)
+ η− (λ2, k2) Γ−

]
v = 0

for E] (k2) = −
∥∥∥b0⊥ (k2)

∥∥∥
with the same v for both equations. Our goal is to show that both duos of equations are possible simultaneously
with u and v linearly independent (whereas in 1.5.21 only one was possible, which allowed us to determine the
sign of the energy of the edge state).

For the case when N = 4, again we may work without loss of generality with a particular representation of the
Gamma matrices so that:

Γ⊥ = σ3 ⊗ σ0 = diag (1, 1, −1, −1)

Γr = σ1 ⊗ σ0 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


and

Γv = σ2 ⊗ σ3 =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0


from which we then have

Γ⊥ − 1 = diag (0, 0, −2, −2)
Γ⊥ + 1 = diag (2, 2, 0, 0)

and

Γ− =


0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0


We find then the following two equations:


0 0 0 0

0 0 0 η− (λ1, k2)
η− (λ1, k2) 0 −2

∥∥b0⊥ (k2)
∥∥ 0

0 0 0 −2
∥∥b0⊥ (k2)

∥∥



u1

u2

u3

u4

 = 0


0 0 0 0

0 0 0 η− (λ2, k2)
η− (λ2, k2) 0 −2

∥∥b0⊥ (k2)
∥∥ 0

0 0 0 −2
∥∥b0⊥ (k2)

∥∥



u1

u2

u3

u4

 = 0

for E] (k2) = +
∥∥∥b0⊥ (k2)

∥∥∥

and 


2
∥∥b0⊥ (k2)

∥∥ 0 0 0

0 2
∥∥b0⊥ (k2)

∥∥ 0 η− (λ1, k2)
η− (λ1, k2) 0 0 0

0 0 0 0



v1

v2

v3

v4

 = 0


2
∥∥b0⊥ (k2)

∥∥ 0 0 0

0 2
∥∥b0⊥ (k2)

∥∥ 0 η− (λ2, k2)
η− (λ2, k2) 0 0 0

0 0 0 0



v1

v2

v3

v4

 = 0

for E] (k2) = −
∥∥∥b0⊥ (k2)

∥∥∥
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Then it’s easy to verify that both duos of equations are possible to satisfy, the first with u =


0

1

0

0

 and the second

with v =


0

0

1

0

, both of which are linearly independent and thus correspond to different solutions, each of which

has an opposite sign of energy. What’s more, neither of these solutions are obstructed by a requirement of the form
η− (λ1, k2) = η− (λ2, k2). �

1.6. The Edge Indices

Let
{
E#
i (k2)

}
i∈I denote the discrete spectrum ofH# (k2). Assuming the following set is of finite order, we define:

CROSS :=

{
(k2, i) ∈ [0, 2π)× I

∣∣∣∣ E#
i (k2) = EF ∧

(
E
]
i

) ′
(k2) 6= 0

}
and we assume further that @ (k2, i) ∈ [0, 2π)× I such that

(
E
]
i

) ′
(k2) = 0. Under these assumptions, CROSS contains

all the points where the edge energy crosses the Fermi energy. We define two quantities:

1.6.1. DEFINITION. The edge-quantum-Hall-conductance-index:

I
]
QH

(
H]
)
:= −

∑
(k2, i)∈CROSS

(
E
]
i

) ′
(k2)∣∣∣∣(E]i) ′ (k2)∣∣∣∣ (19)

1.6.2. DEFINITION. The edge-Kane-Mele-index:

I
]
KM

(
H]
)
:=
1

2
|CROSS| mod 2 (20)

is defined only for time-reversal symmetric Hamiltonians due to the fact that for such Hamiltonians we have neces-
sarily that |CROSS| ∈ 2N due to 1.2.8.

1.6.3. REMARK. We may choose to take an arbitrary fiducial line EF (k2) instead of a constant EF, such that E ′F (k2) 6= 0.
Then, in general we need to replace in all the formulas above

(
E
]
i

) ′
(k2) 7→

(
E
]
i

) ′
(k2) − E

′
F (k2)

1+
(
E
]
i

) ′
(k2)E

′
F (k2)

k2

E

2π0

EF

FIGURE 1.6.1. The bulk spectrum is in the shaded area, and the discrete edge spectrum is in red. In
this configuration, I]QH

(
H]
)
= −1 because there is one crossing point with positive slope.
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E

0

EF

k22π0

FIGURE 1.6.2. In this picture, the edge discrete spectrum has an infinite number of crossings. Such
systems may be continuously deformed into systems where there would be only one simple crossing.

assuming
(
E
]
i

) ′
(k2)E

′
F (k2) 6= −1 ∀k2 ∈ S1. When

(
E
]
i

) ′
(k2)E

′
F (k2) = −1 the sign is undefined, as E]i and EF are

perpendicular at that point. However, then, the curves may be slightly bent so that the sign is defined. This will not
affect the overall count.

This definition is such that we are counting the “signed” number of times the edge energy crosses the Fermi
energy, where the sign is determined by the relative slope.

1.6.4. REMARK. To complete the definition, we argue that any edge system may be brought to such a form as the one
assumed in the beginning of this section, without affecting the overall count. This is justified in 1.6.5.

1.6.5. CLAIM. The edge Hamiltonian may be deformed continuously, without closing the gap, in a way that will not
affect I

]
QH

(
H]
)
. If in addition, along the path of deformation, condition Eq. (3) is obeyed then I

]
KM

(
H]
)

remains
invariant as well.

PROOF. Due to the stability of the resolvent set under small perturbations, as well as the stability of the spectrum,
we know that any such perturbation may either deform an existing gapless mode into another gapless mode, or
establish new hills or bubbles, which in turn may grow to become two gapless modes, but there are no other
possibilities. In either case we see the count for I]QH

(
H]
)

will not change, as shifting a gapless mode leaves CROSS

invariant, and when a hill suddenly crosses EF, |CROSS| 7→ |CROSS| + 2, however, the two crossing points have
opposite sign so that I

]
QH

(
H]
)

again remains invariant. If a hill has a flat maximum, or if there is an infinite
number of crossings from such a hill, we assume we may continuously deform away such problems such that the
index becomes defined again. �

1.7. The Bulk Indices

Let k ∈ T2 be given. Let Ek be the eigenspace of HB (k) below EF. This defines a complex vector bundle:

E =
{
(k, ψ) ∈ T2 ×CN

∣∣∣ ψ ∈ Ek }
where we assume HB (k) acts on a fixed Hilbert space CN.

1.7.1. DEFINITION. The bulk-quantum-Hall-conductance-index is defined as:

IQH (H) := Ch1 (E) (21)

where Ch1 is the first Chern number of a vector bundle.

1.7.2. REMARK. In [Av83] it was shown that

IQH (H) =
∑

j∈Occupied

i

2π

∫
T2
Tr
[
dPj ∧ PjdPj

]
(22)

where Pj is the rank-one projector onto the jth occupied band, which is just what was originally found in [Th82]. Let
X be a topological space. [Av83] argued that to specify maps T2 → X, we need to specify two loops S1 → X (the two
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two basic circles of T2) and one map S2 → X (the left-over sphere in T2). Thus the topological classification of XT2 is
given by two elements in π1 (X) and one element in π2 (X). Let j ∈ JN−1 be fixed (it does not depend on k). Then, for
us, X is the space of N×N Hermitian matrices where the jth and (j+ 1)th eigenvalue are never degenerate. It turns
out that X is simply connected, so that we only need to specify an element π2 (X), and [Av83] calculates this element
to be given by the formula in Eq. (22).

In fact, in this perspective, the explicit definition of the Chern class of E is not used, because the argument is
that Eq. (22) is the only topological invariant that can be associated with E, and as the Chern number is a topological
invariant, the two are equal. The reason one starts with the Chern number and not directly with Eq. (22) is due to the
fact it is simply the most natural context in which to discuss the topological classification of E.

1.7.3. REMARK. The gauge-invariant formula of [Av83] which we present in Eq. (22) reduces to the formulation from
[Th82].

PROOF. Expanding the exterior derivative and using the shortcuts ∂kiPj = Pj,i and A[iBj] =
1
2

[
Ai, Bj

]
we get:

Tr
[
dPj ∧ PjdPj

]
= Tr

[(
2∑
i=1

∂kiPjdki

)
∧ Pj

(
2∑
l=1

∂klPjdkl

)]
= Tr

[(
∂k1Pj

)
Pj
(
∂k2Pj

)
dk1 ∧ dk2 +

(
∂k2Pj

)
Pj
(
∂k1Pj

)
dk2 ∧ dk1

]
= Tr

[(
∂k1Pj

)
Pj
(
∂k2Pj

)
−
(
∂k2Pj

)
Pj
(
∂k1Pj

)]
dk1 ∧ dk2

= 2Tr
[(
∂k[1Pj

)
Pj

(
∂k2]Pj

)]
dk1 ∧ dk2

= 2Tr
[(
∂k[1

∣∣ψj〉 〈ψj∣∣) ∣∣ψj〉 〈ψj∣∣ (∂k2] ∣∣ψj〉 〈ψj∣∣)]dk1 ∧ dk2
= 2Tr

[(∣∣∣ψj,[1〉 〈ψj∣∣+ ∣∣ψj〉 〈ψj,[1∣∣∣) ∣∣ψj〉 〈ψj∣∣ (∣∣∣ψj,2]〉 〈ψj∣∣+ ∣∣ψj〉 〈ψj,2]∣∣∣)]dk1 ∧ dk2

= 2



〈
ψj
∣∣ ∣∣∣ψj,2]〉 〈ψj∣∣ ∣∣∣ψj,[1〉+〈
ψj,2]

∣∣∣ ∣∣∣ψj,[1〉+〈
ψj,[1

∣∣∣ ∣∣ψj〉 〈ψj∣∣ ∣∣∣ψj,2]〉+〈
ψj,[1

∣∣∣ ∣∣ψj〉 〈ψj,2]∣∣∣ ∣∣ψj〉

dk1 ∧ dk2

∗
= 2

〈ψj,2] ∣∣∣ψj,[1〉+ 〈ψj,[1 ∣∣∣ψj〉〈ψj,2] ∣∣∣ψj〉︸ ︷︷ ︸
Symmetric 1↔2

dk1 ∧ dk2
= −

(〈
ψj,1

∣∣ψj,2〉− 〈ψj,2 ∣∣ψj,1〉)dk1 ∧ dk2
=

1

i

〈
Fj, ê3

〉
dk1 ∧ dk2

where in ∗ we have used the fact that
〈
ψj,i

∣∣ψj〉 = −
〈
ψj
∣∣ψj,i〉 because

〈
ψj
∣∣ψj〉 = 1, and Fj is the Berry curvature

of the jth band. �

Despite the first introduction of the Kane-Mele index being in [Ka05], we follow instead the equivalent definition
of [Fu06] (equation 3.25).1

Define a matrix
wij (k) :=

〈
ψi (−k) , Θψj (k)

〉
(23)

where {ψi (k) }i is a set of eigenstates of HB (k) corresponding to the occupied states, each of which is chosen contin-
uously throughout T2. Thus,

{
ψj
}
j∈Occupied is a continuous section in the occupied frame bundle over T2.

1.7.4. CLAIM. Such a global smooth choice of {ψi (k) }i is always possible for time-reversal-invariant systems, due to
the fact that TRI forces IQH (H) = 0.

PROOF. A non-zero Chern number can be viewed as an obstruction to the choice of a smooth section of the occu-
pied frame bundle over T2. Thus if we showed that IQH (H) = 0 necessarily for systems obeying Eq. (6) we would

1Note that [Fu06] provides a proof for the equivalence of the definition we use with the definition of [Ka05].
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be finished. The first thing to note is that from Eq. (6) another equation is implied:

f
(
HB (−k)

)
= Θf

(
HB (k)

)
Θ−1 ∀k ∈ T2

where f is any map from B
(
CN

)
→ B

(
CN

)
. In fact, the projectors are obtained by such a map Pj (k) = f

(
HB (k)

)
where f is zero outside of the subspace projected on by Pj. As a result we obtain

Pj (−k) = ΘPj (k)Θ
−1 ∀k ∈ T2 (24)

Furthermore, observe that for any operator A and anti-unitary operator T we have:

Tr [A] = Tr [A∗]

=
∑
j∈J

〈
ψj, A∗ψj

〉
ψj 7→T−1ψj

=
∑
j∈J

〈
T−1ψj, A∗T−1ψj

〉
=

∑
j∈J

〈
AT−1ψj, T−1ψj

〉
〈a,b〉=〈Tb,Ta〉

=
∑
j∈J

〈
TT−1ψj, TAT−1ψj

〉
=

∑
j∈J

〈
ψj, TAT−1ψj

〉
= Tr

[
TAT−1

]
Next we show that IQH (H) = 0 indeed for a system obeying Eq. (24). Observe that IQH (H) ∈ Z and in particular
IQH (H) = IQH (H). As a result we have

IQH (H) = IQH (H)

=
∑

j∈Occupied

i

2π

∫
T2
Tr
[
dPj (k)∧ Pj (k)dPj (k)

]
=

∑
j∈Occupied

−i

2π

∫
T2
Tr
[
dPj (k)∧ Pj (k)dPj (k)

]
=

∑
j∈Occupied

−i

2π

∫
T2
Tr
[
Θ
(
dPj (k)∧ Pj (k)dPj (k)

)
Θ−1

]
=

∑
j∈Occupied

−i

2π

∫
T2
Tr
[
ΘdPj (k)Θ

−1 ∧ΘPj (k)Θ
−1ΘdPj (k)Θ

−1
]

Θ is const.
=

∑
j∈Occupied

−i

2π

∫
T2
Tr
{
d
[
ΘPj (k)Θ

−1
]
∧
[
ΘPj (k)Θ

−1
]
d
[
ΘPj (k)Θ

−1
]}

=
∑

j∈Occupied

−i

2π

∫
T2
Tr
{
d
[
Pj (−k)

]
∧
[
Pj (−k)

]
d
[
Pj (−k)

]}
−k7→k
=

∑
j∈Occupied

−i

2π

∫
T2
Tr
{
d
[
Pj (k)

]
∧
[
Pj (k)

]
d
[
Pj (k)

]}
= −IQH (H)

�

1.7.5. CLAIM. w (k) = − [w (−k)]T
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PROOF. Using the fact that Θ obeys 〈α, β〉 = 〈Θβ, Θα〉we have

wij (k) ≡
〈
ψi (−k) , Θψj (k)

〉
=

〈
ΘΘψj (k) , Θψi (−k)

〉
= −

〈
ψj (k) , Θψi (−k)

〉
= −wji (−k)

�

1.7.6. REMARK. As a result, we see that Pf [w (k)] is defined ∀k ∈ TRIM, as at such points w (k) is anti-symmetric and,
by hypothesis, there is always an even number of occupied bands.

1.7.7. DEFINITION. The bulk-Kane-Mele-index, defined only for time-reversal invariant Hamiltonians, is given by

IKM (H) :=
1

iπ
log

( ∏
k∈TRIM

√
det [w (k)]

Pf [w (k)]

)
(25)

1.7.8. REMARK. Naively, it would seem that IKM (H) is always zero, due to det [A] = (Pf [A])2. However, care must
be taken with the branch of

√
· that is chosen, which has to be done globally on T2. As a result, even though the

formula does not explicitly require one to compute det [w (k)] outside of TRIM ⊂ T2, in order to make a continuous
choice of

√
det [w (k)], knowledge of det [w (k)] along paths in T2\TRIM connecting points in TRIM is necessary. It is

in this part that the assumption of
{
ψj
}
j

being a smooth section will be used.

It should also be noted that
(∏

k∈TRIM

√
det[w(k)]

Pf[w(k)]

)
∈ { 1, −1 } and so IKM (H) ∈ Z2 indeed.

1.7.9. CLAIM. IfHB : T2 → B
(
CN

)
is deformed continuously without closing the gap then IQH (H) remains invariant.

If the deformation obeys the condition 1.3.1 along its path, then IKM (H) remains invariant as well.

PROOF. The invariants we have defined are topological invariants, and as such, defined only up to continuous
deformations. A continuous deformation of HB induces on of E (the total space of the vector bundle) which is
always defined as long as the gap remains open. The first Chern number is stable under such deformations.
Furthermore, even though we have not defined it in such a way, it is possible to define IKM (H) in terms of the
frame bundle [Gr13] in such a way that it is also manifestly stable under continuous deformations. �



CHAPTER 2

The Simplest Quantum Hall System: The Two-Band Model

2.1. Setting

When N = 2, the most general Hermitian 2× 2 matrix may be written as

HB (k) = h0 (k)12×2 +
3∑
j=1

hj (k)σj

where h : T2 → R4. As the spectrum of this system is

EBlower;upper (k) = h0 (k)±

√√√√ 3∑
j=1

[
hj (k)

]2
we see that continuously deforming the system from its initial specification into one where h0 (k) = 0will never close
the gap, as the gap condition 1.1.2 is given by √√√√ 3∑

j=1

[
hj (k)

]2 6= 0
Then, as a result of 1.6.5 and 1.7.9, we may without loss of generality assume that h0 (k) = 0 so that HB (k) in fact
conforms to 1.5.1.

Then 1.1.2 boils down to the assumption that

h (k) 6= 0∀k ∈ T2

where we refer to h (k) ≡

h1 (k)h2 (k)

h3 (k)

 ∈ R3 and so we may always define the unit vector

ĥ (k) :=
h (k)

‖h (k)‖
∈ S2

2.1.1. CLAIM. Eq. (21) reduces to

IQH (H) =
1

4π

∫2π
0

∫2π
0
ĥ (k) ·

{[
∂k1 ĥ (k)

]
×
[
∂k2 ĥ (k)

]}
dk1dk2

which is just the degree of the mapping ĥ : T2 → S2:

IQH (H) = deg
(
ĥ : T2 → S2

)
PROOF. We use the formula that

Ch1 (E) ≡
i

2π

∫
Tr [dP1 ∧ P1dP1]

where P1 is the projector onto the occupied (lower) band. This projector is given by P1 =
EB2 1−H

B

EB2−E
B
1

. Indeed, if a

general vector v is expanded as v = α1v1 + α2v2 where vi are respective eigenvectors of HB with eigenvalues EBi ,

30
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then

P1v =
EB21−HB

EB2 − EB1
(α1v1 +α2v2)

=
1

EB2 − EB1

(
α1

(
EB2 −HB

)
v1 +α2

(
EB2 −HB

)
v2

)
=

1

EB2 − EB1

(
α1

(
EB2 − EB1

)
v1 +α2

(
EB2 − EB2

)
v2

)
= α1v1

as desired. Actually for our system there is an even more explicit expression for the projector given by

P1 =
E21−H

E2 − E1

=
‖h‖1−

(
hjσj

)
2‖h‖

=
1

2
1−

1

2
ĥjσj

Then, a direct computation leads to the desired result

Ch1 (E) =
i

2π

∫
Tr [dP1 ∧ P1dP1]

=
i

2π

∫
Tr
[(
∂k1P1

)
P1∂k2P1 −

(
∂k2P1

)
P1∂k1P1

]
dk1 ∧ dk2

=
i

2π

∫
dk1 ∧ dk2

Tr

[(
∂k1

(
1

2
1−

1

2
ĥ · σ

))(
1

2
1−

1

2
ĥ · σ

)
∂k2

(
1

2
1−

1

2
ĥ · σ

)]
Tr

[
−

(
∂k2

(
1

2
1−

1

2
ĥ · σ

))(
1

2
1−

1

2
ĥ · σ

)
∂k1

(
1

2
1−

1

2
ĥ · σ

)]
=

i

2π

∫
1

8
Tr
[((

∂k1 ĥ
)
i
σi

) (
1− ejσj

) ((
∂k2ek

)
σk
)
−
((
∂k2eiσi

)) (
1− ejσj

) (
∂k1ekσk

)]
dk1 ∧ dk2

=
i

2π

∫
1

8
dk1 ∧ dk2{[(

∂k1 ĥi

)(
∂k2 ĥk

)
−
(
∂k2 ĥi

)(
∂k1 ĥk

)]
Tr [σiσk]︸ ︷︷ ︸
2δik︸ ︷︷ ︸

0

−
[(
∂k1 ĥi

)
ĥj

(
∂k2 ĥk

)
−
(
∂k2 ĥi

)
ĥj

(
∂k1 ĥk

)]
Tr
[
σiσjσk

]︸ ︷︷ ︸
2iεijk

}

=
1

2π

∫
1

4
εijk

{[(
∂k1 ĥi

)
ĥj

(
∂k2 ĥk

)
−
(
∂k2 ĥi

)
ĥj

(
∂k1 ĥk

)]}
dk1 ∧ dk2

= −
1

4π

∫
ĥ ·
[(
∂k1 ĥ

)
×
(
∂k2 ĥ

)]
dk1 ∧ dk2

�

2.2. Proof of the Bulk-Edge Correspondence for Singular Hopping Matrices

If the hopping matrix in Eq. (1) is of the form

A =

[
a11 0

a21 0

]
then

Aψ0 =

[
a11 0

a21 0

] [
(ψ0)1
(ψ0)2

]
=

[
a11 (ψ0)1
a21 (ψ0)1

]
Thus it suffices to require merely (ψ0)1

!
= 0 as the boundary condition of the edge eigenvalue problem, and (ψ0)2

can in fact stay unconstrained. This possibility allows us to avoid having to find linear combinations of generalized
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Bloch solutions as in 1.4.2 and we can look for non-zero edge solutions simply by imposing the boundary condition

ψ0
!
=

[
0

∗

]
(26)

We still don’t know the edge spectrum, but we do know that at the points of incipience, it is equal to the bulk
spectrum.

2.2.1. CLAIM. IQH (H) is the signed number of points from T2 that reach the north pole of S2 via the map ĥ : T2 →
S2.

PROOF. It will be convenient later to understand what the formula in 2.1.1 means. To this end, we established the
fact that

1

4π

∫2π
0

∫2π
0
ĥ (k) ·

{[
∂k1 ĥ (k)

]
×
[
∂k2 ĥ (k)

]}
dk1dk2

is the formula for the degree of the map ĥ : T2 → S2, which is an integer counting the signed order of the set ĥ−1 ({p})
for any p ∈ S2. To clarify, assume that for some choice of p ∈ S2, ĥ−1 ({ p }) =

{
k1, . . . , km

}
for some m ∈ N. For

each j ∈ Jm, the restricted map ĥ in a neighborhood of kj is a local diffeomorphism. Such diffeomorphisms can be
either orientation preserving or reversing, depending on the sign of

ĥ (k) ·
{[
∂k1 ĥ (k)

]
×
[
∂k2 ĥ (k)

]}
Thus, if this local diffeomorphism in the neighborhood of kj is orientation preserving, we count that point j as
+1, whereas if the diffeomorphism is orientation reversing, we count it as −1. The total count of all m points in
ĥ−1 ({ p }) will give us the degree of the map, and this number will be independent of p (though for different p’s,
the unsigned count, m, might vary).

We could choose any point as p ∈ S2 and the choice wouldn’t matter for the computation the degree, and thus

for IQH (H), let us choose the north pole N :=

00
1

 ∈ S2. Thus, if at a point kj ∈ ĥ−1 ({N }),

∂1ĥ1
(
kj
)
∂2ĥ2

(
kj
)
− ∂1ĥ2

(
kj
)
∂2ĥ1

(
kj
)
> 0

we count j as +1 and if
∂1ĥ1

(
kj
)
∂2ĥ2

(
kj
)
− ∂1ĥ2

(
kj
)
∂2ĥ1

(
kj
)
< 0

we count j as −1. �

2.2.2. DEFINITION. Define the supremum of the lower energy band as

EBl,sup (k2) := sup
({
EBlower (k1, k2)

∣∣∣ k1 ∈ S1 })
2.2.3. DEFINITION. Denote the discrete edge spectrum as E] (k2) for all k2 ∈ S1. We know there is only one energy
eigenvalue in the gap for the edge state, from 1.5.21.

k2

E

2π0

FIGURE 2.2.1. Another possibility to find the edge index is to set the fiducial line (in this picture the
dashed line) infinitesimally close to EBl,sup (k2) (in this picture the thick lower line).
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2.2.4. CLAIM. I
]
QH

(
H]
)

is given by the signed number of degeneracy points between E] (k2) and EBl,sup (k2), where
the sign is obtained via the relative slope of the E] (k2) and EBl,sup (k2).

PROOF. We may take without loss of generality the Fermi energy to be infinitesimally close to EBl,sup (k2):

EF (k2)
!
= EBl,sup (k2)

and then 1.6.3 gives exactly the above definition. �

2.2.5. CLAIM. ĥ−1 ({N }) is the set of points in T2 such that EBl,sup (k2) is degenerate with E] (k2).

PROOF. In order to be able to compare the two descriptions, we first compute the eigenvectors of the bulk system
before we allow for the possibility that k1 is complex-valued (this generalization follows from 1.4.2). Consequently,
h ∈ R3 for the purpose of this computation.

Let k ∈ T2 be given. The eigensystem equation is given by[
+h3 h1 − ih2

h1 + ih2 −h3

] [
v1

(n)

v2
(n)

]
= (−1)n ‖h‖

[
v1

(n)

v2
(n)

]

which gives an eigenvector
[
v1

(n)

v2
(n)

]
corresponding to the eigenvalue EBn = (−1)n ‖h‖ for

{
n = 1 lower

n = 2 upper
.

From this equation two equations follow for v1 and v2:{(
h3 − (−1)n ‖h‖

)
v1

(n) + (h1 − ih2) v2
(n) = 0

(h1 + ih2) v1
(n) +

(
−h3 − (−1)n ‖h‖

)
v2

(n) = 0

dividing through ‖h‖ (which is never zero by hypothesis) we get:
(
ĥ3 − (−1)n

)
v1

(n) +
(
ĥ1 − iĥ2

)
v2

(n) = 0(
ĥ1 + iĥ2

)
v1

(n) +
(
−ĥ3 − (−1)n

)
v2

(n) = 0

Note that, as before, even though we started with a general point
[
h0
h

]
∈ R4 such that ‖h‖ 6= 0, what matters

for the eigenvectors is only the associated point ĥ ∈ S2.
(1) Case 1: ĥ3 = 1 (the north pole, where ĥ1 = ĥ2 = 0)
• Then we obtain {(

1− (−1)n
)
v1

(n) = 0(
−1− (−1)n

)
v2

(n) = 0

• Then for n = 1, v2 (1) is free and v1
(1) must be zero, so that we obtain that the general eigenvector

corresponding to EB1 is given by
[
0

α

]
for some α ∈ C\ {0}.

• For n = 2, v1 (2) is free and v2 (2) must be zero, so that the general eigenvector corresponding to EB2 is

given by
[
α

0

]
for some α ∈ C\ {0}.

(1) Case 2: ĥ3 = −1 (the south pole, where ĥ1 = ĥ2 = 0)
• Then we obtain {(

−1− (−1)n
)
v1

(n) = 0(
+1− (−1)n

)
v2

(n) = 0

• For n = 1, v1 (1) is free and v2 (1) must be zero, so that we obtain that the general eigenvector correspond-

ing to EB1 is given by
[
α

0

]
for some α ∈ C\ {0}.

• For n = 2, v2 (2) is free and v1 (2) must be zero, so that the general eigenvector corresponding to EB2 is

given by
[
0

α

]
for some α ∈ C\ {0}.

(1) Case 3: ĥ3 /∈ {±1 } (where either ĥ1 6= 0 or ĥ2 6= 0)
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• Then we obtain v1
(n) = −ĥ1+iĥ2

ĥ3−(−1)n
v2

(n)

v1
(n) =

ĥ3+(−1)n

ĥ1+iĥ2
v2

(n)

• The two equations are the same up to multiplication by a nonzero constant complex number and so the

general eigenvector associated with EBn is given by

[
−ĥ1+iĥ2
ĥ3−(−1)n

α

α

]
for some α ∈ C\ {0}. Observe that the

two components of this vector will never be zero, because we assume ĥ3 /∈ {±1 }.
The final conclusion from this analysis is that the non-normalized (but normalizable) eigenvectors for the bulk
system are given, up to multiplication by non-zero complex factors by,


ψlower =

[
0

1

]

ψupper =

[
1

0

] ĥ3 = 1


ψlower =

[
1

0

]

ψupper =

[
0

1

] ĥ3 = −1


ψlower =

−ĥ1+iĥ2
ĥ3+1

1


ψupper =

−ĥ1+iĥ2
ĥ3−1

1

 ĥ3 /∈ {±1 }

We can already see that the edge boundary condition Eq. (26) on the bulk eigenvectors are only fulfilled on special
points on the sphere: on the north pole only for ψlower whereas on the south pole only for ψupper.

Hence we may conclude that for these points on the sphere, we exactly have degeneracy between edge energy
eigenvalues and bulk energy eigenvalues, because these solutions are solutions of the bulk Hamiltonian HB (with
real values of k) yet they also obey the boundary conditions of the edge, and as we saw in 1.4.2, solutions of HB

which obey the edge boundary conditions are solutions of H]. �

2.2.6. REMARK. We were able to find these degeneracy points using the bulk Hamiltonian and the edge boundary
conditions alone, with no analysis of the edge system nor its actual discrete spectrum. In fact, had the word “signed”
not been used in the definition of (either of the bulk or the edge) quantum-Hall index, the correspondence proof
would have been done at this point. Hence the missing fact from the correspondence proof is the matching of the
signs, so that the counting would indeed be the same. All effort done from this point onward will be invested to that
end.

Let kD ∈ h−1 ({N }) be such a degeneracy point between EBl,sup (k2) and E] (k2). We will show that both signs of
the edge and the bulk agree for kD and thus complete the proof that

IQH (H) = I
]
QH

(
H]
)

(27)

2.2.7. CLAIM. The equation h1 = ih2 determines the complex value of k1 of the edge solution in terms of k2.

PROOF. In general, to find E] (k2), we can solve the eigensystem of HB, but assuming that k1 can take on complex
values in the upper plane (so that the edge wave-functions decay exponentially into the bulk, as we expect from

edge states at the zeroth site), and impose the edge boundary ψ0
!
= 0 and that E] (k2) ∈ R. However, those

boundary conditions cannot be imposed on the same wave-functions (that is, eigenvectors) of HB (k2) where we
assumed k1 ∈ R. We need to “re-solve” the eigensystem allowing for = (k1) > 0 and only then impose the boundary
conditions. As a result, now we allow h ∈ C3. As such the matrix

∑3
j=1 hjσj is no longer Hermitian and our
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eigenvalues are not necessarily real:
E
]
1,2 = ±

√
h1 + h2 + h3

The eigenvectors are given by the two equations which come from the eigenvalue equation HB (k)

[
v1

(n)

v2
(n)

]
=

(
+(−1)n

√
h1 + h2 + h3

) [v1 (n)

v2
(n)

]
:{(

h3 − (−1)n
√
h1 + h2 + h3

)
v1

(n) + (h1 − ih2) v2
(n) = 0

(h1 + ih2) v1
(n) +

(
−h3 − (−1)n

√
h1 + h2 + h3

)
v2

(n) = 0

We don’t actually need to compute the eigenvectors, but rather, only check when they obey the boundary condi-
tions, that is, when it would follow from the equations that v1 (n) = 0 and v2 (n) 6= 0, following Eq. (26). To that
end, we get the equations: 

(
h3 − (−1)n

√
h1 + h2 + h3

)
6= 0

(h1 − ih2) = 0

(h1 + ih2) 6= 0(
−h3 − (−1)n

√
h1 + h2 + h3

)
= 0

These conditions are fulfilled when h1 = ih2: (ih2)2 + (h2)
2 = 0, and when Ee = −h3. Thus, the equation h1 = ih2

determines the complex value of k1 in the edge in terms of k2. �

If we had explicit expressions for h1 and h2 we could already look at the expression E] (k2) and compute its slope
in the vicinity of kD. Because we don’t, we will make an approximation at kD+ δwith δ2 ∈ R, δ1 ∈ C (in upper plane
for decaying solution) and |δi|� 1∀i ∈ J2.

2.2.8. CLAIM. The edge spectrum near EBl,sup (kD) is obtained by taking <{δ1} = 0.

PROOF. To get the edge spectrum near kD, we plug into EBlower complex values of k1 such that the result is real,
and that the corresponding eigenstates obey the boundary conditions and decay. Observe that kD1 is an extremal
point of EBlower (k) for fixed k2, and as such, ∂1EBlower

(
kD
)
= 0. Thus

EBlower

(
kD1 + δ1, kD2 + δ2

)
≈ EBlower

(
kD
)
+ ∂2E

B
lower

(
kD
)
δ2 +

[
∂21E

B
lower

(
kD
)]
δ21

As a result we see that the only way for EBlower
(
kD1 + δ1, kD2 + δ2

)
to be real (and thus, to represent the edge energy)

is to have < (δ1) = 0 (and so δ1 is purely imaginary in the upper complex plane). �

2.2.9. CLAIM. The signs of the edge index count and the bulk index count exactly match, proving Eq. (27).

PROOF. Now that we have all the ingredients, we may proceed as follows:
• The condition that h1 = ih2 translates to (in the vicinity of kD):

h1

(
kD
)

︸ ︷︷ ︸
0

+i
[
∂1h1

(
kD
)]

= {δ1}+
[
∂2h1

(
kD
)]
δ2

!≈ i

h2
(
kD
)

︸ ︷︷ ︸
0

+i
[
∂1h2

(
kD
)]

= {δ1}+
[
∂2h2

(
kD
)]
δ2


From which we obtain that{[

∂1h1
(
kD
)]

= {δ1} =
[
∂2h2

(
kD
)]
δ2[

∂2h1
(
kD
)]
δ2 = −

[
∂1h2

(
kD
)]

= {δ1}

or in shorthand notation {
h1,1= {δ1} = h2,2δ2

h2,1= {δ1} = −h1,2δ2

These equation imply {
h1,1

2= {δ1} = h1,1h2,2δ2

h2,1
2= {δ1} = −h2,1h1,2δ2
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δ2 < 0 δ2 > 0

(kD)2

FIGURE 2.2.2. A linear zoom near (kD)2. Even though E] ((kD)2) (red line) has negative slope, rel-
ative to EBl,sup ((kD)2) (thick black line) it has positive slope. This has to be the case when δ2 > 0

because the the red line must always be above the thick black line.

which in turn implies

= {δ1} =
h1,1h2,2 − h1,2h2,1

h1,1 2 + h2,1 2
δ2

• We know that = {δ1} > 0 (that’s the condition for a decaying solution). Following 2.2.4, sgn (δ2) gives
us a way to determine the sign of the degeneracy point for the count of I

]
QH

(
H]
)
. Indeed, iff δ2 > 0

we get a plus sign for the count of the edge index because E] (kD) grows rightwards, which is happens
iff the relative slope of E] ((kD)2) with EBl,sup ((kD)2) is positive, because E] ((kD)2 + δ2) must be above
EBl,sup ((kD)2 + δ2) by definition; this is in agreement with 1.6.3. The analog argument holds if δ2 < 0.
Observe δ2 = 0 is not possible by the stability of the edge spectrum.

• Use the fact that ∂iĥj = 1
‖h‖

[
∂ihj −

〈
ĥ, ∂ih

〉
ĥj

]
to conclude that ∂iĥj

(
kD
)
= 1
h3(kD)

∂ihj∀j ∈ J2 where

h3
(
kD
)
> 0. Thus, the signs are preserved and we can safely replace the condition

∂1ĥ1

(
kD
)
∂2ĥ2

(
kD
)
− ∂1ĥ2

(
kD
)
∂2ĥ1

(
kD
)
> 0

by
∂1h1

(
kD
)
∂2h2

(
kD
)
− ∂1h2

(
kD
)
∂2h1

(
kD
)
> 0

which is what we had in 2.2.1.
• Thus we see that the two signs exactly match because when δ2 > 0, ĥ (kD) is orientation preserving and the

count of the edge index is +1, and the corresponding statement for δ2 < 0.
�

2.3. Bulk-Edge Correspondence for a General Two-Band Hamiltonian

We present our version of the proof in [Mo11], most of which is already contained in 1.5.16.

2.3.1. CLAIM. In a nearest-neighbor approximation, if for a fixed k2, ĥ (k)
∣∣∣
k2

is a loop on S2 parametrized by k1, then

Ch1 (E) is given by the signed number of times ĥ (k)
∣∣∣
k2

crosses as a great circle on S2, where the sign is:

• Positive if
(
êr × êi

)
· ê⊥ went from −1 before crossing to +1 after crossing.

• Negative if
(
êr × êi

)
· ê⊥ went from +1 before crossing to −1 after crossing.

PROOF. First note that in a nearest neighbor approximation we may follow the scheme of 1.5. However, even
though the curve h (k)|k2 is planar, ĥ (k)

∣∣∣
k2

is not necessarily a circle when projected on S2, and so the area ĥ (k)
∣∣∣
k2

encloses is not strictly speaking a cap on S2, so we’ll refer to it as a “cap”.
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We write the formula in 2.1.1 as:

Ch1 (E) =
1

4π

∫2π
0

∫2π
0
ĥ (k) ·

{[
∂k1 ĥ (k)

]
×
[
∂k2 ĥ (k)

]}
dk1dk2

=
1

4π

∫2π
0

(∫2π
0
ĥ (k) ·

{[
∂k1 ĥ (k)

]
×
[
∂k2 ĥ (k)

]}
dk1

)
︸ ︷︷ ︸

f(k2)

dk2

=
1

4π

∫2π
0
f (k2)dk2

The integral in Ch1 (E) gives the total surface covered on the sphere covered by T2, so that the function f is the

rate of change of area-covering, as we change k2. That is,
∫k2=k(2)2
k2=k

(1)
2

f (k2)dk2 gives the area on the sphere enclosed

between the two curves ĥ (k)
∣∣∣
k
(1)
2

and ĥ (k)
∣∣∣
k
(2)
2

. We may thus define the anti-derivative of f (k2) as F (k2) and so

Ch1 (E) =
1

4π
[F (2π) − F (0)]

F is such that F ′ (k2) = f (k2), but we have the freedom to define F (k2) with an arbitrary constant. Define the
constant as follows: Let k(0)2 ∈ S1 be given such that ê⊥

(
k
(0)
2

)
6= 0. Define F

(
k
(0)
2

)
as the area of the “cap”

enclosed by the loop ĥ (k)
∣∣∣
k
(0)
2

, where the “cap” is the one the vector −
(
êr × êi

)
points towards. If such a k(0)2 ∈ S1

does not exist then the claim is automatically satisfied as there are no crossings at all, and Ch1 (E) = 0 indeed
because if ĥ (k)

∣∣∣
k2

covers any area, in order to obey the boundary conditions it will cover a negative area of the

same amount, totaling in zero. F (k2) thus is the amount of area swept on S2 going from k
(0)
2 to some k2. As a side

note, using the Guass-Bonnet theorem we could verify this directly:

Area (k2) = 2π χ︸︷︷︸
1

−

∫
ĥ(k)|k2

kg (s)ds

where kg (s) is the curvature along ĥ (k)
∣∣∣
k2

, s is the arc-length parametrization and χ is the Euler characteristic of

a closed disc.

FIGURE 2.3.1. The ellipse projected onto S2. The projection does not form a circle.
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At any rate, now Ch1 (E) can be computed as the signed number of times F crosses the lines 2πZ, because
ĥ (k)

∣∣∣
k
(0)
2

= ĥ (k)
∣∣∣
k
(0)
2 +2π

as k2 ∈ S1, so that F
(
k
(0)
2 + 2π

)
= n · F

(
k
(0)
2

)
for some n ∈ Z:

Ch1 (E) =
1

4π

[
F
(
k
(0)
2 + 2π

)
− F

(
k
(0)
2

)]
= n

In order to have n 6= 0, the loop ĥ (k)
∣∣∣
k2

must cross as a great circle, and when this happens, F is a multiple of 2π,

as that is the area of exactly half of S2. Furthermore, at the crossings, ê⊥ = 0 because then the ellipse is not offset
perpendicularly from the origin. So there,

(
êr × êi

)
· ê⊥ = 0.

The choice of “cap” we made for F
(
k
(0)
2

)
ensures that the sign of the crossing must be counted as +1 if(

êr × êi
)
· ê⊥ went from being negative to positive and −1 if

(
êr × êi

)
· ê⊥ went from being positive to negative:

• If it happens that
(
êr
(
k
(0)
2

)
× êi

(
k
(0)
2

))
· ê⊥

(
k
(0)
2

)
> 0, then −

(
êr
(
k
(0)
2

)
× êi

(
k
(0)
2

))
points towards the

larger “cap” defined by ĥ (k)
∣∣∣
k
(0)
2

.

• If it happens that
(
êr
(
k
(0)
2

)
× êi

(
k
(0)
2

))
· ê⊥

(
k
(0)
2

)
< 0, then −

(
êr
(
k
(0)
2

)
× êi

(
k
(0)
2

))
points towards the

smaller “cap” defined by ĥ (k)
∣∣∣
k
(0)
2

.

In either case we have that as F crosses the lines 2πZ with positive slope, we necessarily have that
(
êr (k2)× êi (k2)

)
·

ê⊥ (k2) goes from being −1 to +1. As F crosses the lines 2πZ with negative slope,
(
êr (k2)× êi (k2)

)
· ê⊥ (k2) goes

from +1 to −1. �

2.3.2. COROLLARY. For nearest-neighbor two-band models we have

IQH (H) = I
]
QH

(
H]
)

PROOF. Without loss of generality, we set EF = 0. Then, using 1.5.16 we know that there is a zero-energy edge state
iff the ellipse h (k)|k2 contains the origin, and at these points k2 ∈ S1, ĥ (k)

∣∣∣
k2

is a great circle on S2.

Furthermore, from 1.5.21 we know that the sign of the edge energy around zero is given by
(
êr × êi

)
· ê⊥, so

that following the definition Eq. (19):

• −
(E])

′
(k2)∣∣∣(E])
′
(k2)

∣∣∣ = 1 if
(
êr × êi

)
· ê⊥ went from being −1 before the crossing to +1 after the crossing.

• −
(E])

′
(k2)∣∣∣(E])
′
(k2)

∣∣∣ = −1 if
(
êr × êi

)
· ê⊥ went from being +1 before the crossing to −1 after the crossing.

�



CHAPTER 3

The Simplest Topological Insulator: The Four-Band Model

3.1. Gamma Matrices

3.1.1. DEFINITION. Define
Γi, j := σi ⊗ σj

for any (i, j) ∈ (Z4)
2. In components we have(

Γi, j
)
α,β = (σi)bα2 c,

⌊
β
2

⌋ (σj)α%2,β%2

for any (α, β) ∈ (Z4)
2, where % denotes modulo and bxc denotes the floor of x. There are sixteen possible combina-

tions, and thus sixteen Γi, j matrices, of which fifteen are traceless (to be shown below).

3.1.2. CLAIM.
(
Γi, j
)2

= 14×4 and so
(
Γi, j
)−1

= Γi, j for any (i, j) ∈ (Z4)
2.

PROOF. Using the fact that (A⊗B) (C⊗D) = (AC)⊗ (BD) we have:(
Γi, j
)2

=
(
σi ⊗ σj

) (
σi ⊗ σj

)
= (σiσi)⊗

(
σjσj

)
= (12×2)⊗ (12×2)

= 14×4

�

3.1.3. CLAIM.
(
Γi, j
)∗

= Γi, j for any (i, j) ∈ (Z4)
2.

PROOF. Using the fact that (A⊗B)∗ = (A∗)⊗ (B∗) we have and the Hermiticity of the Pauli matrices, we have:(
Γi, j
)∗

=
(
σi ⊗ σj

)∗
= (σ∗i )⊗

(
σ∗j

)
= σi ⊗ σj
= Γi, j

�

3.1.4. CLAIM. Tr
[
Γi, j
]
= 4δi,0δj,0 for any (i, j) ∈ (Z4)

2.

PROOF. Using the fact that Tr [A⊗B] = Tr [A] Tr [B] and the tracelessness of the Pauli matrices we have

Tr
[
Γi, j
]

= Tr
[
σi ⊗ σj

]
= Tr [σi] Tr

[
σj
]

= 2δi,02δj,0

= 4δi,0δj,0

�

3.1.5. CLAIM.
{
Γi, j, Γl,m

}
= 0 iff either (at least two indices are non-zero and non-equal, and another index is zero)

or (all indices are non-zero, and two are non-equal and two are equal).

39
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PROOF. In general we have{
Γi, j, Γl,m

}
≡ Γi, jΓl,m + Γl,mΓi, j

=
(
σi ⊗ σj

)
(σl ⊗ σm) + (σl ⊗ σm)

(
σi ⊗ σj

)
= (σiσl)⊗

(
σjσm

)
+ (σlσi)⊗

(
σmσj

)

=



σi ⊗
{
σj, σm

}
l = 0

σl ⊗
{
σj, σm

}
i = 0

{σl, σi}⊗ σm j = 0{
{σl, σi}⊗ σj m = 0

(σiσl)⊗
(
σjσm

)
+ (σlσi)⊗

(
σmσj

)
m 6= 0

j 6= 0
i 6= 0

l 6= 0

=




2Γi,m j = 0{
2Γi, j m = 0

2δj,mΓi,0 m 6= 0
j 6= 0

l = 0




2Γl,m j = 0{
2Γl, j m = 0

2δj,mΓl,0 m 6= 0
j 6= 0

i = 0


2δl, iΓ0,m j = 0{
2δl, iΓ0, j m = 0

−
∑3
k=1

∑3
r=1 εjmrεilkΓk, r + δilδjmΓ0,0 m 6= 0

j 6= 0
i 6= 0

l 6= 0

thus we see that there are basically six possibilities for the anti-commutator to be zero:
(1) j 6= 0,m 6= 0, j 6= m, l = 0
(2) j 6= 0,m 6= 0, j 6= m, i = 0
(3) i 6= 0, l 6= 0, i 6= l, j = 0
(4) i 6= 0, l 6= 0, i 6= l,m = 0

(5) i 6= 0, l 6= 0, j 6= 0,m 6= 0, i = l, j 6= m
(6) i 6= 0, l 6= 0, j 6= 0,m 6= 0, i 6= l, j = m

�

3.1.6. CLAIM. 1
4Tr

[
Γi, jΓi ′, j ′

]
= δi, i ′δj, j ′ for any (i, j, i ′, j ′) ∈ (Z4)

4.

PROOF. Compute
1

4
Tr
[
Γi, jΓi ′, j ′

]
=

1

4
Tr
[
Γi, jΓi ′, j ′

]
=

1

4
Tr
[(
σi ⊗ σj

) (
σi ′ ⊗ σj ′

)]
=

1

4
Tr
[
(σiσi ′)⊗

(
σj ⊗ σj ′

)]
=

1

4
Tr [σiσi ′ ] Tr

[
σj ⊗ σj ′

]
• But Tr [σiσi ′ ] = 2δi, i ′ using the tracelessness of the Pauli matrices:

Tr [σiσi ′ ] = Tr

[
δi,0δi ′,012×2 + δi,0

(
1− δi ′,0

)
σi ′ + δi ′,0

(
1− δi,0

)
σi +

(
1− δi,0

) (
1− δi ′,0

)(
i
∑
k

εii ′kσk + δi,i ′12×2

)]
= δi,0δi ′,02+

(
1− δi,0

) (
1− δi ′,0

) (
δi,i ′2

)
= 2δi,i ′

�

3.1.7. CLAIM.
{
Γi, j
}

is a linearly independent subset of the vector space Mat4×4 (C).

PROOF. The Pauli matrices form a linearly independent set inMat2×2 (C), and a tensor product of the bases gives
rise to a basis of the tensor product vector space: Mat4×4 (C) =Mat2×2 (C)⊗Mat2×2 (C). �
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3.1.8. COROLLARY. span
({
Γi, j

∣∣∣ (i, j) ∈ (Z4)
2
})

= Herm (4) due to the fact that all the Γi, j matrices are Hermitian and
dim (Herm (4)) = 16.

3.1.9. CLAIM. Any given matrix A ∈ Mat4×4 (C) may be expanded (with coefficients not necessarily real) in the{
Γi, j
}

basis of Hermitian matrices as:

A =
∑

(i, j)∈(Z4)
2

1

4
Tr
[
AΓi, j

]
Γi, j

PROOF. Write a general A ∈Mat4×4 (C) as A = 1
2 (A+A∗)︸ ︷︷ ︸

B1

−12 i [i (A−A∗)]︸ ︷︷ ︸
B2

.

• Observe that (B1, B2) ∈ [Herm (4)]2 by construction.
• Write Bl =

∑
(i, j)∈(Z4)

2 cli, jΓi, j∀l ∈ J2 , which is always possible because of the preceding claim, where
the coefficients are real.

• Multiply Bl by Γi ′, j ′ and take the trace to get:

Tr
[
BlΓi ′, j ′

]
= Tr

 ∑
(i, j)∈(Z4)

2

cli, jΓi, jΓi ′, j ′


=

∑
(i, j)∈(Z4)

2

cli, jTr
[
Γi, jΓi ′, j ′

]
=

∑
(i, j)∈(Z4)

2

δii ′δjj ′4c
l
i, j

= 4cli ′, j ′

• Thus we have

A =
1

2
B1 −

1

2
iB2

=
1

2

∑
(i, j)∈(Z4)

2

c1i, jΓi, j −
1

2
i

∑
(i, j)∈(Z4)

2

c2i, jΓi, j

=
1

2

∑
(i, j)∈(Z4)

2

c1i, jΓi, j −
1

2
i

∑
(i, j)∈(Z4)

2

c2i, jΓi, j4

=
1

2

∑
(i, j)∈(Z4)

2

1

4
Tr
[
B1Γi, j

]
Γi, j −

1

2
i

∑
(i, j)∈(Z4)

2

1

4
Tr
[
B2Γi, j

]
Γi, j4

=
1

2

∑
(i, j)∈(Z4)

2

1

4

{
Tr
[
B1Γi, j

]
− iTr

[
B2Γi, j

]}
Γi, j

=
∑

(i, j)∈(Z4)
2

1

4
Tr

[(
1

2
B1 −

1

2
iB2

)
Γi, j

]
Γi, j

=
∑

(i, j)∈(Z4)
2

1

4
Tr
[
AΓi, j

]
Γi, j

�

3.1.10. DEFINITION. Define an inner product 〈A, B〉 := 1
4Tr [A

∗B] on Mat4×4 (C).

3.1.11. CLAIM. This is indeed an inner product.

PROOF. Firstly, 〈A, B〉 = 1
4Tr [A

∗B] = 1
4Tr

[
(A∗B)∗

]
= 1
4Tr [B

∗A] ≡ 〈B, A〉.
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• Let A ∈Mat4×4 (C) be given. Then

〈A, A〉 =
1

4
Tr [A∗A]

=
1

4
Tr

∑
i,j

ci, jΓi, j

∗∑
i ′,j ′

ci ′, j ′Γi ′, j ′


=

1

4
Tr

∑
i,j

ci, jΓi, j

∑
i ′,j ′

ci ′, j ′Γi ′, j ′


=

1

4

∑
i,j

∑
i ′,j ′

ci, jci ′, j ′Tr
[
Γi, jΓi ′, j ′

]
=
∑
i,j

∣∣ci,j∣∣2
> 0

from this computation we also see that 〈A, A〉 = 0 iff A = 0.
• Next, to verify conjugate-linearity in the first slot,

〈αA+βB, C〉 =
1

4
Tr
[
(αA+βB)∗ C

]
= α

1

4
Tr [A∗C] +β

1

4
Tr [B∗C]

= α 〈A, C〉+β 〈A, C〉

• Thus 〈, 〉 is indeed an inner product, and in fact we have also shown that
{
Γi, j
}

is an orthonormal basis in
this inner product.

�

3.1.12. CLAIM. Six of the
{
Γi, j
}

matrices are time-reversal invariant and the remaining ten are odd under time-
reversal. In particular, the even ones are given by

TREI := { (2, 1) , (2, 2) , (2, 3) , (0, 0) , (1, 0) , (3, 0) } (28)

where TREI stands for “Time-reversal Even Indices”.

PROOF. Using the definition given in 1.2.3, we have that

ε = −iΓ0,2

• Let (i, j) ∈ (Z4)
2 be given.

• Then using the above preceding claims:

ΘΓi, jΘ
−1 = −iΓ0,2CΓi, j

(
−iΓ0,2C

)−1
= −iΓ0,2CΓi, jC

(
+iΓ0,2

)
= −iΓ0,2Γi, j CC︸︷︷︸

1

(
+iΓ0,2

)
= Γ0,2Γi, jΓ0,2

• Compute Γi, jΓ0,2:

Γi, jΓ0,2 =
(
σi ⊗ σj

)
(σ0 ⊗ σ2)

= (σiσ0)⊗
(
σjσ2

)
= σi ⊗

(
δj,0σ2 +

(
1− δj,0

) [
i

3∑
l=1

εlj2σl + δj,2σ0

])

= δj,0Γi,2 +
(
1− δj,0

)(
i

3∑
l=1

εlj2Γi, l + δj,2Γi,0

)
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and Γ0,2Γi, j:

Γ0,2Γi, j = (σ0 ⊗ σ2)
(
σi ⊗ σj

)
= (σ0σi)⊗

(
σ2σj

)
= σi ⊗

(
δj,0σ2 +

(
1− δj,0

) [
i

3∑
l=1

εl2jσl + δj,2σ0

])

= δj,0Γi,2 +
(
1− δj,0

)(
i

3∑
l=1

εl2jΓi, l + δj,2Γi,0

)
• Now use the fact that σi = σi (−1)δi,2 and so

Γi, j = σi ⊗ σj
= σi ⊗ σj
= (−1)δi,2+δj,2 Γi, j

to get:

TΓi, jT
−1 = (−1)δi,2+δj,2 Γ0,2Γi, jΓ0,2

= (−1)δi,2+δj,2 Γ0,2

[
δj,0Γi,2 +

(
1− δj,0

)(
i

3∑
l=1

εlj2Γi, l + δj,2Γi,0

)]

= (−1)δi,2+δj,2

δj,0 Γ0,2Γi,2︸ ︷︷ ︸
Γi,0

+
(
1− δj,0

)
i

3∑
l=1

εlj2 Γ0,2Γi, l︸ ︷︷ ︸(
i
∑3
k=1 εk2lΓi,k+δl,2Γi,0

)+δj,2 Γ0,2Γi,0︸ ︷︷ ︸
Γi,2




= (−1)δi,2+δj,2

δj,0Γi, j +
(
1− δj,0

)
−

3∑
k=1

3∑
l=1

εlj2εlk2︸ ︷︷ ︸
δj,kδ2,2−δj,2δk,2

Γi,k + δj,2Γi, j




= (−1)δi,2+δj,2

[
δj,0Γi, j +

(
1− δj,0

) (
−Γi, j + 2δj,2Γi, j

)]
= (−1)δi,2+δj,2

[
δj,0Γi, j +

(
1− δj,0

) (
−
(
1− δj,2 + δj,2

)
Γi, j + 2δj,2Γi, j

)]
= δj,0 (−1)

δi,2+δj,2 Γi, j +
(
1− δj,0

) (
1− δj,2

)
(−1)δi,2+δj,2+1 Γi, j +

(
1− δj,0

)
δj,2 (−1)

δi,2+δj,2 Γi, j

= δj,0 (−1)
δi,2 Γi, j + δj,2 (−1)

δi,2+1 Γi, j +
(
1− δj,0

) (
1− δj,2

)
(−1)δi,2+1 Γi, j

= δj,0 (−1)
δi,2 Γi, j +

(
1− δj,0

)
(−1)δi,2+1 Γi, j

• As a result we see that there are exactly 6 combination of indices for which ΘΓi, jΘ−1 = Γi, j: j = 0, i 6= 2 (3
indices) and j 6= 0 and i = 2 (3 indices). This matches the definition of Eq. (28). For the other 10 indices,
ΘΓi, jΘ

−1 = −Γi, j.
�

3.1.13. CLAIM. Six of the
{
Γi, j
}

matrices are spacetime-inversion invariant and the remaining ten are odd under this
composite transformation. In particular, the even ones are given by

STREI := { (0, 0) , (1, 0) , (2, 0) , (3, 1) , (3, 2) , (3, 3) } (29)

where STREI stands for “Space-Time-Reversal Even Indices”.

PROOF. Following [Fu07], we define the parity (space reversal) operator Π as

Π := Γ1,0

An even index pair (i, j) is such that
(ΠΘ) Γi, j (ΠΘ)

−1 = Γi, j

• Let (i, j) ∈ (Z4)
2 be given.
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• Then using the above we have:

ΠΘΓi, j (ΠΘ)
−1 = Γ1,0 (−i) Γ0,2CΓi, j

(
Γ1,0 (−i) Γ0,2C

)−1
= Γ1,0 (−i) Γ0,2CΓi, jCΓ0,2 (+i) Γ1,0

= Γ1,0Γ0,2Γi, jΓ0,2Γ1,0

= Γ1,0TΓi, jT
−1Γ1,0

= Γ1,0

[
δj,0 (−1)

δi,2 Γi, j +
(
1− δj,0

)
(−1)δi,2+1 Γi, j

]
Γ1,0

= δj,0 (−1)
δi,2 Γ1,0Γi, jΓ1,0 +

(
1− δj,0

)
(−1)δi,2+1 Γ1,0Γi, jΓ1,0

• Compute Γi, jΓ1,0:

Γi, jΓ1,0 =
(
σi ⊗ σj

)
(σ1 ⊗ σ0)

= (σiσ1)⊗
(
σjσ0

)
=

(
δi,0σ1 +

(
1− δi,0

)(
i

3∑
l=1

εi1lσl + δi1σ0

))
σj

= δi,0Γ1, j +
(
1− δi,0

)(
i

3∑
l=1

εi1lΓl, j + δi1Γ0, j

)
and Γ1,0Γi, j:

Γ1,0Γi, j = (σ1 ⊗ σ0)
(
σi ⊗ σj

)
= (σ1σi)⊗

(
σ0σj

)
=

(
δi,0σ1 +

(
1− δi,0

)(
i

3∑
l=1

ε1ilσl + δi1σ0

))
σj

= δi,0Γ1, j +
(
1− δi,0

)(
i

3∑
l=1

ε1ilΓl, j + δi1Γ0, j

)
• As a result we have that

Γ1,0Γi, jΓ1,0 = Γ1,0

{
δi,0Γ1, j +

(
1− δi,0

)(
i

3∑
l=1

εi1lΓl, j + δi,1Γ0, j

)}

= δi,0 Γ1,0Γ1, j︸ ︷︷ ︸
Γ0, j

+
(
1− δi,0

)i 3∑
l=2

εi1l Γ1,0Γl, j︸ ︷︷ ︸
i
∑3
l ′=2 ε1ll ′Γl ′ , j

+δi,1 Γ1,0Γ0, j︸ ︷︷ ︸
Γ1, j



= δi,0Γi, j +
(
1− δi,0

)


3∑
l ′=2

3∑
l=2

εi1lε1l ′l︸ ︷︷ ︸
δi,1δ1,l ′−δi,l ′δ1,1

Γl ′, j + δi,1Γi, j


= δi,0Γi, j +

(
1− δi,0

) (
−
(
1− δi,1

)
Γi, j + δi,1Γi, j

)
= −

(
1− δi,0

) (
1− δi,1

)
Γi, j +

(
δi,0 + δi,1

)
Γi, j

= (−1)δi,2+δi,3 Γi, j

so that

ΠΘΓi, j (ΠΘ)
−1 = δj,0 (−1)

δi,2 (−1)δi,2+δi,3 Γi, j +
(
1− δj,0

)
(−1)δi,2+1 (−1)δi,2+δi,3 Γi, j

= δj,0 (−1)
δi,3 Γi, j +

(
1− δj,0

)
(−1)1+δi,3 Γi, j

• Thus we see that those indices that are ΠΘ invariant are j = 0 and i 6= 3 or alternatively j 6= 0 and i = 3:
(0, 0), (1, 0), (2, 0), (3, 1), (3, 2), (3, 3), as in Eq. (29).

�
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3.2. Setting

As a consequence of 3.1.9, when N = 4, the most general Bloch decomposed Hamiltonian may be written as

HB (k) =
∑

(i, j)∈(Z4)
2

di, j (k) Γi, j

with real coefficients
di, j (k) =

1

4
Tr
[
HB (k) Γi, j

]
but we don’t use the particular form of the di, j coefficients.

Using 1.6.5 and 1.7.9 we may without loss of generality assume that d0,0 (k) = 0, using the fact that it would
merely shift the bulk spectrum by a constant amount at each point k, but cannot close the gap. Furthermore, we
assume that HB (k) is time-reversal invariant, as in Eq. (3), which now after Bloch decomposition on the k1 axis is
given by 1.3.1:

HB (−k) = ΘHB (k)Θ−1 (30)
and finally we assume that there is always (∀k ∈ T2) a gap between the two lower bands and the two upper bands.
Note that we do allow for the two lower bands intersect, and similarly for the two upper bands.

3.2.1. CLAIM. Due to Eq. (30) it follows that

di, j (−k) = di, j (k) ∀ (i, j) ∈ TREI
and

di, j (−k) = −di, j (k) ∀ (i, j) /∈ TREI

PROOF.
• Assume Eq. (30).
• Then

Θ

 ∑
(i, j)∈(Z4)

2

di, j (k) Γi, j

Θ−1 =
∑

(i, j)∈(Z4)
2

di, j (−k) Γi, j


 ∑

(i, j)∈TREI
di, j (k)ΘΓi, jΘ

−1︸ ︷︷ ︸
Γi, j

+

 ∑
(i, j)∈TREIc

di, j (k)ΘΓi, jΘ
−1︸ ︷︷ ︸

−Γi, j


 =

∑
(i, j)∈(Z4)

2

di, j (−k) Γi, j

∑
(i, j)∈TREI

di, j (k) Γi, j −
∑

(i, j)∈TREIc
di, j (k) Γi, j =

∑
(i, j)∈(Z4)

2

di, j (−k) Γi, j

• Now we can use the inner product and the fact that the Γi, j matrices are orthogonal with respect to it
deduce the claim.

�

The following claim is not strictly necessary for the succession of the correspondence proof.

3.2.2. CLAIM. The most general Hamiltonian can be described by a total of 10 real functions on T2 (instead of the
original 15).
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PROOF. As a result of the above symmetries there are a few simplifications we can make to the Hamiltonian
(written here over two lines to fit on the page)

di, j (k) Γi, j =


d03 (k) + d30 (k) + d3,3 (k) d01 (k) + d31 (k) + i [−d02 (k) − d32 (k)] ↓ ↓

. . . −d03 (k) + d30 (k) − d33 (k) ↓ ↓

. . . . . . ↓ ↓

. . . . . . . . . . . .



=


↑ ↑ d10 (k) + d13 (k) + i [−d23 (k) − d20 (k)] d11 (k) − d22 (k) + i [−d12 (k) − d21 (k)]

. . . ↑ d11 (k) + d22 (k) + i [d12 (k) − d21 (k)] d10 (k) − d13 (k) + i [d23 (k) − d20 (k)]

. . . . . . d03 (k) − d30 (k) − d33 (k) d01 (k) − d31 (k) + i [d32 (k) − d02 (k)]

. . . . . . . . . . . .



=


d03 (k) + d30 (k) + d3,3 (k) d01 (k) + d31 (k) + i [−d02 (k) − d32 (k)] ↓ ↓

. . . d03 (−k) + d30 (−k) + d33 (−k) ↓ ↓

. . . . . . ↓ ↓

. . . . . . . . . . . .



=


↑ ↑ d10 (k) + d13 (k) − i [d23 (k) + d20 (k)] d11 (k) − d22 (k) + i [−d12 (k) − d21 (k)]

. . . ↑ −d11 (−k) + d22 (−k) + i [−d12 (−k) − d21 (−k)] d10 (−k) + d13 (−k) + i [d23 (−k) + d20 (−k)]

. . . . . . d03 (k) − d30 (k) − d33 (k) d01 (k) − d31 (k) + i [d32 (k) − d02 (k)]

. . . . . . . . . . . .



=


d03 (k) + d30+33 (k) d01 (k) + d31 (k) − i [d32 (k) + d02 (k)] ↓ ↓

. . . d03 (−k) + d30+33 (−k) ↓ ↓

. . . . . . ↓ ↓

. . . . . . . . . . . .



=


↑ ↑ d10+13 (k) − id23+20 (k) d11−22 (k) − id12+21 (k)

. . . ↑ −d11−22 (−k) − id12+21 (−k) d10+13 (−k) + id23+20 (−k)

. . . . . . d03 (k) − d30+33 (k) d01 (k) − d31 (k) + i [d32 (k) − d02 (k)]

. . . . . . . . . . . .



=


d1 (k) z3 (k) z5 (k) z6 (k)

. . . d1 (−k) −z6 (−k) z5 (−k)

. . . . . . d2 (k) z4 (k)

. . . . . . . . . . . .


where we use the shorthand notation of dij±lm (k) to denote dij (k) ± dlm (k), and have defined the two real
functions

d1 (k) := d03 (k) + d30+33 (k)

d2 (k) := d03 (k) − d30+33 (k)

and four complex functions
z3 (k) := d01 (k) + d31 (k) − i [d32 (k) + d02 (k)]

z4 (k) := d01 (k) − d31 (k) + i [d32 (k) − d02 (k)]

z5 (k) := d10+13 (k) − id23+20 (k)

z6 (k) := d11−22 (k) − id12+21 (k)

The fact we merge the dij±lm (k) coefficients is because their constituents do not appear independently. So we
have reduced the problem from 15 real functions,{

d(i, j)

}
(i, j)∈(Z4)

2\{ (0,0) }
⊂ RT2

to 10 real functions on T2:
{ d1, d2 }∪ { < {zi} , = {zi} }i∈{ 3,4,5,6 } ⊂ RT2

For the new functions, we have the following symmetries:
• <{z3 (k)} ≡ d01 (k) + d31 (k) = −d01 (−k) − d31 (−k) ≡ −<{z3 (−k)}

• = {z3 (k)} ≡ −d32 (k) − d02 (k) = d32 (−k) + d02 (−k) ≡ −= {z3 (−k)}

• Thus, z3 (k) = −z3 (−k).
• Similarly, z4 (k) = −z4 (−k).
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• (d1 + d2) (k) = − (d1 + d2) (−k).
There are no other symmetries. �

3.2.3. CLAIM. Let A ⊂ (Z4)
2 \ { (0, 0) } be given such that

{
Γi, Γj
}
= 2δi,j∀ (i, j) ∈ A2. If

dj (k) =
1

4
Tr
[
HB (k) Γj

]
= 0 ∀j ∈ Ac

then 1.7.7 reduces to

IKM (H) =

{
0 |A∩ TREI| > 1
1
iπ log

(∏
k∈TRIM sgn (de (k))

)
A∩ TREI = { e }

(31)

PROOF. We divide into two cases according to Eq. (31):
(1) Case 1: A∩ TREI = { e }.

The following proof is a generalization of one given in [Fu07] for the case of spacetime-inversion
symmetric systems, where here Γe takes the role of space-inversion.

3.2.4. CLAIM.
[
HB (k) , ΓeΘ

]
= 0.

PROOF. We calculate [
HB (k) , ΓeΘ

]
=

[∑
i∈A

di (k) Γi, ΓeΘ

]
=
∑
i∈A

di (k) [Γi, ΓeΘ]

=
∑

i∈A\{ e }

di (k) [Γi, ΓeΘ] + de (k) [Γe, ΓeΘ]

But

[Γe, ΓeΘ] = ΓeΓeΘ− ΓeΘΓe
e∈TREI

= ΓeΓeΘ− ΓeΓeΘ

= 0

and

[Γi, ΓeΘ] = ΓiΓeΘ− ΓeΘΓi
i/∈TREI

= ΓiΓeΘ+ ΓeΓiΘ

= {Γi, Γe}︸ ︷︷ ︸
0

Θ

= 0

�

3.2.5. CLAIM. HB (−k) = ΓeH
B (k) (Γe)

−1
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PROOF. From 3.2.4 it follows that

HB (k) = ΓeΘH
B (k) (ΓeΘ)

−1

= ΓeΘH
B (k)Θ−1 (Γe)

−1

and using Eq. (30) we then have that

HB (−k) = ΘHB (k)Θ−1

= Θ
[
ΓeΘH

B (k)Θ−1 (Γe)
−1
]
Θ−1

= ΘΘΓeH
B (k) (Γe)

−1Θ−1Θ−1

= (−1) ΓeH
B (k) (Γe)

−1 (−1)

= ΓeH
B (k) (Γe)

−1

where we have used that if [A, B] =⇒
[
A−1, B−1

]
as well as A2 = −1 =⇒

(
A−1

)2
= −1. �

3.2.6. DEFINITION. Define a 2× 2 matrix by its components

vm,n (k) = 〈ψm (k) , ΓeΘψn (k)〉 ∀ (m,n) ∈ (J2)
2

where ψn (k) ∈ C4 is the nth eigenstate of HB (k) and we are assuming that the 1 and 2 bands are the
occupied ones.

3.2.7. CLAIM. v (k) is an anti-symmetric matrix.

PROOF. Note that due to Θ being anti-linear, we have that 〈Θφ, Θχ〉 = 〈φ, χ〉 = 〈χ, φ〉 so that

vmn (k) ≡ 〈ψm (k) , ΓeΘψn (k)〉
= 〈ΘΓeΘψn (k) , Θψm (k)〉

e∈TREI
= 〈ΓeΘΘψn (k) , Θψm (k)〉
= − 〈Γeψn (k) , Θψm (k)〉
= −

〈
ψn (k) , (Γe)∗Θψm (k)

〉
(Γl)

∗=Γl
= − 〈ψn (k) , ΓeΘψm (k)〉
≡ −vnm (k)

�

3.2.8. COROLLARY. The Pfaffian of v (k) is defined and it is given by

Pf [v (k)] = v12 (k)

3.2.9. CLAIM. |Pf [v (k)]| = 1.
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PROOF. Using 3.2.4 we have that ψm (k) and ΓeΘψm (k) are both eigenstates of the same energy.

CLAIM. ΓeΘψm (k) is linearly independent of ψm (k).

PROOF. Assume otherwise. Then
ΓeΘψm (k) = αψm (k) (32)

for some α ∈ C. Apply ΓeΘ on both sides of Eq. (32) to obtain on the one hand:

ΓeΘΓeΘψm (k) = −ψm (k)

and on the other hand

ΓeΘΓeΘψm (k) = ΓeΘαψm (k)

= αΓeΘψm (k)

= |α|2ψm (k)

so that we have |α|2 = −1 which is not possible. �

As a result, because there are only two states, we conclude that ψ1 (k) = eiθ(k)ΓeΘψ2 (k) for some
θ : T2 → R.

We then have that

|Pf [v (k)]| = |v12 (k)|

= |〈ψ1 (k) , ΓeΘψ2 (k)〉|

=
∣∣∣〈ψ1 (k) , e−iθ(k)ψ1 (k)

〉∣∣∣
=

∣∣∣e−iθ(k) 〈ψ1 (k) , ψ1 (k)〉
∣∣∣

= 1

�

3.2.10. CLAIM. Without loss of generality, we may assume that we are in such a gauge such that Pf [v (k)] =
1.

PROOF. Under the action of a gauge transformation of the form

ψn (k)
G7→ eiα(k)δn,1ψn (k)

Pf [v (k)] transforms as

Pf [v (k)]
G7→

〈
eiα(k)ψ1 (k) , ΓeΘψ2 (k)

〉
= e−iα(k) 〈ψ1 (k) , ΓeΘψ2 (k)〉
= e−iα(k)Pf [v (k)]

Thus, according to 3.2.9, Pf [v (k)] = e−iθ(k) and so if we pick α = −θ then we can make sure that
Pf [v (k)] = 1 for all k ∈ T2. �

3.2.11. CLAIM. Using 3.2.10 we then have that

det [w (k)] = 1

where w was defined in Eq. (23).



3.2. SETTING 50

PROOF. Observe that
span

(
{Θψm (k) }2m=1

)
= span

(
{ψm (−k) }2m=1

)
so that

vmn (−k) = 〈ψm (−k) , ΓeΘψn (−k)〉

=
∑
l∈J2

〈ψm (−k) , Θψl (k)〉 〈Θψl (k) , ΓeΘψn (−k)〉

=
∑
l∈J2

wml (k) 〈Θψl (k) , ΓeΘψn (−k)〉

=
∑
l∈J2

wml (k)
〈
(Γe)

∗Θψl (k) , Θψn (−k)
〉

=
∑
l∈J2

wml (k) 〈ΓeΘψl (k) , Θψn (−k)〉

=
∑

(l, r)∈(J2)2
wml (k) 〈ΓeΘψl (k) , ψr (k)〉 〈ψr (k) , Θψn (−k)〉

=
∑

(l, r)∈(J2)2
wml (k) 〈ψr (k) , ΓeΘψl (k)〉

〈
Θ2ψn (−k) , Θψr (k)

〉
=

∑
(l, r)∈(J2)2

wml (k) vrl (k) (−1)wnr (k)

v=−vT
=

∑
(l, r)∈(J2)2

wml (k) vlr (k)wnr (k)

so that we find the matrix equation

v (−k) = w (k) v (k) [w (k)]T

Taking the Pfaffian of this equation we have then that

Pf [v (−k)] = Pf
[
w (k) v (k) [w (k)]T

]
and using the identity Pf

[
XAXT

]
= Pf [A]det [X] we then have

Pf [v (−k)] = Pf
[
v (k)

]
det [w (k)]

and the result follows. �

Note that because HB (k) is comprised of anti-commuting gamma matrices, we may employ 1.5 to
obtain that the two lower bands are always-degenerate with energy

EBlower (k) = −‖d (k)‖

Next, due to the fact that det [w (k)] = 1 for all k ∈ T2, we don’t need to worry about picking the right
branch of

√
det [w (k)] continuously over T2 and thus Eq. (25) reduces to

IKM (H) :=
1

iπ
log

( ∏
k∈TRIM

1

Pf [w (k)]

)
and our only concern is to compute Pf [w (k)] at k ∈ TRIM. But At k ∈ TRIM, HB (k) = de (k) Γe because of
di (−k) = −di (k) ∀i /∈ TREI. Thus we have

de (k) Γeψn (k) = − |de (k)|ψn (k)

Γeψn (k) = −sgn (de (k))ψn (k)
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Then we calculate w (k) at k ∈ TRIM:

wmn (k) ≡ 〈ψm (−k) , Θψn (k)〉
= 〈ψm (k) , Θψn (k)〉
= 〈ψm (k) , ΓeΓeΘψn (k)〉
= 〈Γeψm (k) , ΓeΘψn (k)〉
= −sgn (de (k)) 〈ψm (k) , ΓeΘψn (k)〉
= −sgn (de (k)) vmn (k)

so that

Pf [w (k)] = w12 (k)

= −sgn (de (k)) v12 (k)

= −sgn (de (k))Pf [v (k)]

= −sgn (de (k))

And the result follows using the fact that |TRIM| ∈ 2N.
Note that in particular, de (k) 6= 0∀k ∈ TRIM because otherwise d = 0 at such a point, and then the

gap closes, which by hypothesis is not possible.

(2) Case 2: |A∩ TREI| > 1.
(a) Case 2.1: A ⊆ TREI.

In this case we have that all dj (k) coefficients are symmetric, and as a result, the TRI condition
HB (−k) = ΘHB (k)Θ−1 becomes

[
HB (k) , Θ

]
= 0 by virtue of HB (−k) = HB (k).

3.2.12. DEFINITION. Define a matrix u by its components

umn (k) := 〈ψm (k) , Θψn (k)〉 ∀ (m, n) ∈ (J2)
2

It is easy to verify just as above that u is anti-symmetric (unlike w, but like v) on the whole of T2.

3.2.13. CLAIM. |Pf [u (k)]| = 1.

PROOF. Using
[
HB (k) , Θ

]
= 0we have that ψn (k) and Θψn (k) are eigenstates of the same energy,

but as above, they cannot be linearly dependent so that ψ1 (k) = eiθ(k)Θψ2 (k) for some θ : T2 →
R. �

Again, we pick a gauge in which Pf [u (k)] = 1 and similarly we have again that u (−k) = w (k)u (k) [w (k)]T

so that det [w (k)] = 1 here as well. On k ∈ TRIM, w = u and so Pf [w (k)] = 1 for all k ∈ TRIM. As a
result, in this case we find that

IKM (H) = 0

(b) Case 2.2: HB (k) = HB0 ∀k ∈ T2.
Here we actually still have HB (k) = HB (−k) trivially and so the preceding case covers this one.

(c) Case 2.3: None of the above.

3.2.14. CLAIM. If |A∩ TREI| > 1 then HB (k) is nullhomotopic (to be justified in 3.2.15).

As a result, we may adiabatically transform HB (k) to a constant and so IKM (H) = 0 again.
�

3.2.15. REMARK. The formula in 3.2.3 can also be justified using a geometric argument.

PROOF. First note that without loss of generality we may assume that
∣∣EB (k)

∣∣ = 1, as such a smooth change to
HB would not close the gap. As a result, ‖d (k)‖ = 1 at all points k ∈ T2. Also note that due to the Clifford
algebra, the maximal value of |A| is 5 so that in the general case we therefore have d (k) ∈ S4 and this defines a
map T2 3 k 7→ d (k) ∈ S4 which we seek to classify, up to homotopies which preserve TRI. Note that in this setting,
preserving TRI means preserving the evenness or oddness of the componenets of d.

Our way to make this classification follows the beginning of [Mo07] closely: we work with the EBZ (“effective
brillouin zone”), where due to Eq. (30), HB (k) can be fully specified on merely half of T2, with special boundary
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k−k

k̃

−k̃

FIGURE 3.2.1. Instead of specifying Hamiltonians on the whole of T2, we only need to specify
Hamiltonians in the shaded area. Within that area, TRI does not need to be enforced. The dashed
cyan lines are stiched together as before to form a cylinder, and the red and blue circles must still
obey TRI, because their k and −k partners are both included in the effective brillouin zone.

conditions. In the interior of the half-torus there is no need to employ Eq. (30) because there is no partner −k

included in the EBZ for each given k ∈ EBZ. That is, except at the boundary circles.
Concretely, we pick the EBZ half torus to work on as k1 ∈ [−π, π] and k2 ∈ [0, π]. Then, the upper-right

quadrant k ∈ [0, π]× [0, π] specifies what happens on the lower-left quadrant k ∈ [−π, 0]× [−π, 0] and similarly the
upper-left quadrant specifies what happens on the lower-right quadrant, all thanks to Eq. (30). We still need to stich
together the two boundaries at the lines k1 = π and k1 = −π so that we are left with a cylinder: (k1, k2) ∈ S1× [0, π]
where k1 can be thought of as the angle parameter of the cylinder and k2 is the “height” parameter of the cylinder.
Notice that the two circles at the top and the bottom of S1 × [0, π] are included in the EBZ.

k2

(0, 0) (π, 0)

(0,π) (π,π)

FIGURE 3.2.2. The resulting cylinder from the effective Brillouin zone. The upper and lower discs
are not included, but their boundary circles (red and blue) are, and only on them do we enforce TRI.

N

S

FIGURE 3.2.3. A path on S4 (here depicted as S2 for simplicity) which has to start at N and end at S
cannot be deformed into one that starts and ends at N.
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We now turn to the boundary conditions: Even though HB (k) has no further conditions on S1 × (0, π), on the
boundary circles, S1 × { 0 } and S1 × { π }, however, we must obey Eq. (30), because the partners k and −k do both
belong to the EBZ for these circles.

To classify the maps from the cylinder S1 × [0, π] → S4 with special boundary conditions, we start by classi-
fying maps from the boundary circles S1 → S4 with special boundary conditions. For definiteness pick the lower
boundary circle S1 × {0}. Then we write for breviy d (k1, 0) as d1 (k1). If there were no boundary conditions, this
classification would be given by π1

(
S4
)

which is just {1} and so there is just one trivial class in this case. Otherwise,
the special conditions force that di (0) = di (π) = 0 for all i ∈ A\TREI and otherwise they force that the loop S1 → S4

is symmetric:

di (−k1) =

{
di (k1) i ∈ TREI
−di (k1) i /∈ TREI

so that it suffices to specify what happens just from k1 = 0 until k1 = π. Thus, the class of loops S1 → S4 obeying
the special boundary conditions is the class of paths [0, π]→ S4 which end and start on{

d ∈ S4
∣∣∣ di = 0∀i ∈ A\TREI} =: Ŝ

In general the possible classes of these maps are all nullhomotopic if Ŝ is a path connected subset of S4: given a
mapping d : S1 → S4 that is not constant, we may find a path γ : [0, 1]→ Ŝ connecting γ (0) = d (0) and γ (1) = d (π)
and then define a homotopy between a path d : [0, π] → S4 and a loop d̃ : [0, π] → S4 which follows γ, and so
d̃ (π) = d̃ (0). We may then concatenate this homotopy with a homotopy that shrinks the loop d̃ : [0, π] → S4 to a
point, and thus d : S1 → S4 is nullhomotopic. If, however, Ŝ is not path-connected, then we see that the classes of
paths d : [0, π]→ S4 are organized by the path-connected components of Ŝ.

3.2.16. CLAIM. Ŝ is path-connected if |A\TREI| 6 1. Ŝ has two path-connected components if |A\TRIE| ∈ { 2, 3, 4 }.
There are no other possibilities.

PROOF. As the largest value of |A| is five we see that the possibilities are |A\TREI| ∈ { 0, 1, 2, 3, 4, 5 }. First note
that if |A\TREI| = 5 then di (0) = 0 for all i ∈ A and so, in particular, d (0) /∈ S4. As a result, it is not possible that
|A\TREI| = 5.

If |A\TREI| = 0, then Ŝ ≡

 d ∈ S4
∣∣∣∣∣∣ di = 0∀i ∈ A\TREI︸ ︷︷ ︸

∅

 = S4 which is path-connected.

If |A\TREI| = 1, then Ŝ is a sphere of lower dimension Ŝ ≡
{
d ∈ S4

∣∣ di = 0∀i ∈ A\TREI } ∼= S3 which is
path-connected.

If |A\TREI| = 4, then since on Ŝ, di = 0∀i ∈ A\TREI, there is only one index left which is not zero, call it e:
{ e } = A ∩ TREI, and since all other indices are zero, that one index must be ±1, as we must have at all times
‖d‖ = 1. As a result, we have only two points Ŝ = { dN, dS } where (dN)e = 1, (dS)e = −1. The two-point-set has
two path-connected components.

If |A\TREI| ∈ { 2, 3 }, then it turns out (by using 3.1.5) that if we make the additional requirement that the
set { Γi }i∈A anti-commutes, then we can find either two or three odd gamma-matrices which anti-commute, and
additionally only one even gamma matrix which also anti-commutes with the other odd ones. To reiterate, in
this case, it turns out that A ∩ TREI = { e } just as in the case |A\TREI| = 4 and so we again have only two points
Ŝ = { dN, dS } where (dN)e = 1, (dS)e = −1.

In particular, our analysis is valid even when |A| < 5. �

As a result of the above claim, we only need to consider the case where Ŝ has two path-connected components,
which we call ŜN and ŜS. Then A∩ TREI = { e }.

3.2.17. CLAIM.
∏
k∈TRIM sgn (de (k)) = −1 iff d : S1× [0, π]→ S4 is not nullhomotopic, and

∏
k∈TRIM sgn (de (k)) =

+1 iff d is nullhomotopic.
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PROOF. For d : S1 × {0}→ S4 (the lower boundary circle) there are in general four possibilities:
• NN: d (0, 0) ∈ ŜN and d (π, 0) ∈ ŜN.
• SS: d (0, 0) ∈ ŜS and d (π, 0) ∈ ŜS.
• NS: d (0, 0) ∈ ŜN and d (π, 0) ∈ ŜS.
• SN: d (0, 0) ∈ ŜS and d (π, 0) ∈ ŜN.

and d : S1× {π}→ S4 (the upper circle) is classified exactly the same. To classify the full maps d : S1× [0, π]→ S4,
observe that what happens in the interior of the cylinder (S1 × (0, π)) is completely unconstrained and so it is
only the two loops on the boundaries (d : S1 × {0} → S4 and d : S1 × {π} → S4) which determine the class of the
full map d : S1 × [0, π]→ S4.

Next, observe that we may adiabatically rotate S4 so as to exchange ŜN ↔ ŜS. This can be done indepen-
dently ∀k2 ∈ S1. As a result we really only have four classes for the whole cylinder map:

• NN at k2 = 0, NN at k2 = π.
• NN at k2 = 0, NS at k2 = π.
• NS at k2 = 0, NN at k2 = π.
• NS at k2 = 0, NS at k2 = π.

We can write this in a more suggestive form, which codifies the geometry of T2 by
[
k2 = π,k1 = 0 k2 = π,k1 = π

k2 = 0,k1 = 0 k2 = 0,k1 = π

]
:

•
[
N N

N N

]
•
[
N S

N N

]
•
[
N N

N S

]
•
[
N S

N S

]
The next freedom we can exploit is to exchange k1 ↔ k2 so that a map like

[
N S

N S

]
becomes

[
S S

N N

]
, after which

we may compose another switch on S4 of ŜN ↔ ŜS to obtain in total:[
N S

N S

]
7→
[
S S

N N

]
7→
[
N N

N N

]
As a result, we see that there really are only two classes of maps, indexed by the number of S appearing on
k ∈ TRIM: One S means the map is not null homotopic, and no S means the map is null homotopic. This
statement may be encoded in the following expression:{∏

k∈TRIM sgn (de (k)) = −1 non-nullhomotopic∏
k∈TRIM sgn (de (k)) = +1 null-homotopic

�

We thus have a new meaning for the Kane-Mele index, inspired by [Mo07]. �

3.3. Bulk-Edge Correspondence Proof for the Case of a Dirac Hamiltonian

We assume the same assumptions of 3.2.3. In particular, we may use 1.5. We deal with the case where A∩ TREI =
{ e }. Otherwise, HB (k) is nullhomotopic, in which case its edge index is easily zero because the ellipse-point on S4

would never contain the origin and so for constant HB (k) there are never zero energy edge modes.
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Following 3.2.3 we have that Eq. (25) reduces to

(−1)IKM(H) =
∏

k∈TRIM
sgn (de (k))

= sgn

(
de

([
0

0

]))
sgn

(
de

([
0

π

]))
sgn

(
de

([
π

0

]))
sgn

(
de

([
π

π

]))

= sgn

de
([
0

0

])
de

([
π

0

])
︸ ︷︷ ︸

M(k2)|k2=0

 sgn
de

([
0

π

])
de

([
π

π

])
︸ ︷︷ ︸

M(k2)|k2=π


where we have defined

M (k2) := de

([
0

k2

])
de

([
π

k2

])
So as we go with k2 from 0 to π, IKM (H) = 0 ifM (k2) changes sign an even number of times, whereas IKM (H) = 1

if M (k2) changes sign an odd number of times. M (k2) changes sign when it is zero, and thus, we are looking for the
parity of the number of zeros of the function M on the domain k2 ∈ [0, π].

3.3.1. CLAIM. We may assume that HB (k) has been adiabatically changed (without closing the gap) that br lies along
the êe (recall e = A∩ TREI) direction, br ⊥ bi, and that b0 · bi = 0 for all k.

PROOF. We assume that êr lies along the êe direction in gamma-space. This should always be possible to achieve
via adiabatic continuous rotations in gamma-space, which is isomorphic to R5 at each k2. Observe that these
rotations are continuous in k2 (because b (k2) is continuous in k2), and further more, this is possible to achieve for
each k2 adiabatically because the band gap never closes during these rotations, as EB = ±‖d (k)‖ shows (SO (5)

rotations should not affect the energy bands). The change to make br ⊥ bi should also be possible without closing
the gap. It amounts to shrinking the êr component of bi to zero. There should be no obstruction to shrink the êi

component of b0 to zero, even when b0 · êr = 0, because we may always keep a non-zero b0⊥ to keep the gap open.
Notice that we do all these changes while keeping each component dj even or odd respectively in k.

First, to make sure that br ⊥ bi, examine de (k) (br is already along êe):

de (k) ≡ b0e (k2) + 2bre (k2) cos (k1) + 2bie (k2) sin (k1)

so that making sure that br ⊥ bi means shrinking bie (k2)→ 0. As we do this, de (k) stays even in k. Next, we want
to make sure that b0 · bi = 0. We have

di (k) = b
0
i (k2) + 2b

i
i (k2) sin (k1)

where the subscript i denotes the êi component. Again, we may shrink b0i (k2)→ 0 while keeping di (k) odd in k.
In conclusion, along the homotopy to our desired HB (k), we keep time-reversal invariance and the gap. �

3.3.2. CLAIM. M (k2) changes sign exactly at those points k2 ∈ [0, π) where there is an edge state incipient out of or
into the bulk. Thus

IKM (H) = I
]
KM

(
H]
)

PROOF.
• Our model for di, j (k) is, as given by 1.5.1:

di, j (k) = b
0
i, j (k2) + 2b

r
i, j (k2) cos (k1) + 2bii, j (k2) sin (k1)

• Then the ellipse lives on the plane defined by êi and êr.
• We know that there are exactly two edge states in the gap via 1.5.22, and that they are at the energies
±
∥∥b0⊥∥∥. Thus, if an edge state is incipient at the lower band for some k2, there is another state simultane-

ously incipient at the upper band. It is therefore not important to make sure we deal only with incipience
at the lower band or upper band, as those points give exactly the same count.

• We know that there is an edge state at a particular k2 when the ellipse defined by

b0‖ (k2) + 2b
r (k2) cos (k1) + 2bi (k2) sin (k1)
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includes the origin inside of it. Thus, an edge state is exactly incipient when b0‖ (k2) lies on the ellipse
defined by 2br (k2) cos (k1) + 2bi (k2) sin (k1), that is, b0‖ (k2) = 2br (k2) cos (k1) + 2bi (k2) sin (k1) for k1

defined by the orientation of b0‖ (k2): cos (k1) :=
b0‖∥∥b0‖∥∥ êr︸ ︷︷ ︸
1

and sin (k1) :=
b0‖∥∥b0‖∥∥ êi︸ ︷︷ ︸
0

.

• Thus by components we have:
b0‖ (k2) · êi︸ ︷︷ ︸

0

= 2br (k2) · êi︸ ︷︷ ︸
0

cos (k1) + 2bi (k2) · êi sin (k1)︸ ︷︷ ︸
0

b0‖ (k2) · êr︸ ︷︷ ︸
(b0‖(k2))e

= 2br (k2) · êr︸ ︷︷ ︸
(2br(k2))e

cos (k1)︸ ︷︷ ︸
1

+2 bi (k2) · êr︸ ︷︷ ︸
0

sin (k1)

• From the second equation we have b0‖ (k2) · êr = 2br (k2) · êr cos (k1), but êr extracts exactly the êe com-
ponent of the vectors by hypothesis, so that we get:

(
b0‖ (k2)

)
e

= 2 (br (k2))e cos (k1) which means(
b0 (k2)

)
e
= 2 (br (k2))e cos (k1) as b0⊥ doesn’t have any êe component by its definition.

• So we have
(
b0 (k2)

)
e
− 2 (br (k2))e = 0 and so

M (k2) ≡
[(
b0 (k2)

)
e
− 2 (br (k2))e

] [(
b0 (k2)

)
e
+ 2 (br (k2))e

]
= 0

at this point. The other possibility is that b0‖ (k2) · êr = −
(
b0‖ (k2)

)
e

which makes the other term zero.
• Either way, M (k2) changes sign at that point.

�

3.4. Proof for the General Case

So far we have shown the correspondence for a subclass of Hamiltonians which we call “Dirac”. It turns out
that for these simple systems, we are still able to find a non-zero Z2 invariant and so in this sense, we have already
achieved the goal of examining the simplest non-trivial system.

In case HB is not of “Dirac” form, we have no simple formula which characterizes the existence of edge states as
in 1.5. However, it may be possible to generalize Eq. (31) in the following sense. A “Dirac” Hamiltonian has four
bands, which come in two pairs. The lower pair and upper pair are always degenerate along k2. In contrast, the
generic Hamiltonian has four bands which intersect only on TRIM. However, it is always possible to make a time-
reversal invariant homotopy which would squeeze together the lower pair and the upper pair, so as to ultimately
bring it to the “Dirac” form. Once this has been made, Eq. (31) may be applied. Thus, future work might examine
the prescription of how to make this time-reversal invariant homotopy, which would prescribe which indices of the
fifteen indices end up being in A, and thus providing a generalization of Eq. (31).



Part 2

Physical Background



In this part we present a bridge between the results of the previous part and their relevance to physical systems.



CHAPTER 4

Lattice Models from Continuum Models

Our goal in this section is to convince the reader that starting from the usual description of non-interacting
electrons in a crystal of atoms (with no magnetic field) it is legitimate to describe the system as a lattice.

4.0.1. CLAIM. The bulk continuum problem of an independent electron in a crystal reduces to an infinite discrete
matrix eigenvalue problem.

PROOF. We start by a summary of notation and basic facts to give some context:

• Let a differential operator H be given by H = −12∆+ V where V ∈ RR3 acts by multiplication and is such
that H ∈ B

(
L2
(
R3; C

))
.

• Let
{
aj
}
j∈J3

∈ R3 be a triplet of three linearly independent vectors.
• Define “the lattice” as the set

Lat
({
aj
}
j∈J3

)
:=

∑
j∈J3

njaj ∈ R3

∣∣∣∣∣∣ nj ∈ Z∀j ∈ J3


and we denote an general element of Lat

({
aj
}
j∈J3

)
by R. The “primitive cell” is defined as

PrimCell
({
aj
}
j∈J3

)
:=

∑
j∈J3

tjaj ∈ R3

∣∣∣∣∣∣ tj ∈ [0, 1] ∀j ∈ J3


4.0.2. DEFINITION. For all R ∈ Lat

({
aj
}
j∈J3

)
, define a map TR ∈ B

(
L2
(
R3; C

))
by the action

TRψ 7→
(
r 7→ ψ (r+ R) ∀r ∈ R3

)
for all ψ ∈ L2

(
R3; C

)
.

• Assume that V is such that [V , TR] = 0 for any R ∈ Lat
({
aj
}
j∈J3

)
. Then [H, TR] = 0 for any R ∈

Lat
({
aj
}
j∈J3

)
because [∆, TR] = 0.

• Note also that [TR, TR ′ ] = 0.
• As a result we may pick eigenvectors of H which are simultaneous eigenvectors of all the TR’s. Index the

eigenvalues of TR with k where k ranges in R3 and the eigenvalues of H with α ∈ A for some discrete
indexing set A. Then we may index the eigenfunctions of H and TR as

{
ψα,k

}
(α,k)∈A×R3

.
• Bloch’s theorem ([As76] equation 8.3) states that

ψα,k (r) = exp (i 〈k, r〉)uk,α (r)

for all r ∈ R3 where uk,α are some functions which are invariant under the action of TR.
• Define 

b1 := 2π a2×a3
〈a1, (a2×a3)〉

b2 := 2π a3×a1
〈a1, (a2×a3)〉

b3 := 2π a1×a2
〈a1, (a2×a3)〉

Then “the reciprocal lattice” is Lat
({
bj
}
j∈J3

)
. A typical element from Lat

({
bj
}
j∈J3

)
will be denoted by

K. Then the primitive cell spanned by
{
bj
}
j∈J3

is called BZ1:

BZ1
({
aj
}
j∈J3

)
≡ PrimCell

({
bj
}
j∈J3

)

59
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• It turns out that ψα,k = ψα,k+K for all K ∈ Lat
({
bj
}
j∈J3

)
(and so we need not consider general k ∈ R3

but only k ∈ BZ1
({
aj
}
j∈J3

)
).

• Thus
{
ψα,k

}
(α,k)∈A×BZ1

(
{aj}j∈J3

) form a basis for the one-particle Hilbert space L2
(
R3, C

)
, which we

denote by {|α, k〉}
(α,k)∈A×BZ1

(
{aj}j∈J3

).

• Becauseψα,k are periodic in the k parameter, we may view them as functions of k and thus write a Fourier
expansion as

ψα,k (r) =
∑

R∈Lat
(
{aj}j∈J3

) ψ̃α,R (r) exp (i 〈k, R〉)

• ψ̃α,R (r) are called “Wannier functions” and are given by the inversion

ψ̃α,R (r) =
1

v0

∫
BZ1

(
{aj}j∈J3

)ψα,k (r) exp (−i 〈k, R〉)dk

where v0 := 〈a1, (a2 × a3)〉.

4.0.3. CLAIM. ψ̃α,R (r) is not a function of two independent variables r and R but rather depends only on the
difference r− R.

PROOF. For some R ′ ∈ Lat
({
aj
}
j∈J3

)
,

ψ̃α,R+R ′
(
r+ R ′

)
=

1

v0

∫
BZ1

(
{aj}j∈J3

)ψα,k
(
r+ R ′

)
exp

(
−i
〈
k, R+ R ′

〉)
dk

=
1

v0

∫
BZ1

(
{aj}j∈J3

)ψα,k (r) exp
(
i
〈
k, R ′

〉)
exp

(
−i
〈
k, R+ R ′

〉)
dk

=
1

v0

∫
BZ1

(
{aj}j∈J3

)ψα,k (r) exp (−i 〈k, R〉)dk

= ψ̃α,R (r)

�

4.0.4. CLAIM. ψ̃α,R (r) and ψ̃α ′,R ′ (r) are orthogonal if R 6= R ′ or if α 6= α ′.
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PROOF. Assuming the Bloch functions are orthonormal:〈
α, k

∣∣α ′, k ′〉 ≡
∫
PrimCell

(
{aj}j∈J3

)ψα,k (r)ψα ′,k ′ (r)dr

= δα,α ′δ
3
(
k− k ′

)
we have∫
PrimCell

(
{aj}j∈J3

) ψ̃α,R (r)ψ̃α ′,R ′ (r)dr =

∫
PrimCell

(
{aj}j∈J3

) 1
v0

∫
BZ1

(
{aj}j∈J3

)ψα,k (r) exp (−i 〈k, R〉)dk×

× 1
v0

∫
BZ1

(
{aj}j∈J3

)ψα ′,k ′ (r) exp
(
−i
〈
k ′, R ′

〉)
dk ′dr

=
1

v20

∫
PrimCell

(
{aj}j∈J3

) ∫
BZ1

(
{aj}j∈J3

) ∫
BZ1

(
{aj}j∈J3

)ψα,k (r) exp (i 〈k, R〉)×

×ψα ′,k ′ (r) exp
(
−i
〈
k ′, R ′

〉)
dkdk ′dr

=
δα,α ′

v20

∫ ∫[
BZ1

(
{aj}j∈J3

)]2 δ3 (k− k ′) exp
(
i 〈k, R〉− i

〈
k ′, R ′

〉)
dkdk ′

=
1

v20
δα,α ′

∫
BZ1

(
{aj}j∈J3

) exp
(
i
〈
k, R− R ′

〉)
dk

=
1

v20
δα,α ′ (2π)

3 δ3
(
R− R ′

)
�

• As a result, ψ̃α,R (r) also form a basis for the one particle Hilbert space L2
(
R3; C

)
, which we denote by

{|α, R〉}
(α,R)∈A×Lat

(
{aj}j∈J3

).

• A general vector in L2
(
R3, C

)
, |v〉, can then be expanded as

|v〉 =
∑

(α,R)∈A×Lat
(
{aj}j∈J3

) 〈α, R | v〉 |α, R〉

• Thus instead of encoding |v〉 as a sequence {〈α, k | v〉}
(α,k)∈A×BZ1

(
{aj}j∈J3

) which is in general indexed by

a continuum (because
∣∣∣BZ1({aj}j∈J3)∣∣∣ = c) we are able to encode |v〉 as {〈α, R | v〉}

(α,R)∈R×Lat
(
{aj}j∈J3

)
which is in general indexed by a countable set (because Lat

({
aj
}
j∈J3

)
' Z3 and so

∣∣∣Lat({aj}j∈J3)∣∣∣ =
ℵ0).

• As a result, our Hilbert space is made isomorphic to l2
(

Z3; C|A|
)

.
• We are looking for eigenvalues and eigenvectors of the matrix 〈λ, R |H | λ ′, R ′〉:∑

(α ′,R ′)∈∈A×Lat
(
{aj}j∈J3

)
〈
α, R

∣∣H ∣∣α ′, R ′〉 〈α ′, R ′ ∣∣ψ〉 = E 〈α, R |ψ〉

�

Now we can follow a very similar procedure to 1.3:
• Due to 4.0.3 we have:〈

α, R
∣∣H ∣∣α ′, R ′〉 ≡

∫
R3

[
ψ̃α,R (r)

]∗
Hψ̃α ′,R ′ (r)d

3r

r7→r+R
=

∫
R3

[
ψ̃α,R (r+ R)

]∗
Hψ̃α ′,R ′ (r+ R)d

3r

=

∫
R3

[
ψ̃α,0 (r)

]∗
Hψ̃α ′,R ′−R (r)d

3r

=
〈
α, 0

∣∣H ∣∣α ′, R ′ − R〉
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◦ As a result we need only carry one index of R on the 〈α, R |H |α ′, R ′〉matrix: 〈α, 0 |H |α ′, R〉.
• Because 〈α, R |H |α ′, R ′〉 is periodic in R (that is, 〈α, R |H |α ′, R ′〉 = 〈α, R+ R ′′ |H |α ′, R ′ + R ′′〉) we may em-

ploy Bloch’s theorem again to conclude that its eigenvectors should be of the form

〈α, R |ψ〉 = exp (i 〈k, R〉)u(d) α,k (R)

where k ∈ BZ1
(
aj
)

and again u(d) α,k (R) have the same periodicity of the potential R 7→ R+ R ′′ and so we
might as well drop the R index from u(d) α,k (R) and simply write u(d) α,k.

• Plug this into the Schroedinger equation to obtain:∑
(α ′,R ′)

〈
α, R

∣∣H ∣∣α ′, R ′〉 exp
(
i
〈
k, R ′

〉)
u(d) α ′,k = Ek exp (i 〈k, R〉)u(d) α,k

∑
(α ′,R ′)

〈
α, 0

∣∣H ∣∣α ′, R ′ − R〉 exp
(
i
〈
k, R ′

〉)
u(d) α ′,k = Ek exp (i 〈k, R〉)u(d) α,k

∑
(α ′,R ′)

〈
α, 0

∣∣H ∣∣α ′, R ′ − R〉 exp
(
i
〈
k, R ′ − R

〉)
u(d) α ′,k = Eku

(d)
α,k

∑
α

∑
R ′

〈
α, 0

∣∣H ∣∣α ′, R ′〉 exp
(
i
〈
k, R ′

〉)
u(d) α ′,k = Eku

(d)
α,k

• Define H(d) (k) ∈ Herm (|A|) by its components
(
H(d) (k)

)
(α,α ′)

:=
∑
R ′ 〈α, 0 |H |α ′, R ′〉 exp (i 〈k, R ′〉).

• Then the last equation becomes

H(d) (k)u(d) k = Eku
(d)

k

where u(d) k ∈ C|A| is a vector with components u(d) α,k.
As a result we have separated the problem into infinitely many problems (indexed by k ∈ BZ1

(
aj
)
), namely, for each

k ∈ BZ1
(
aj
)

we are looking to find the eigensystem of the |A|× |A| Hermitian matrix H(d) (k).



CHAPTER 5

Magnetic Translation Operators

We follow the presentation of [Ko85] for the magnetic translation operators. These can then be used to perform
a Wannier decomposition in the presence of a magnetic field, as is done in [Wi00].

• The Hamiltonian for a 2D non-interacting electron system in a uniform magnetic field perpendicular to the
plane is

H =
1

2m
(p+ eA)2 +U (x1, x2)

where
p = −i h∇

and
U (x1 + a1, x2) = U (x1, x2 + a2) = U (x1, x2)

• Define Rn = n1a1ê1 +n2a2ê2 where n ∈ Z2, and êi is the unit vector in the direction i for all i ∈ J2.
• The most general vector potential such that the magnetic field is a constant (given by B) is given by A (r) =
1
2B× r+∇Λ (r), where Λ (r) is some function.

• As such, H has an explicit r dependence.

5.0.5. CLAIM. Under translation by Rn, the Hamiltonian is not invariant.

PROOF.
• Plug in r+ Rn into the Hamiltonian instead of r. The momentum stays the same, of course, as does the

potential U:

H (r+ Rn) =
1

2m
(p+ eA (r+ Rn))

2 +U (r)

=
1

2m

(
p+ e

(
1

2
B× (r+ Rn) +∇Λ (r+ Rn)

))2
+U (r)

=
1

2m

(
p+ eA (r) + e

(
1

2
B× Rn +∇Λ (r+ Rn) −∇Λ (r)

))2
+U (r)

= H (r) +
1

2m

[(
p+ eA (r) + e

(
1

2
B× Rn +∇Λ (r+ Rn) −∇Λ (r)

))2
− (p+ eA (r))2

]
• In general, there is no reason why 1

2m

[(
p+ eA (r) + e

(
1
2B× Rn +∇Λ (r+ Rn) −∇Λ (r)

))2
− (p+ eA (r))2

]
should be zero (for instance, in Λ = 0 gauge, we have

1

2m

[
(p+ eA (r)) e

(
1

2
B× Rn

)
+ e

(
1

2
B× Rn

)
(p+ eA (r)) + e2

(
1

2
B× Rn

)2]
�

• 4.0.2 is represented as TRn = exp
(
i
 hRn · p

)
= exp (Rn · ∇).

• As we have just seen, [TRn , H] 6= 0.
• The difference between A (r) and A (r+ Rn) is given by:

A (r) −A (r− Rn) =

[
1

2
B× r+∇Λ (r)

]
−

[
1

2
B× (r+ Rn) +∇Λ (r+ Rn)

]
= ∇Λ (r) −

1

2
B× Rn −∇Λ (r+ Rn)

= ∇
[
Λ (r) −Λ (r+ Rn) −

1

6
(B× Rn) · r

]
63
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5.0.6. DEFINITION. Define the magnetic translation operators

T̂Rn ≡ exp
(
i
 h
Rn ·

(
p+

1

2
e (r×B)

))
5.0.7. CLAIM. T̂Rn = TRn exp

(
i
 h
1
2e (B× Rn) · r

)
.

PROOF.
• Observe that

i
 h
Rn ·

1

2
e (r×B) =

i
 h

1

2
e
∑
j

(Rn)j (r×B)j

=
i
 h

1

2
e
∑
j,l,m

(Rn)j εjlmrlBm

=
i
 h

1

2
e
∑
j,l,m

εjlm (Rn)j rlBm

whereas
i
 h

1

2
e (B× Rn) · r =

i
 h

1

2
e
∑
j

(B× Rn)j rj

=
i
 h

1

2
e
∑
j,l,m

εjlmBl (Rn)m rj

=
i
 h

1

2
e
∑
l,m,j

εlmj (Rn)j rlBm

=
i
 h

1

2
e
∑
l,m,j

εjlm (Rn)j rlBm

so the two exponents are the same. The only question is why may we factor out the momentum exponent.
• To see this we use the Baker-Campbell-Hausdorff formula, and in order to use it we need to compute the

commutator and hope that it vanishes:[
i
 h
Rn · p,

i
 h

1

2
eRn · (r×B)

]
= −

1
 h2
1

2
e

∑
i

(Rn)i pi,
∑
j

(Rn)j (r×B)j


= −

1
 h2
1

2
e
∑
i

∑
j

(Rn)i (Rn)j
∑
l,m

εjlmBm [pi, rl]

=
i
 h

1

2
e
∑
i

∑
j

∑
m

(Rn)i (Rn)j εjimBm

which vanishes due to the anti-symmetry of εjim.
�

5.0.8. CLAIM. If Λ = 0 then
[
T̂Rn , H

]
= 0.

PROOF.
• Observe that when Λ = 0, A (r+ Rn) =

1
2B× (r+ Rn) = A (r) + 1

2B× Rn.
• Using the above computations we have T̂RnH (r, p) = TRn exp

(
i
 h
1
2e (B× Rn) · r

)
H (r, p).

• exp
(
i
 h
1
2e (B× Rn) · r

)
can be seen as translation of p by −12e (B× Rn) and so we have

exp
(
i
 h

1

2
e (B× Rn) · r

)
H (r, p) =

1

2m

((
p−

1

2
e (B× Rn)

)
+ eA

)2
+U (r)
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• But then, applying TRn on this we obtain:

T̂RnH (r, p) = TRn

[
1

2m

((
p−

1

2
e (B× Rn)

)
+ eA (r)

)2
+U (r)

]

=
1

2m

((
p−

1

2
e (B× Rn)

)
+ eA (r) + e

1

2
B× Rn

)2
+U (r)

= H (r, p)

�

5.0.9. CLAIM. The commutator is given by:[
T̂Rn , T̂Rm

]
= 2iTRnTRm exp

(
i
 h

1

2
e (B× Rn) · r

)
exp

(
i
 h

1

2
e (B× Rm) · r

)
sin
(
1

2

1
 h
eB · (Rm × Rn)

)

PROOF.
• Compute[

T̂Rn , T̂Rm
]

=

[
TRn exp

(
i
 h

1

2
e (B× Rn) · r

)
, TRm exp

(
i
 h

1

2
e (B× Rm) · r

)]
=

[
TRn exp

(
i
 h

1

2
e (B× Rn) · r

)
, TRm

]
exp

(
i
 h

1

2
e (B× Rm) · r

)
+

+TRm

[
TRn exp

(
i
 h

1

2
e (B× Rn) · r

)
, exp

(
i
 h

1

2
e (B× Rm) · r

)]
= TRn

[
exp

(
i
 h

1

2
e (B× Rn) · r

)
, TRm

]
exp

(
i
 h

1

2
e (B× Rm) · r

)
+

+ [TRn , TRm ] exp
(
i
 h

1

2
e (B× Rn) · r

)
exp

(
i
 h

1

2
e (B× Rm) · r

)
+

+TRmTRn

[
exp

(
i
 h

1

2
e (B× Rn) · r

)
, exp

(
i
 h

1

2
e (B× Rm) · r

)]
+

+TRm

[
TRn , exp

(
i
 h

1

2
e (B× Rm) · r

)]
exp

(
i
 h

1

2
e (B× Rn) · r

)
• But of course [TRn , TRm ] = 0 and also

[
exp

(
i
 h
1
2e (B× Rn) · r

)
, exp

(
i
 h
1
2e (B× Rm) · r

)]
= 0 and so we have[

T̂Rn , T̂Rm
]

= TRn

[
exp

(
i
 h

1

2
e (B× Rn) · r

)
, TRm

]
exp

(
i
 h

1

2
e (B× Rm) · r

)
+

= +TRm

[
TRn , exp

(
i
 h

1

2
e (B× Rm) · r

)]
exp

(
i
 h

1

2
e (B× Rn) · r

)
and so our main task reduces to evaluate

[
exp

(
i
 h
1
2e (B× Rn) · r

)
, TRm

]
:[

exp
(
i
 h

1

2
e (B× Rn) · r

)
, TRm

]
=

[
exp

(
i
 h

1

2
e (B× Rn) · r

)
, exp

(
i
 h
Rm · p

)]
= exp

(
i
 h

1

2
e (B× Rn) · r

)
exp

(
i
 h
Rm · p

)
− exp

(
i
 h
Rm · p

)
exp

(
i
 h

1

2
e (B× Rn) · r

)
• To use the Baker Hausdorff Campbell formula we need the commutators[

i
 h

1

2
e (B× Rn) · r,

i
 h
Rm · p

]
= −

1
 h2
1

2
e

∑
j

(B× Rn)j rj,
∑
i

(Rm)i pi


= −

1
 h2
1

2
e
∑
j

∑
i

∑
l

∑
k

εjlkBl (Rn)k (Rm)i i hδji

=
i
 h

1

2
e
∑
j

∑
l

∑
k

Blεljk (Rn)k (Rm)j

=
1

2

i
 h
eB · (Rm × Rn)
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and thus [
i
 h

1

2
e (B× Rn) · r,

[
i
 h

1

2
e (B× Rn) · r,

i
 h
Rm · p

]]
= 0

and [
i
 h
Rm · p,

[
i
 h

1

2
e (B× Rn) · r,

i
 h
Rm · p

]]
= 0

and so

exp
(
i
 h

1

2
e (B× Rn) · r

)
exp

(
i
 h
Rm · p

)
= exp

(
i
 h
Rm · p

)
exp

(
i
 h

1

2
e (B× Rn) · r

)
×

× exp
([

i
 h

1

2
e (B× Rn) · r,

i
 h
Rm · p

])
= exp

(
i
 h
Rm · p

)
exp

(
i
 h

1

2
e (B× Rn) · r

)
exp

(
1

2

i
 h
eB · (Rm × Rn)

)
= TRm exp

(
i
 h

1

2
e (B× Rn) · r

)
exp

(
1

2

i
 h
eB · (Rm × Rn)

)
• As a result we find the commutator[

exp
(
i
 h

1

2
e (B× Rn) · r

)
, TRm

]
= exp

(
i
 h

1

2
e (B× Rn) · r

)
TRm − TRm exp

(
i
 h

1

2
e (B× Rn) · r

)
= TRm exp

(
i
 h

1

2
e (B× Rn) · r

)
exp

(
1

2

i
 h
eB · (Rm × Rn)

)
−TRm exp

(
i
 h

1

2
e (B× Rn) · r

)
= TRm exp

(
i
 h

1

2
e (B× Rn) · r

)(
exp

(
1

2

i
 h
eB · (Rm × Rn)

)
− 1

)
and[
TRn , exp

(
i
 h

1

2
e (B× Rm) · r

)]
= −

[
exp

(
i
 h

1

2
e (B× Rm) · r

)
, TRn

]
= −TRn exp

(
i
 h

1

2
e (B× Rm) · r

)(
exp

(
1

2

i
 h
eB · (Rn × Rm)

)
− 1

)
= TRn exp

(
i
 h

1

2
e (B× Rm) · r

)(
1− exp

(
1

2

i
 h
eB · (Rn × Rm)

))
• Finally we have[

T̂Rn , T̂Rm
]

= TRn

[
exp

(
i
 h

1

2
e (B× Rn) · r

)
, TRm

]
exp

(
i
 h

1

2
e (B× Rm) · r

)
+

+TRm

[
TRn , exp

(
i
 h

1

2
e (B× Rm) · r

)]
exp

(
i
 h

1

2
e (B× Rn) · r

)
= TRnTRm exp

(
i
 h

1

2
e (B× Rn) · r

)(
exp

(
1

2

i
 h
eB · (Rm × Rn)

)
− 1

)
exp

(
i
 h

1

2
e (B× Rm) · r

)
+

+TRmTRn exp
(
i
 h

1

2
e (B× Rm) · r

)(
1− exp

(
1

2

i
 h
eB · (Rn × Rm)

))
exp

(
i
 h

1

2
e (B× Rn) · r

)
= TRnTRm exp

(
i
 h

1

2
e (B× Rn) · r

)
exp

(
i
 h

1

2
e (B× Rm) · r

)(
exp

(
1

2

i
 h
eB · (Rm × Rn)

)
− 1

)
+

−TRnTRm exp
(
i
 h

1

2
e (B× Rn) · r

)
exp

(
i
 h

1

2
e (B× Rm) · r

)(
exp

(
−
1

2

i
 h
eB · (Rm × Rn)

)
− 1

)
= TRnTRm exp

(
i
 h

1

2
e (B× Rn) · r

)
exp

(
i
 h

1

2
e (B× Rm) · r

)
×

×
(

exp
(
1

2

i
 h
eB · (Rm × Rn)

)
− exp

(
−
1

2

i
 h
eB · (Rm × Rn)

))
= 2iTRnTRm exp

(
i
 h

1

2
e (B× Rn) · r

)
exp

(
i
 h

1

2
e (B× Rm) · r

)
sin
(
1

2

1
 h
eB · (Rm × Rn)

)
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�

• So we see that the magnetic translation operators of different translation parameter Rm do not commute
in general, unless sin

(
1
2
1
 heB · (Rm × Rn)

)
= 0 which implies 1

2
1
 heB · (Rm × Rn) = πα for some α ∈ Z, or

e
hB · (Rm × Rn) = α for some α ∈ Z.
◦ Because B is along the z-axis we can already write e

hB · (Rm × Rn) =
e
h |B| |Rm × Rn|.

◦ In general,

|Rm × Rn| = |(m1a1ê1 +m2a2ê2)× (n1a1ê1 +n2a2ê2)| = m1a1n2a2 −m2a2n1a1 = a1a2 (m1n2 −m2n1)

◦ Thus we have
e

h
B · (Rm × Rn) =

e

h
|B|a1a2 (m1n2 −m2n1)

◦ Assume that eh |B|a1a2 ∈ Q. Then we could write
e

h
|B|a1a2 =

p

q

where p ∈ Z and q ∈N\ {0} and gcd (p, q) = 1.
◦ Then

e

h
B · (Rm × Rn) =

p

q
(m1n2 −m2n1)

!
= α

where α ∈ Z.
◦ There is a “trick” to make sure pq (m1n2 −m2n1) ∈ Z: always work with multiples of q in one (or both)

of the basis vectors, so that n1 andm1 will always contain a multiple of q. We can also do this for n2 or
m2 alternatively. This is effectively making the replacement a1 → qa1 (this choice is not canonical, it’s
just one simple alternative).

• Define
R ′n = n1qa1ê1 +n2a2ê2

where n ∈ Z2, and êi is the unit vector in the direction i for all i ∈ {1, 2}.
• Then we have

[
T̂R ′n , T̂R ′m

]
= 0.

• As a result, we may diagonalize H and all of
{
T̂R ′n

∣∣∣ n ∈ Z2
}

simultaneousely.

• To find the eigenvalues of T̂R ′n :
◦ They must have absolute value 1 because T̂R ′n should be unitary, so write the eigenvalues as exp (iϕn).

◦ Now that
[
T̂R ′n , T̂R ′m

]
= 0, we have T̂R ′n T̂R ′m = T̂R ′n+R ′m . The only continuous choice of ϕn which satisfies

this is ϕn = R ′n · k+α for some k ∈ R3 and α ∈ R.
◦ α would merely introduce a global phase and so we may choose α = 0 [TODO].
◦ But exp (iR ′n · k) = exp (iR ′n · k) 1 = exp (iR ′n · k) exp (iR ′n ·K ′) = exp (iR ′n · (k+ K ′)) where K ′ is a recip-

rocal lattice vector to {qa1ê1, a2ê2}. So our eigenvalues are only those inside the BZ1 ′.
• So label the eigenfunctions of H and all of

{
T̂R ′n

∣∣∣ n ∈ Z2
}

by ψλ,k (r) where λ labels eigenvalues of H and
k ∈ BZ1 ′.

• Define uλ,k (r) := exp (−ir · k)ψλ,k (r).

5.0.10. CLAIM. The action of translation on uλ,k is given by:

TR ′nuλ,k (r) ≡ uλ,k
(
r+ R ′n

)
= exp

(
iπp

(
n2
qa1

x̂−
n1
a2
ŷ

)
· r
)
uλ,k (r)

for all n ∈ Z2.
Note: This is called the generalized Bloch conditions.

PROOF.
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• So

uλ,k
(
r+ R ′n

)
= exp

(
−i
(
r+ R ′n

)
· k
)
ψλ,k

(
r+ R ′n

)
= exp

(
−i
(
r+ R ′n

)
· k
)
TR ′nψλ,k (r)

= exp
(
−i
(
r+ R ′n

)
· k
)

exp
(
−
i
 h

1

2
e
(
B× R ′n

)
· r
)
T̂R ′nψλ,k (r)

= exp
(
−i
(
r+ R ′n

)
· k
)

exp
(
−
i
 h

1

2
e
(
B× R ′n

)
· r
)

exp
(
iR ′n · k

)
ψλ,k (r)

= exp (−ir · k) exp
(
−
i
 h

1

2
e
(
B× R ′n

)
· r
)
ψλ,k (r)

= exp (−ir · k) exp
(
−
i
 h

1

2
e
(
B× R ′n

)
· r
)

exp (ir · k)uλ,k (r)

= exp
(
−
i
 h

1

2
e
(
B× R ′n

)
· r
)
uλ,k (r)

= exp
(
−iπ

p

q

(
ẑ×

(
n1q

1

a2
x̂+n2

1

a1
ŷ

))
· r
)
uλ,k (r)

= exp
(
−iπ

p

q

(
n1q

1

a2
ŷ−n2

1

a1
x̂

)
· (rxx̂+ ryŷ)

)
uλ,k (r)

= exp
(
iπp

(
n2
qa1

x̂−
n1
a2
ŷ

)
· r
)
uλ,k (r)

�

• Note that a gauge transformation of A 7→ A+∇f changes the phase of the wave function ψ 7→ exp
(
− ie h f

)
ψ.

5.0.11. CLAIM. The phase change around the boundary of the magnetic unit cell is gauge-invariant.

PROOF.
• The phase change around one magnetic unit cell should be given by:

T−a2ê2T−qa1ê1Ta2ê2Tqa1ê1ψ (r)

• Using the one before the above claim, we have:

Tqa1ê1ψ (r) = Tqa1ê1 exp (ir · k)uλ,k (r)

= exp (i (r+ qa1ê1) · k) Tqa1ê1uλ,k (r)

= exp (i (r+ qa1ê1) · k) exp
(
iπp

(
−
1

a2
ŷ

)
· r
)
uλ,k (r)

• Then

Ta2ê2Tqa1ê1ψ (r) = Ta2ê2 exp (i (r+ qa1ê1) · k) exp
(
iπp

(
−
1

a2
ŷ

)
· r
)
uλ,k (r)

= exp (i (r+ qa1ê1 + a2ê2) · k) exp
(
iπp

(
−
1

a2
ŷ

)
· (r+ a2ê2)

)
Ta2ê2uλ,k (r)

= exp (i (r+ qa1ê1 + a2ê2) · k) exp
(
iπp

(
−
1

a2
ŷ

)
· (r+ a2ê2)

)
exp

(
iπp

(
1

qa1
x̂

)
· r
)
uλ,k (r)

• The third leg is then:

T−qa1ê1Ta2ê2Tqa1ê1ψ (r) = T−qa1ê1 exp (i (r+ qa1ê1 + a2ê2) · k)×

× exp
(
iπp

(
−
1

a2
ŷ

)
· (r+ a2ê2)

)
exp

(
iπp

(
1

qa1
x̂

)
· r
)
uλ,k (r)

= exp (i (r+ a2ê2) · k) exp
(
iπp

(
−
1

a2
ŷ

)
· (r+ a2ê2 − qa1ê1)

)
×

× exp
(
iπp

(
1

qa1
x̂

)
· (r− qa1ê1)

)
exp

(
iπp

(
n1
a2
ŷ

)
· r
)
uλ,k (r)
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and finally the last leg is:

T−a2ê2T−qa1ê1Ta2ê2Tqa1ê1ψ (r) = exp (i (r+ a2ê2 − a2ê2) · k) exp
(
iπp

(
−
1

a2
ŷ

)
· (r+ a2ê2 − qa1ê1 − a2ê2)

)
×

× exp
(
iπp

(
1

qa1
x̂

)
· (r− qa1ê1 − a2ê2)

)
exp

(
iπp

(
n1
a2
ŷ

)
· (r− a2ê2)

)
T−a2ê2uλ,k (r)

= exp
(
iπp

(
1

qa1
x̂

)
· (−qa1ê1)

)
exp

(
iπp

(
1

a2
ŷ

)
· (−a2ê2)

)
ψ (r)

= exp (−iπp) exp (−iπp)ψ (r)

= exp (−2πip)ψ (r)

• As p depends only on the magnitude of B, exp (−2πip) is gauge invariant.
�

• Interpreted in this way, we may write p = −1
2π

∫
dl∂ arg(ψ(r))

∂l where we go in counterclockwise direciton
around the boundary of the magnetic unit cell.



CHAPTER 6

The Physical Quantities Corresponding to the Indices

6.1. The TKNN Formula for the Quantum Hall Conductance

Our goal in this section is to show that 1.7.1 actually is equal to the quantum Hall conductance of a bulk system.
We follow the presentation in [Ch95].

The first thing we do is analyze the linear response formula of Kubo (perturbation theory in quantum mechanics).
This will give us the expectation value of an observable in the presence of a perturbation.

• Write H = H0 + V (t). V is the perturbation. It is written now with time dependence, but ultimately we will
assume that long ago in the past it is zero and in the far future it is constant.

• ρ (t) = ρ0 +∆ρ (t) where ρ0 is a stationary-state of H0 (that means ρ̇0 = [ρ0, H0] = 0)
• ρ obeys the Liouville equation ρ̇ = 1

i h [H, ρ].
• Switch to the interaction picture:

◦ ρI (t) := e− 1
i hH0tρe

1
i hH0t

◦ ρ0 I = e−
1
i hH0tρ0e

1
i hH0t = ρ0

◦ ∆ρI (t) = e− 1
i hH0t∆ρ (t) e

1
i hH0t

◦ H0 I = e−
1
i hH0tH0e

1
i hH0t = H0

6.1.1. CLAIM. i h ddt∆ρ
I =

[
VI, ρ0

]
.

PROOF.
• Reverse the definition to get ρ = e

1
i hH0tρI (t) e−

1
i hH0t.

• Plug this into the Liouville equation to get
d

dt

(
e
1
i hH0tρI (t) e−

1
i hH0t

)
=

1

i h

[
H, e

1
i hH0tρI (t) e−

1
i hH0t

]
1

i h
e
1
i hH0tH0ρ

I (t) e−
1
i hH0t =

1

i h

[
H0 + V , e

1
i hH0tρI (t) e−

1
i hH0t

]
−
1

i h
e
1
i hH0tρI (t)H0e

− 1
i hH0t

+e
1
i hH0t

(
d

dt
ρI (t)

)
e−

1
i hH0t

1

i h

[
H0, ρI (t)

]
+
d

dt
ρI (t) =

1

i h
e−

1
i hH0t

[
H0 + V , e

1
i hH0tρI (t) e−

1
i hH0t

]
e
1
i hH0t

1

i h

[
H0, ρI (t)

]
+
d

dt
ρI (t) =

1

i h

[
(H0)

I + VI, ρI (t)
]

d

dt
ρI (t) =

1

i h

[
VI, ρI (t)

]
• But d

dt

(
ρI (t)

)
= d
dt

(
ρ0 +∆ρ

I
)
= d
dt∆ρ

I, and
[
VI, ∆ρI

]
∝ O

(
V2
)

(because in perturbation theory ∆ρ ∝ V)
• Thus we get d

dt∆ρ
I = 1

i h

[
VI, ρ0

]
.

�

• Assume that

lim
t→−∞∆ρ (t) = 0

6.1.2. CLAIM. We can integrate the equation of motion to get:

∆ρI =
1

i h

∫t
−∞

[
VI
(
t ′
)

, ρ0
]
dt ′

70
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PROOF.
• Differentiate this Ansatz to verify its validity.

�

• Let B be some observable.
• Then 〈B (t)〉 = Tr (Bρ (t)).

◦ Due to the cyclicity of the trace we have

〈B (t)〉 = Tr
(
Be−

i
 hH0te

i
 hH0tρ (t) e−

i
 hH0te

i
 hH0t

)
= Tr

(
e
i
 hH0tBe−

i
 hH0te

i
 hH0tρ (t) e−

i
 hH0t

)
= Tr

(
BIρI

)
= Tr

(
BI
(
(ρ0)

I + (∆ρ)I
))

= Tr
(
BI (ρ0)

I
)
+ Tr

(
BI∆ρI

)
• Assume B is such that Tr

(
BI (ρ0)

I
)
= 0.

• Then

〈B (t)〉 = Tr
(
BI (t)∆ρI (t)

)
= Tr

(
BI (t)

(
1

i h

∫t
−∞

[
VI
(
t ′
)

, ρ0
]
dt ′
))

=
1

i h

∫t
−∞ Tr

(
BI (t)

[
VI
(
t ′
)

, ρ0
])
dt ′

=
1

i h

∫t
−∞ Tr

(
BI (t)VI

(
t ′
)
ρ0 −B

I (t) ρ0V
I
(
t ′
))
dt ′

=
1

i h

∫t
−∞ Tr

(
ρ0B

I (t)VI
(
t ′
)
− ρ0V

I
(
t ′
)
BI (t)

)
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0V

I
(
t ′
)
BI (t) − ρ0B

I (t)VI
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0

[
VI
(
t ′
)

, BI (t)
])
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0

[
e−

1
i hH0t

′
V
(
t ′
)
e
1
i hH0t

′
, e−

1
i hH0tBe

1
i hH0t

])
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0e

− 1
i hH0t

′
V
(
t ′
)
e
1
i hH0t

′
e−

1
i hH0tBe

1
i hH0t − ρ0e

− 1
i hH0tBe

1
i hH0te−

1
i hH0t

′
V
(
t ′
)
e
1
i hH0t

′
)
dt ′

= −
1

i h

∫t
−∞ Tr

(
e−

1
i hH0t

′
ρ0V

(
t ′
)
e
1
i hH0t

′
e−

1
i hH0tBe

1
i hH0t − e

1
i hH0t

′
ρ0e

− 1
i hH0tBe

1
i hH0te−

1
i hH0t

′
V
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0V

(
t ′
)
e
1
i hH0t

′
e−

1
i hH0tBe

1
i hH0te−

1
i hH0t

′
− ρ0e

1
i hH0t

′
e−

1
i hH0tBe

1
i hH0te−

1
i hH0t

′
V
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0V

(
t ′
)
e−

1
i hH0(t−t

′)Be
1
i hH0(t−t

′) − ρ0e
− 1
i hH0(t−t

′)Be
1
i hH0(t−t

′)V
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0V

(
t ′
)
BI
(
t− t ′

)
− ρ0B

I
(
t− t ′

)
V
(
t ′
))
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0

[
V
(
t ′
)

, BI
(
t− t ′

)])
dt ′

• Make a Fourier transform of V as

V (t) = lim
η→0

1

2π

∫
R
e−i(ω+iη)tṼ (ω)dω

where η > 0 is some factor we introduce to insure the boundary condition limt→−∞ ∆ρ (t) = 0 is met.
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• Then

〈B (t)〉 = −
1

i h

∫t
−∞ Tr

(
ρ0

[
V
(
t ′
)

, BI
(
t− t ′

)])
dt ′

= −
1

i h

∫t
−∞ Tr

(
ρ0

[(
lim
η→0

1

2π

∫
R
e−i(ω+iη)t ′ Ṽ (ω)dω

)
, BI

(
t− t ′

)])
dt ′

= lim
η→0

1

2π

∫
R

∫t
−∞

i
 h
Tr
(
ρ0

[
Ṽ (ω) , BI

(
t− t ′

)])
e−i(ω+iη)t ′dt ′dω

= lim
η→0

1

2π

∫
R

∫∞
−∞

i
 h
Tr
(
ρ0

[
Ṽ (ω) , BI

(
t− t ′

)])
θ
(
t− t ′

)
e−i(ω+iη)t ′dt ′dω

6.1.3. DEFINITION. Define the linear response function

χBṼ(ω) (t) :=
i
 h
Tr
(
ρ0

[
Ṽ (ω) , BI (t)

])
θ (t)

• Observe we can again change the order to write

χBṼ(ω) (t) ≡ i
 h
Tr
(
ρ0

[
Ṽ (ω) , BI (t)

])
θ (t)

=
i
 h
Tr
(
ρ0Ṽ (ω)BI (t) − ρ0B

I (t) Ṽ (ω)
)
θ (t)

=
i
 h
Tr
(
ρ0Ṽ (ω)BI (t) − Ṽ (ω) ρ0B

I (t)
)
θ (t)

= −
i
 h
Tr
([
Ṽ (ω) , ρ0

]
BI (t)

)
θ (t)

Then we find

〈B (t)〉 = lim
η→0

1

2π

∫
R

∫∞
−∞ χBṼ(ω)

(
t− t ′

)
e−i(ω+iη)t ′dt ′dω

which is the linear response formula.
The next step is to employ this in order to find the Hall conductivity. We will start this analysis in the many-body

picture:
• Define

Bµ := −eJµ (r) := −e

1
2

N∑
j=1

(
vjµδ

(
r− rj

)
+ δ

(
r− rj

)
vjµ
)

where vjµ is the velocity operator of the jth particle along the µth axis.
• Define the operator

Xµ :=

N∑
j=1

rjµ

• Define

V (t) :=

N∑
j=1

e
∑

µ∈{x,y,z}

rjµEµf (t)

=
∑
µ

eXµEµf (t)

where Eµ is the electric field in the system and f (t) is some attenuation function which goes to zero at
t→ −∞ and “turns on” adiabatically.

• Then the linear response is

χBµeXν (t) :=
i
 h
Tr
(
ρ0

[
eXν, −eJµ I (r, t)

])
θ (t)

= −
ie2

 h
Tr
(
ρ0

[
Xν, Jµ I (r, t)

])
θ (t)

• By Ohm’s law, ja = σabEb, that is, σab is exactly the response of the current j to the perturbation E, so we
expect σµν = χBµeXν (t) somehow, as we shall see below.
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• Assume (|n〉)n∈N is an orthonormal complete set of eigenstates of H0 (the many-body Hamiltonian) with
eigenvalues (En)n∈N, where we assume E0 = min ({En|n ∈N}). In this basis, ρ0 is diagonal:

ρ0 =
∑
n∈N

|n〉 〈n| ρ0
∑
m∈N

|m〉 〈m|

=
∑

(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m|

and then [ρ0, H0] = 0 means

〈
m ′
∣∣ [ρ0, H0]

∣∣n ′〉 =
〈
m ′
∣∣  ∑

(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m| , H0

 ∣∣n ′〉

=
〈
m ′
∣∣ ∑

(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m|H0 −
∑

(n,m)∈N2

H0 〈n | ρ0 |m〉 |n〉 〈m|

∣∣n ′〉

=
〈
m ′
∣∣ ∑

(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m|Em −
∑

(n,m)∈N2

En 〈n | ρ0 |m〉 |n〉 〈m|

∣∣n ′〉
=

〈
m ′
∣∣ ∑
(n,m)∈N2

〈n | ρ0 |m〉 |n〉 〈m| (Em − En)
∣∣n ′〉

=
〈
m ′
∣∣ ρ0 ∣∣n ′〉 (En ′ − Em ′)

!
= 0

and so if (En ′ − Em ′) 6= 0 then 〈m ′ | ρ0 |n ′〉 = 0. Assuming we don’t have degeneracy, this means 〈m ′ | ρ0 |n ′〉 ∝
δm ′n ′ .

• Then

Tr
(
ρ0

[
Xν, Jµ I (r, t)

])
=

∑
n∈N

〈
n
∣∣∣ ρ0 [Xν, Jµ I (r, t)

] ∣∣∣n〉

=
∑
n∈N

〈
n

∣∣∣∣∣∣
∑
m∈N

〈m | ρ0 |m〉 |m〉 〈m|
[
Xν, Jµ I (r, t)

] ∣∣∣∣∣∣n
〉

=
∑
n∈N

〈n | ρ0 |n〉
〈
n
∣∣∣ [Xν, Jµ I (r, t)

] ∣∣∣n〉

◦ In the canonical ensemble,

〈n|ρ0|n〉 =

〈
n

∣∣∣∣∣
(

e−βH0

Tr
(
e−βH0

)) ∣∣∣∣∣n
〉

=

〈
n

∣∣∣∣ (e−βEnZ

) ∣∣∣∣n〉
=

e−βEn

Z

◦ When T → 0, we can make the approximation 〈n|ρ0|n〉 ≈ δn0. We also assume that in the ground state
there is no current, that is, 〈0 | Jµ (r) | 0〉 = 0.
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◦ Thus we have

Tr
(
ρ0

[
Xν, Jµ I (r, t)

])
=

∑
n∈N

〈n | ρ0 |n〉
〈
n
∣∣∣ [Xν, Jµ I (r, t)

] ∣∣∣n〉
≈

〈
0
∣∣∣ [Xν, Jµ I (r, t)

] ∣∣∣ 0〉
=

〈
0
∣∣∣XνJµ I (r, t) ∣∣∣ 0〉− 〈0 ∣∣∣ Jµ I (r, t)Xν ∣∣∣ 0〉

=

〈
0

∣∣∣∣∣∣Xν
∑
n∈N

|n〉 〈n| Jµ I (r, t)

∣∣∣∣∣∣ 0
〉

−

〈
0

∣∣∣∣∣∣ Jµ I (r, t)
∑
n∈N

|n〉 〈n|Xν

∣∣∣∣∣∣ 0
〉

=
∑
n∈N

〈0 |Xν |n〉
〈
n
∣∣∣ Jµ I (r, t) ∣∣∣ 0〉− 〈0 ∣∣∣ Jµ I (r, t) ∣∣∣n〉 〈n |Xν | 0〉

=
∑
n∈N

〈0 |Xν |n〉
〈
n
∣∣∣ e− 1

i hH0tJµ (r) e
1
i hH0t

∣∣∣ 0〉− 〈0 ∣∣∣ e− 1
i hH0tJµ (r) e

1
i hH0t

∣∣∣n〉 〈n |Xν | 0〉

=
∑
n∈N

〈0 |Xν |n〉
〈
n
∣∣∣ e− 1

i hEntJµ (r) e
1
i hE0t

∣∣∣ 0〉− 〈0 ∣∣∣ e− 1
i hE0tJµ (r) e

1
i hEnt

∣∣∣n〉 〈n |Xν | 0〉

=
∑
n∈N

〈0 |Xν |n〉 〈n | Jµ (r) | 0〉 e−
1
i h (En−E0)t − 〈0 | Jµ (r) |n〉 〈n |Xν | 0〉 e

1
i h (En−E0)t

◦ So we find that

lim
T→0

χBµeXν (t) ≈ −
ie2

 h
θ (t)

∑
n∈N

(
〈0 |Xν |n〉 〈n | Jµ (r) | 0〉 e−

1
i h (En−E0)t − 〈0 | Jµ (r) |n〉 〈n |Xν | 0〉 e

1
i h (En−E0)t

)

◦ Thus the expectation value for the electric current is given by:

lim
T→0

〈Bµ (t)〉 =
∑
ν

∫∞
−∞ lim

T→0
χBµeXν

(
t− t ′

)
Eνf

(
t ′
)
dt ′

=
∑
ν

∫∞
−∞ lim

T→0
χBµeXν

(
t− t ′

)
f
(
t ′
)
dt ′︸ ︷︷ ︸

σµν

Eν

◦ And as such we found a formula:

lim
T→∞σµν (r, t) =

∫∞
−∞ lim

T→0
χBµeXν

(
t− t ′

)
f
(
t ′
)
dt ′dω

≈ −
ie2

 h

∫∞
−∞ θ

(
t− t ′

) ∑
n∈N

(
〈0 |Xν |n〉 〈n | Jµ (r) | 0〉 e−

1
i h (En−E0)(t−t

′)
)
f
(
t ′
)
dt ′

−
ie2

 h

∫∞
−∞ θ

(
t− t ′

) ∑
n∈N

(
− 〈0 | Jµ (r) |n〉 〈n |Xν | 0〉 e

1
i h (En−E0)(t−t

′)
)
f
(
t ′
)
dt ′

◦ The actual conductivity is time independent and so we need to integrate this over time:

σµν (r) = lim
η→0+

∫∞
−∞ dte−ηtσµν (r, t)

where e−ηt is a convergence factor with η > 0.
◦ Denote by vµ the total velocity, that is, vµ =

∫
d2rJµ (r).

◦ We are interested in the conductivity of the material as a whole, and not just at one particular point, so
we should average over space. Thus, if A is the area of the material, the final quantity we are interested



6.2. THE EDGE QUANTUM HALL CONDUCTANCE 75

in is

σµν =
1

A

∫
d2r lim

η→0+

∫∞
−∞ dte−ηtσµν (r, t)

=
1

A

∫
d2r lim

η→0+

∫∞
−∞ dte−ηt

∫∞
−∞−

ie2

 h
θ
(
t− t ′

)
×

×
∑
n∈N

(
〈0 |Xν |n〉 〈n | Jµ (r) | 0〉 e−

1
i h (En−E0)(t−t

′) − 〈0 | Jµ (r) |n〉 〈n |Xν | 0〉 e
1
i h (En−E0)(t−t

′)
)
f
(
t ′
)
dt ′

= e2
∑
n∈N

(
−
i
 h

1

A

)
lim
η→0+

∫∞
−∞ dte−ηt

∫∞
−∞ θ

(
t− t ′

)
×

×
(
〈0 |Xν |n〉 〈n | vµ | 0〉 e−

1
i h (En−E0)(t−t

′) − 〈0 | vµ |n〉 〈n |Xν | 0〉 e
1
i h (En−E0)(t−t

′)
)
f
(
t ′
)
dt ′

=
e2

A

∑
n∈N

〈0 |Xν |n〉 〈n | vµ | 0〉+ 〈0 | vµ |n〉 〈n |Xν | 0〉
En − E0

◦ The last step is to note that the velocity operator is equal to vµ = Ẋµ, and of course by the Heisenberg
equation of motion we then have vµ = 1

i h [Xµ, H0] or XµH0 −H0X0 = i hvµ. As a result,

〈0 |Xν |n〉 =
En − E0
En − E0

〈0 |Xν |n〉

=
1

En − E0
〈0 | (En − E0)Xν |n〉

=
1

En − E0
〈0 | (XνEn − E0Xν) |n〉

=
1

En − E0
〈0 | (XνH0 −H0Xν) |n〉

=
1

En − E0
〈0 | [Xν, H0] |n〉

=
1

En − E0
〈0 | i hvν |n〉

=
i h

En − E0
〈0 | vν |n〉

◦ Thus we can write σµν with only v’s as:

σµν =
ie2 h

A

∑
n∈N

〈0 | vν |n〉 〈n | vµ | 0〉− 〈0 | vµ |n〉 〈n | vν | 0〉
(En − E0)

2

which is the many body equivalent of the sum on occupied single-particle states which we had in Eq.
(22) (to show this we have to use the formula v = 1

h
∂E(k)
∂k , which appears for example in [As76] equation

E.7).

6.2. The Edge Quantum Hall Conductance

The goal in this section is to show that 1.6.1 actually is equal to the quantum Hall condutance of an edge system.
We assume the chemical potential on one edge is µ+ and µ− on the other edge, where µ+ 6= µ− (otherwise the

current on one edge cancels out the current on the other edge as they flow in opposite directions). Using the formula
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j = ρv where ρ is the density of carriers and v is the velocity of the carriers, we have

I =
1

2π

∑
j

∫kj+
k
j
−

v (k)dk

=
1

2π

∑
j

∫kj+
k
j
−

1

h

∂E

∂k
dk

=
1

h

1

2π

∑
j

[
E
(
k
j
+

)
− E

(
k
j
−

)]
=

1

h

1

2π

∑
j

[µ+ − µ−]

=
1

h

1

2π

∑
j

V

where the sum is on intersection points of either µ+ or µ− with the gapless edge states, v is the velocity, and V is the
potential between the two edges. Thus we obtain that for each ascending crossing of the gapless edge mode with
either µ+ or µ− we must count +1 for the conductance (given by σ = I

V ) and −1 for a descending crossing.
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